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ABSTRACT To address the uncertain motion tracking problem, a tracking method based on the Markov
Chain Monte Carlo and correlation filters is proposed. Firstly, multi-scope marginal likelihood (MSML)
strategy is introduced toWang-LandauMonte Carlo (WLMC) tracking method for increasing the acceptance
ratio of samples in the promising regions and obtaining a more reliable distribution of density-of-states
(DOS). Secondly, in order to raise the efficiency of the tracker, DOS is used to mark the region of interest.
Then correlation filters are used to simplify the iterative optimizing operation of the subregions, and
eventually target positioning is achieved by maximum response in the promising regions. Finally, a unified
tracking framework is designed to enable correlation filters and WLMC with MSML strategy to exploit and
complement each other to cope with uncertain motion tracking. Extensive experimental results on uncertain
Motion sequences and benchmark datasets demonstrate that the proposedmethod performs favorably against
the state-of-the-art methods.

INDEX TERMS Markov chain Monte Carlo, correlation filters, uncertain motion, visual tracking.

I. INTRODUCTION
Visual tracking is an active research topic in computer vision
community that finds numerous applications such as intel-
ligent surveillance, medical research, motion analysis, and
autonomous driving [1]–[3]. In the past decades, dramatic
progress has been achieved [4], but there are still some very
challenging and unresolved issues, including illumination
changes, fast motions, pose variations, partial occlusions and
background clutters and so on. In order to obtain better
tracking results, many trackers based on deep learning or cor-
relation filtering have been proposed in recent years.
Examples include target-aware deep tracking [5], multi-task
correlation particle filter [6], hierarchical convolutional fea-
tures [7], adaptive hedging [8], spatial regularization [9],
continuous convolutional operations [10], etc.

Despite the great success of the above methods in visual
tracking, most existing approaches are usually based on
a smooth motion assumption. In real-word scenarios, it is

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen .

FIGURE 1. Examples of uncertain motion. Dotted and solid boxes mean
search window and target, respectively. Tracking is no longer reliable
when the target escapes from the search area due to uncertain motion.

possible for these trackers not to work well when deal-
ing with abrupt motion problems such as fast motion,
camera switching, low-frame-rate videos, etc. Examples of
uncertain Motion are shown in Fig. 1. Many methods are
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proposed to solve these problems, like detection-based meth-
ods [11], dynamic model-based prediction method [12],
multi-scale method [13], stochastic sampling-based tracking
method [14], [15] and other methods.

In the above methods, the stochastic sampling based track-
ing method has been widely concerned. These methods are
mostly under the framework of Markov Chain Monte Carlo
(MCMC) or particle filtering (PF) and Bayesian filtering.
Li et al. [16] proposed an abrupt motion tracking method
based on stochastic search and level set methods for con-
tour tracking. Li et al. [17] addressed the low frame rate
problem from a view which integrates conventional tracking
and detection. Su et al. [18] proposed a saliency embed-
ded particle filter to detect the target region from salient
regions when the object is lost for recovering tracking.
But the above trackers still cannot obtain a robust track-
ing results under some kinds of abrupt motion scenarios.
Zhou and Lu [14] and Zhou et al. [15] and other meth-
ods proposed an adaptive stochastic approximation Monte
Carlo sampling (ASAMC) based tracking method for abrupt
motion tracking, which can avoid the local-trap problem.
Kwon and Lee [19], [20] introducedWang-Landau algorithm
into visual tracking. By estimating the DOS, it can track both
smooth and abrupt motions accurately and robustly without
loss of time. WLMC and ASAMC trackers are based on
DOS which is divided into cells using a discretized grid.
However, when each new state is generated, these samplers
only consider the marginal likelihood (ML) score between
regions or between samples. As a result, samples on the
Markova chain will have a low quality so that, the suffi-
cient accurate of the update DOS distribution can not be
guaranteed. In addition, these methods need to visit the state
space using the random walk method which often needs long
iterations to reach the promising object state. It is difficult to
have a good search efficiency, because of a large number of
samples.

In this paper, we propose a tracking method (EWLCF-DP)
based on the extend WLMC and correlation filters in order to
solve the problems encountered by the traditional trackers.
The contributions of the proposed tracking method are as
follows:
1) We use MSML to estimate the sample similarity in two

scopes, and then, introduce MSML to the acceptance
formula of WLMC method. The acceptance probability
of samples is increased in the promising regions, which
ensures the reliability of the region proposal strategy
based on DOS.

2) By replacing the traditional Bayesian iterative opti-
mization process with KCF in promising subregions,
the location can be realized in the frequency domain.
This method can reduce the overall sample size and
improve the tracking efficiency.

3) The uncertain motion tracking framework is designed,
which unifies the methods of DOS and MSML guided
Monte Carlo and correlation filters. The performance of
themethod is evaluated in the uncertainmotion sequence

and OTB benchmark datasets, which is proved to be
superior to the state-of-the-art tracker.

