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ABSTRACT With the development of Internet of Things (IoT) technology and various sensing technologies,
some newer ways of perceiving people and the environment have emerged. Commercial wearable sensing
devices integrate a variety of sensors that can play a significant role in motion capture and behavioral
analysis. This paper proposes a solution for recognizing human motion in ping-pong using a commercial
smart watch. We developed a data acquisition system based on the IoT architecture to obtain data relating
to areas such as acceleration, angular velocity, and magnetic induction of the watch. Based on the features
of the extracted data, experiments were performed using major machine learning classification algorithms
including k-nearest neighbor, support vector machine, Naive Bayes, logistic regression, decision tree, and
random forest. The results show that the random forest has the best performance, reaching a recognition rate
of 97.80%. In addition, we designed a simple convolutional neural network to compare its performance in
this problem. The network consists of two convolutional layers, two pooling layers, and two fully connected
layers, and it uses data with no extracted features. The results show that it achieves an accuracy of 87.55%.
This research can provide training assistance for amateur ping-pong players.

INDEX TERMS Smart watch, inertial sensor, motion recognition, table tennis, machine learning.

I. INTRODUCTION
The Internet of Things (IOT) refers to a network formed
by combining various information sensing devices with the
Internet. The purpose is to enable all objects or people to
be remotely perceived or controlled. It is combined with the
Internet to create a more intelligent system of production and
life. As a new generation of information technology, the core
of the IoT is people-oriented, providing people with more
convenient and comfortable services. We can use a variety of
sensing devices to perceive people’s movements, locations,
and environmental information, and through the construction
of models we can complete the processing and analysis of
data to help people make informed decisions. As a typical
IoT device, smart watches integrate many sensors and have
strong communication capabilities.

In recent years, some human-computer interaction tech-
niques for somatosensory games [1] and assisted training [2]
have appeared in sports. Participants can exercise by carrying
out certain moves or jumping. Regardless of ball sports or
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other sports, accurate recognition of human motion is a key
technology for virtual reality and human-computer interac-
tion. There are several ways to recognize human motion,
and the recognition method based on inertial sensors is an
effective approach.

Some researchers have recognized human activity by
placing sensors on parts of the human body. Zappi et al. [3]
identified the worker’s basic repair actions by placing
19 three-axis accelerometers on his arms, reaching a recogni-
tion rate of 98%. Hong et al. [4] fixed three-axis accelerom-
eters to the thigh, waist and forearm of the subject, and
studied the recognition of 18 kinds of daily movements by
15 subjects; the recognition rate reached 92.58%. Olguin and
Pentland [5] fixed accelerometers to the right hand, left hip
and chest of three subjects to identify sitting, running, squat-
ting, walking, standing, crawling, and lying down, with the
recognition rate reaching 92.13%. They used the sensors to
recognize movements by placing them on areas of the human
body that put a lot of extra burden on the users. In addition,
there exist additional studies which have used accelerometers
to recognize human motion, but their use of gyroscopes and
magnetic field sensors is insufficient. It is of great practical
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significance to be able to comprehensively utilize a variety of
sensors through a pervasive product.

With the development of MEMS, many high-precision
MEMS inertial sensors are now being used in various types
of wearable smart terminals [6]. Wearable sensing devices
are currently appearing in numerous areas, including motion
monitoring, and this has prompted new research.

In Ref. [7], the authors evaluated the accuracy of a host
of the latest wearable devices in measuring fitness-related
indicators under various semi-natural activities. They found
that current mainstream devices are able to reliably measure
heart rate, number of steps, distance, and sleep duration,
which can be used as effective health evaluation indicators.
In Ref. [8], the authors identified, selected and categorized the
methodologies for estimating the ground reaction forces from
IMUs as proposed across the years. They classified the iden-
tified papers as direct modeling-based methods and machine
learning-based methods. In Ref. [9], the authors measured
walking ground reactions in real-life environments, and found
that methods using measured body kinematics exhibited the
highest practicality of the three classes of methods reviewed.
Wearable devices can use sensors to collect raw data from
measurements which are stored and used for the continuous
monitoring of health and exercise activity, as well as the
assessment of performance, and others [10]. In Ref. [11], a
novel wearable device for improving the activity recognition
accuracy was proposed based on the different multiple sen-
sors; this device simultaneously collects the muscle activ-
ity and motion information. Ref. [12] introduced a system
performance analysis of human activity cognition of motion
sensor behavior through a smartphone. When participants
conducted daily human activities, the authors collected sensor
data sequences through a smartphone. The ability to recog-
nize human motion through a common commercial wearable
integrated sensing device has some significant advantages,
especially in situations with fast motion.

There are many commercial wearable devices available
today. In Ref. [10], the authors described the wrist-wearable
monitoring devices in relation to three aspects: main func-
tionalities, sensors that are integrated within the device, and
IT support. As an increasingly popular wearable product,
smart watches have been welcomed by many people. Some
researchers have used smart watches to identify human activ-
ities. Ref. [13] used an architecture that included an Apple
Watch and an Apple TV remote to identify the user. They
performed the classification based on the recognition of four
types of human activities through building four databases.
Ref. [14] employed the data of the acceleration sensor in
the smart watch for behavior recognition. The present paper
uses an Android smart watch to recognize human motion
in table tennis. The advantages of such a solution are as
follows: a. As a commercial device, it can be easily worn
on the wrist by the user without being directly attached to
the body; b. We can only use this one node, which avoids
the trouble of wearing multiple nodes; c. With a wide range
of sensors integrated into the watch, we are able to combine

multiple sensor information fusions to improve recognition
performance; d. Smart watches have a variety of ways to
communicate, so they can be better integrated into the infor-
mation environment and take advantage of the IoT and cloud
computing. The present paper uses a smart watch to acquire
inertial data related to the movement of the player, and then
transmits it to the server for analysis in real time. It is a typical
IoT architecture. The IoT technology employs a multi-modal
approach to perceive human activity. In particular, this article
uses a wearable device to perceive the skill movements of
ping-pong players.

Table tennis is a wide-ranging ball game with many ama-
teur table tennis fans around the world. In the training of
table tennis, players are prone to change their body shape,
which makes their movements deviate from the normative
ones. Effective external guidance can play a greater positive
role. The present paper aims to use some basic and more stan-
dardized skill movements as the training standard to provide
assistance and reference for the training of amateur players.
By accurately determining whether the skill movements in
the player training are accurate, the players are provided
with intelligent monitoring and guidance to improve their
training performance. Based on the smart watch, the present
paper analyzes and discusses the constructed skill recognition
model.

In the relatedmotion recognition theory, themachine learn-
ing classification algorithms have been widely used and have
achieved some good results. The Bayes classifier was used
in Ref. [3], and the decision tree classification algorithm
was applied in Ref. [4]. In Ref. [15], Artificial the neural
network classifier and the nearest neighbor algorithm were
used to recognize human activities, and achieved recognition
rates of 95.24% and 87.17%. The research in the present
paper experiments with k-NN, support vector machine, Naive
Bayes, logistic regression, decision tree, random forest and a
specially designed convolutional neural network.

The main work of the present paper is summarized as
follows:

1. Based on commercial smart watches, we designed a data
acquisition system that can accurately collect the accelera-
tion, angular velocity and magnetic induction of the device.

2. We designed the experiment of recognizing table tennis
movements, collected the watch data of the players during the
exercise, and completed the data processing.

3. We experimented with the main machine learning clas-
sification model and used the convolutional neural network
model as a comparison to discuss the results and draw
conclusions.

II. DATA COLLECTING AND PROCESSING
A. DESIGN OF DATA ACQUISITION SYSTEM
In our experiment, we used a common commercial Android
smart watch with a variety of sensors. We employed an
accelerometer, gyroscope, and a magnetic field sensor to
obtain a total of nine axes of data, including acceleration,
angular velocity, and magnetic field strength.
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FIGURE 1. Structure of data acquisition system.

TABLE 1. Background information of subjects.

The data acquisition system is designed as follows:
first, we developed an Android wear application to acquire
real-time data of acceleration, angular velocity and magnetic
field strength on the smart watch, and we transmitted this
data to a mobile phone via Bluetooth. Following this, the data
was received through an android application on the mobile
phone, and at the same time it was forwarded to a PC via
Wi-Fi. Finally, the data was received and stored on the PC
by a specific Java server program, as shown in Figure 1. The
sampling frequency can be set in this developed data acqui-
sition system. After several tests, we set the data sampling
frequency to 50 Hz, which satisfies our experimental needs
and can transmit and receive data steadily. The system was
developed using Android Studio, SDK, and JDK.

B. COLLECTING DATA RELATED TO TABLE TENNIS
Our research requires participants, and we recruited volun-
teers from the author’s university to participate in the exper-
iment. We tested a total of 12 college students in a week,
including six males and six females. We gave all subjects
guidance on ping-pong and trained them. All the subjects
were amateur table tennis fans and their background infor-
mation is shown in Table 1.

The actions we recognize are the eight basic movements in
ping-pong. The names of these actions are: Forehand Attack,
Forehand Drive, Forehand Chop, Forehand Flick, Backhand
Control, Backhand Drive, Backhand Chop, and Backhand
Flick.

Our subjects used the right hand to hold the table tennis
bat. We asked the participants to wear the smart watch on
the right wrist before they started the movement. After the
equipment was positioned, the volunteers started to play ping-
pong, and we recorded and saved the action data generated
by the smart watch for a certain period of time. The button

TABLE 2. The number of samples for each action.

to start sending data is on the watch, which is clicked by the
participant and can be initiated at any time. The termination
of data acquisition was performed by the experimenter on the
PC according to the actual situation.

The data we obtained was a continuous inertial signal,
and we needed to detect its motion signal segment. A total
of 2,275 valid samples were collected, of which 1,147 were
frommales and 1,128 were from females. Each action and the
corresponding number of samples are shown in Table 2.

C. DATA PREPROCESSING
With regard to the raw data, including acceleration, angular
velocity, and magnetic induction, we first smooth-filtered it,
and then detected and segmented the motion signal segments.

1) SMOOTH FILTERING
In the process of data collection, some noise will inevitably
be mixed, which will give rise to some interference with the
features of the signal. We used the mean filtering method
to smooth the original signal. The process was as follows:
for the original signal sequence (f1, f2, f3, . . . ,fn), in a
time window of length, we calculated the average value of
the M continuous data points (fs−b, . . . ,fs−1, fs, fs+1,fs+b),
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TABLE 3. Features and expressions.

where b = (M − 1)/2, following which we took this average
value

∑s+b
i=s−b fi/M as the filtered output of point fs.

2) ACTION DETECTION
The first step of recognition is to segment the action signal
accurately. In the period of no action, the signal is stable and
has a small variance, and within the action interval, the signal
fluctuates greatly and has a large local variance. Therefore,
we can set a sliding time window to detect and divide the
action signal data by controlling the variance within the win-
dow. The specific process was as follows: first, we calculated
the variance of each axis for each piece of sensor data in
the window (Formula 2), and then compared the sum of
each axis’s variance (Formula 3) for each sensor with the set
threshold (Formula 4). When they satisfied the constraint at
the same time, we judged it as the window containing the
action signal segment, where the overlap size is w/3.

The d-axis average:

Avgd =
1
w

w∑
i=1

di, (1)

where, d = {x, y, z}.
The d-axis variance:

Vard =
1
w

w∑
i=1

(di − Avgd )2, (2)

where, d = {x, y, z}.
The sum of the three axis variances:

S = Varx + Vary + Varz, (3)

Constraints of signal segmentation:
th1acc < Sacc < th2acc
th1ang < Sang < th2ang
th1mag < Smag < th2mag

, (4)

where, Sacc, Sang, Smag are the sum of the three axis variances
corresponding to the accelerometers, gyros and magnetic
field sensor. th1i, th2i (i = {acc, ang,mag}) are the lower
threshold and the upper threshold using the sum of the three

FIGURE 2. Sigmoid function.

axis variances for each sensor in a certain action signal seg-
ment as the reference for the threshold. For example, the sums
of the three axis variances of acceleration, angular velocity
and magnetic field strength calculated from the rth action
signal segment are Saccr, Sangr and Smagr , following which
we set the corresponding th1i, th2i to a∗Sir, b ∗ Sir , where
i = {acc, ang,mag}, a, b ∈ [0, 2] are the weight coefficients
of upper threshold and lower threshold.

D. FEATURE EXTRACTING
Since the time domain features have less computational
complexity and can better meet the real-time requirements,
we used time domain features to characterize the motion
signal segments. For each axis of data for each sensor,
we extracted the mean, variance, standard deviation, mode,
maximum, minimum, zero crossing, and range as features,
following which each skill movement was described by a
total of 72 features. The features and descriptions of the
movements are shown in Table 3.

To eliminate the effects of different dimensions, we used
the sigmoid function to map each value between 0 and 1. The
Sigmoid expression is:

S (x) =
1

1+ e−x
, (5)

The image of its function is as shown in Figure 2.

E. ORGANIZATION OF DATA SETS
This paper applied some supervised machine learning
classification algorithms to recognize human motion.
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TABLE 4. Label number of each action.

After detecting the signal segment of each action, we added
the label corresponding to each action and organized it into a
complete ping-pong action data set. We used extracted data
features to train and test k-NN, support vector machines,
Naive Bayes, logistic regression, decision trees, and random
forests, while we employed the filtered data directly to train
and test the convolutional neural network. Therefore, this
paper organized two action data sets: feature-based and data-
based. The label number of each action is shown in Table 4.

III. RECOGNITION MODEL
A. FEATURE-BASED CLASSIFICATION MODEL
1) K-NEAREST NEIGHBOR
The idea of k-nearest neighbor (k-NN) [16] is that ‘‘like
attracts like’’, that is, we can determine the class of a test
sample according to the classes of adjacent samples. The so-
called proximity sample is the nearest K sample. This can
be determined by calculating its distance from all known
samples. k-NN’s classification of new instances is a vote on
the categories of k training instances that are closest to it.

There are many ways to calculate the distance. This paper
used the Euclidean distance, which is the L2 norm between
the feature vectors. The Euclidean distance between Vector
A = (x11 , x

1
2 , . . . ,x

1
n ) and Vector B = (x21 , x

2
2 , . . . ,x

2
n ) is:

dAB =

√∑n

i=1
(x1i − x

2
i )

2
, (6)

Thus, for the training set

T = { (x1, y1) , (x2, y2) , . . . , (xN , yN )}

where xi is the feature vector, and yi∈ {c1, c2, . . . ,cK is the
class of the instance, i = 1, 2, . . . ,N .
According to the method of measuring distance, we found

k points closest to the test sample X in training set T, and
we recorded the neighborhood of x covering these k points as
Nk (x).

Then, according to the classification decision rules (such
as the majority vote), the classifier is expressed as

y = argmin
cj

∑
xi∈Nk (x)

I
(
yi = cj

)
, i = 1, 2, . . . ,N;

j = 1, 2, . . . ,K, (7)

where, I is the indicator function. That is, I is 1 when yi = cj,
otherwise I is 0.

In this paper, the K value was 3, which is to judge the class
of samples according to the three nearest neighbors.

2) SUPPORT VECTOR MACHINE
Support vector machine is the linear classifier with the
largest interval in feature space [17]. For non-linear problems,
the SVM introduces the kernel techniques. It maps the input
space to a feature space through a non-linear transformation,
so that the hypersurface model in the input space is trans-
formed into a hyperplane model in the feature space.

Let 8(x) denote the feature vector from x in input space.
Thus, the model of the hyperplane in the feature space can be
expressed as

f (x) = wT8(x)+ b, (8)

In the process of solving parameters, we need to introduce
an appropriate kernel function. Common kernel functions
include the linear kernel, polynomial kernel, gaussian kernel
and Sigmoid kernel. Gaussian kernels are used in this paper
and their expression is as follows

K (x, z) = exp(−
‖x-z‖2

2σ 2 ), (9)

In this case, the classification decision function becomes

f (x) = sign(
∑Ns

i=1
a∗i yi exp

(
−
‖x-z‖2

2σ 2

)
+ b∗), (10)

3) NAIVE BAYES
The main principle of the Naive Bayes classifica-
tion algorithm is that it makes a conditional indepen-
dence assumption based on Bayes’ theorem. For input
X = (x1, x2, . . . ,xn),, it calculates the posterior probability
P(y =ck |X = (x1, x2, . . . ,xn)) of the data item for each class.
And then it takes the class with the greatest posteriori proba-
bility as the output of X.

According to Bayes’ theorem, the posterior probability is
calculated as

P(Y=ck | x1, x2, . . . ,xn)=
P(Y =ck )·P(x1, x2, . . . ,xn|Y=ck )

P(x1, x2,. . ., xn)
,

(11)

The denominator can be expanded from the full probability
formula to∑

k
P(Y = ck )·P(x1, x2, . . . ,xn|Y = ck ), (12)

Molecules are complex multiplications of conditional
probabilities, so the Naive Bayes algorithm makes an inde-
pendent hypothesis. That is, it considers that the dimen-
sional characteristics of the sample are independent. So,
the molecule can be turned into

P(Y =ck )
∏n

i=1
P(xi|Y = ck ), (13)

Thus, the basic classification formula of the Naive Bayes
is

P (Y = ck | x1, x2, . . . ,xn)

=
P(Y = ck )·

∏n
i=1 P(xi|Y = ck )∑

k P(Y = ck )·P(x1, x2, . . . ,xn|Y = ck )
, (14)
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Note that the denominator is the same for all classes.
We want to find the class with the highest probability, and
so only considered the numerator. Thus, the classifier is
represented as

y = argmin
ck

P(Y = ck )·
∏n

i=1
P(xi|Y = ck ), (15)

where, k = 1,2,. . . ,K.
In this paper, we assumed that the feature observations for

each category are Gaussian-distributed, and so we used the
Gaussian Naïve Bayes classification algorithm.

4) LOGISTIC REGRESSION
Logistic regression is a classic classification method in statis-
tical learning [17]. It compares the values of the conditional
probabilities of different classes and then assigns the instance
x to the class with a higher probability value.

For binary classification, the logistic regression model is
the conditional probability distribution as follows

P (Y = 1 | x) =
exp(w · x+ b)

1+ exp(w · x+ b)
, (16)

P (Y = 0 | x) =
1

1+ exp(w · x+ b)
, (17)

where, x ∈ Rn is input., Y ∈ {0, 1} is the output. w is the
weight vector, and b is bias.

For multi-classification problems, the set of values of Y is
{1,2,. . . ,K},and the logistic regression model is

P (Y = k | x) =
exp(wk · x+ bk )

1+
∑K−1

k=1 exp(wk · x+ bk )
, (18)

P (Y = K | x) =
1

1+
∑K−1

k=1 exp(wk · x+ bk )
, (19)

where, wk and bk are the weight vector and bias of the kth
class.

In this paper, L2 was used as a regularization term; the
error range for iteration termination was set to 1e-4, and the
maximum number of iterations was set to 100.

5) DECISION TREE
The structure of the decision tree model is tree-shaped. In the
classification problem, it represents the process of classifying
instances based on features. Today, there are many decision
tree algorithms. ID3 (Iterative Dichotomiser 3), C4.5 and
CART (Classification and Regression Tree) are well-known
algorithms in this regard. A decision tree algorithm usually
consists of three steps: feature selection, spanning tree, and
pruning tree [21].

Formally, the decision tree is a tree that is gradually built
according to the features. In the different order of the selected
features, the shape of the tree we get will also be different.
What we want is a simple but effective structure, so it needs
to choose features based on some appropriate methods. There
are three methods for feature selection: information gain,
information gain rate, and Gini index.

Information gain: the information gain of feature A on
training data set D is defined as the difference between the
information entropy of D and the conditional entropy of A.

g (D,A) = H (D)− H(D|A), (20)

where, H (D) = −
∑k

i=1

∣∣Di∣∣
|D| log

∣∣Di∣∣
|D| , k is the number of

classes. H (D |A) =
∑n

i=1

∣∣Di∣∣
|D| H (Di), and n is the number

of values of feature A.
Information gain rate: the information gain rate of fea-

ture A for training data set D is defined as the ratio of its
information gain to the entropy of the value of feature A
corresponding to data set D.

gR (D,A) =
g(D,A)
HA(D)

, (21)

where, HA (D) = −
∑n

i=1
|Di|
|D| log

|Di|
|D| , n is the number of

values of feature A.
c. Gini index: for k classes, if the probability that the

sample points belong to the i-th class is pi, then the Gini index
is

Gini (p) =
∑k

i=1
pi(1−pi) = 1−

∑k

i=1
p2i , (22)

For a sample set D, its Gini index is

Gini (D) = 1−
∑k

i=1
(
|Di|
|D|

)
2
, (23)

where,Di is a collection of samples belonging to the i-th class
in D, k is the number of classes.

The pruning operations of the decision tree include
pre-pruning and post-pruning:

Pre-pruning: estimate each node before partitioning in
decision tree generation. If the partitioning of the current node
does not improve the generalization performance, the parti-
tioning is stopped and the current node is marked as a leaf
node.

Post pruning: first, we generate a complete decision tree
from the training set, and then observe the non-leaf nodes
from the bottom up. If the node’s subtree is replaced with
a leaf node to improve generalization performance, then the
subtree is replaced with a leaf node.

In this paper, the Gini coefficient was selected as the
division criterion of the tree; the maximum depth of the
tree was not limited, and the minimum number of samples
required to distinguish the internal nodes was set to 2.

6) RANDOM FOREST
Random forest is a decision tree-based machine learning
algorithm proposed by Breiman in 1995 [18]. As an inte-
grated learning method, its idea is to brainstorm. It obtains
multiple training sets from the original sample through the
Bootstrap resampling method, and then builds decision trees
to form a random forest. The sample to be tested votes on
multiple results generated in the random forest, and the result
with the highest number of votes is taken as its class.
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FIGURE 3. CNN network structure.

The feature selection of random forests in the decision
tree training process is random. The traditional decision tree
selects an optimal attribute in the current attribute set. In RF,
a subset of k attributes is randomly selected from the attribute
set of the node, and then an optimal attribute is chosen
from the subset for division. For a random forest model
containing T decision trees, its classifier can be expressed
as:

y = argmin
cj

∑T

i=1
I (fi (x) = cj) j = 1, 2, . . . ,K, (24)

where, I is the indicator function, fi (x) is the i-th decision tree
model.

In this paper, the number of trees was set to 10; the Gini
coefficient was used as the criterion for division.

B. CONVOLUTIONAL NEURAL NETWORK
Neural networks are the main form of deep learning [19],
and the greater the number of network layers, the better the
performance of data fitting. In the field of pattern recognition,
Convolutional Neural Network (CNN) [20] is an efficient
deep learning model. It can automatically learn data fea-
tures through multi-layer non-linear transformations, and has
strong expressive ability and learning ability. It has achieved
good results in many aspects [21]–[22]. CNN has the char-
acteristics of local connection, weight sharing and pooling
operation [23], which can effectively reduce the network
complexity and make it easy to train and optimize. Many
researchers have already proposed improved algorithms for
CNN [24]–[29].

The structure of the CNN used in this paper is shown
in Figure 3, including one input layer (Input), two convo-
lutional layers (C1,C2), two downsampling layers (S1,S2),
two fully connected layers (F1,F2) and one output layer
(Output).

where Ci(i = 1, 2) represents convolutional layers; Si(i =
1, 2) represents downsampling layers;Fi(i = 1, 2) represents
fully connected layers.

a. Input layer is the original data of the action sig-
nal segment X = (x1, x2, . . . ,xn), where xi =(
xi11 , xi12 , . . . ,xi1w , zi31 , zi32 . . . , zi3w

)
or xi = (xi11 , yi11 , . . . ,

zi31xi1w , yi1w , . . . ,zi3w ), n is the number of input samples;
i = 1, 2, . . . ,n.
b. The formula for convolutional layer is

x lj = f (
∑
i∈Mj

x l−1i ∗ k lij + b
l
j), (25)

where x lj represents the jth feature map of the lth layer; Mj is
the set of input feature maps; k lij is the jth convolution kernel
of layer l; blj is the bias; f (·) is the activation function. In this
paper, the ReLU (Rectified linear unit) [30] functionwas used
as the activation function.

c. Downsampling layer follows the convolutional layer and
corresponds to the feature map in the previous layer, with
spatially invariant features [31]. Its general formula is

x lj = f (wljdown(x
l−1
j )+ blj), (26)

where, wlj is the weight; b
l
j is the bias; down(·) is the down-

sampling function.
In this paper, we used the maximum pooling method

Sij = maxci=1,j=1(Hij), (27)

That is, the largest element is extracted from the pooled
region of size c× c in the input feature map H .

d. After two convolutional-pooling layers, two fully con-
nected layers are connected, each neuron of which is
connected to all neurons in the previous layer. The fully
connected layer can integrate the local information with
class discrimination among the convolutional layer or pooling
layer [28]. The activation function is still the ReLU function.

To effectively avoid overfitting of the network, we used
dropout [33] technology at the first fully connected layer. This
approach can randomly inactivate some neurons during the
training process, so as to improve the generalization ability
of the network.

VOLUME 7, 2019 167061



H. Zhang et al.: Recognizing Ping-Pong Motions Using Inertial Data Based on Machine Learning Classification Algorithms

TABLE 5. Test results of k-NN.

TABLE 6. Test results of SVM.

TABLE 7. Test results of Naive Bayes.

e. Finally, at output layer, the sample is classified by a
softmax function

Sj =
eaj

T∑
k=1

eak
, (j ∈ {1, 2, . . . ,T }), (28)

In this paper, T = 8 was the number of label categories.

IV. EXPERIMENTAL RESULT
For the training and testing of k-NN, support vectormachines,
Naive Bayes, logistic regression, decision trees, and random
forests, we used the features described in Section 2.4. How-
ever, for CNN, we employed the data directly after smooth-
ing, without using any features.We randomly selected 30% of
the total sample to test, including 683 samples; the remaining
70% of the data was used to train the model, including
1,592 samples. Our experiment was based on Python. The
software we used was PyCharm, and we employed scikit-
learn and TensorFlow to build the model.

The confusion matrix of k-NN, support vector machine,
Naive Bayes, logistic regression, decision tree, and random
forest is shown in Table 5 to Table 10.

In the experiments on CNNs, we set the learning rate to
3e-4, the batch size to 50, and we terminated the training after

TABLE 8. Test results of logistic regression.

TABLE 9. Test results of decision tree.

TABLE 10. Test results of random forest.

FIGURE 4. Accuracy varies with the number of iterations in CNN training.

iterating 200 times. The recognition accuracy changes with
the iteration times, as shown in Figure 5.

The elements of the diagonal in the confusion matrix are
the number of correctly recognized samples, and we can
obtain the recognition accuracy by calculating the ratio of
the sum of the diagonal elements and comparing it to the
total number of test samples. In addition, we used precision,
recall, and F1-score as indicators of performance evaluation,
as shown in Table 11.

From the experimental results, we can see that the random
forest has the highest recognition accuracy. It shows better

167062 VOLUME 7, 2019
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TABLE 11. Recognition rate of each model.

performance than other models in this problem. This result
also shows that this integrated learning method has stronger
generalization ability in table tennis. Decision tree and k-NN
have achieved 95.02% and 94.00% accuracy, both of which
have shown good performance. The accuracy of the CNN we
designed is similar to that of k-NN and decision trees, and
does not exceed that of random forest. However, our CNN
uses the action data directly without any features. It also
shows a strong learning ability in ping-pong. In addition,
these models have different recognition rates for the overall
sample, while they also have different effects on specific
actions. Comparing Tables 5 and 10 we can easily find that
although the overall accuracy of k-NN is lower than that of
random forest, the recognition accuracy of FC, BC and BF is
higher than that of random forest.

V. CONCLUSION
In the IoT environment, integrating into smart watches, this
paper proposes a solution to recognize ping-pong skill move-
ments to assist with the training of amateur athletes. We use
the inertial sensing data of smart watches and experiment by
building machine learning models. The results show that a
high recognition rate is achieved, which can effectively help
the amateur ping pong player’s action stereotypes. At the
same time, there are still some shortcomings in our work.
First of all, we only employ a single smart watch, which
can effectively capture the upper limbs of the players, but
the movements of the whole body in ping-pong are still very
important, especially the training of the footwork. Moreover,
the amount of data we use for model training is not large
enough, and generalization performance may not be good
enough.

Currently, we use multiple sensors to study the capture and
recognition of whole bodymovements. In future work, for the
use of data, we will increase the number of participants and
employ the rule database to constrain the action. In terms of
multi-modal fusion, we will combine the smart watch with
multi-inertial sensors to explore a more effective approach to
sport health computing.
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