II. RELATED WORK
In this section, we mainly discuss the methods closely related
to this work, including stochastic sampling-based tracking
methods and deep correlation filters tracking method.

A. STOCHASTIC SAMPLING BASED TRACKING METHODS
Stochastic sampling-based tracking methods are able to
handle the multimodal distribution and recovering from the
tracking failure. Among these frameworks, PF receives con-
siderable attention because it can deal with nonlinearity and
non-normality in the object models. Isard and Blake [21]
first applied PF to cope with visual tracking difficulties
encountered by Kalman filters. Del Bimbo and Dini [22]
used PF to track long-term video sequences with first-order
dynamic model and uncertainty adaptation. This method
can continuously adapt the system model noise to balance
uncertainty between the static and dynamic components of
the state vector. Oron et al. [23] presented a locally order-
less tracker using PF framework which showed better per-
formance in tracking both demormable and rigid targets.
But the high computational burden caused by a large num-
ber of particles often makes the PF infeasible for practical
applications.

To reduce the computational cost and improve the sam-
pling efficiency, MCMC methods gained widely attention
in visual tracking. Khan et al. [24] proposed a MCMC-
based PF method for tracking a variable number of objects,
aiming at suppressing the particle degeneracy and parti-
cle impoverishment problems. Cong et al. [25] proposed
a MCMC- based PF tracking method using the histogram of
oriented gradients (HOG) based appearance model. It shows
improved robustness in handling slight object occlusions.
Kwon and Lee [26] proposed a robust tracker based on
interactive MCMC sampling framework (Visual Tracking
Decomposition, VTD tracker). VTD is proven to be robust for
appearance variation induced by occlusion and illumination
change. Although popular and commonly used, the plain
Gibbs sampler or Metropolis-Hastings algorithm often gets
trapped in the local optimum when the energy landscape of
the target distribution is rugged.

To overcome these problems, many advanced MCMC
algorithms have been developed. Roberts and Rosenthal [27]
proposed the Adaptive MCMC algorithm to automatically
adjust the proposal variance of MCMC as the Markov chain
goes on. The proposal variance is tuned to produce an
acceptance ratio as close as possible to the optimal value
of 0.44 [28]. This adaptive scheme is very helpful in tracking
the abrupt motion. Wang et al. [29], [30] proposed Langevin
Monte Carlo sampling to overcome the problem of low sam-
pling efficiency caused by random walk. Zhou et al. [31]
utilized nearest neighbor field estimation to compute the
importance proposal probabilities, which guide the Markov
chain search towards promising regions. Mbelwa et al. [32]

VOLUME 7, 2019 167077



H. Zhang et al.: Uncertain Motion Tracking Combined MCMC and Correlation Filters

integrated prior knowledge and objectness proposal into the
smoothing stochastic approximate Monte Carlo to predict
abrupt motion. In this work, we utilize the DOS distribution
to propose candidate regions that may contain targets, and
introduce MSML to further improve the reliability of region
proposal strategy.

B. DEEP CORRELATION FILTERS TRACKING METHODS
Correlation filters have recently attracted considerable atten-
tion in visual tracking due to computational efficiency and
robustness. Bolme et al. [33] modeled target appearance by
learning an adaptive correlation filter which is optimized
by minimizing the output sum of squared error (MOSSE).
The tracker based on MOSSE filters is robust to varia-
tions in lighting, scale, pose, and non-rigid deformations.
Henriques et al. [34] exploited the circulant structure of
shifted image patches in a kernel space and propose the
CSK method based on intensity features, and extended it to
the KCF approach [35] with the HOG features. Its speed
and precision achieve remarkable results. Danelljan et al.
proposed the DSST method [36] with adaptive multi-scale
correlation filters using HOG features to handle the scale
change of the target object. Zhang et al. [37] utilized cir-
culant property of target template to improve sparse based
trackers (CST). High dimensional features can be embed-
ded into CST to significantly improve tracking performance
without sacrificing much computation time. Ma et al. [38]
introduced an online random fern classifier as a re-detection
component for long-term tracking, and used the correlation
between temporal context to learn discriminative correlation
filters from the most confident frames to estimate the scale
change.

With the rise of neural networks [39]–[42], convolutional
neural networks (CNNs) based trackers [43], [44] have
obtained the excellent performance. Danelljan et al. [10]
proposed a continuous convolution filters for tracking with
multi-scale deep features to account for appearance variation
caused by large scale change. Ma et al. [7] used hierar-
chical convolutional features of CNNs as target representa-
tions, and hierarchically inferred the maximum response of
each layer to locate targets for handling large appearance
variations and avoid drifting. Song et al. [45] presented
the VITAL algorithm to address the problems of samples
spatially overlapped and samples imbalance via adversarial
learning. VIALT tracker can capture rich appearance varia-
tions in the tracking process. Lu et al. [46] applied residual
connection to fuse multiple convolutional layers as well as
their output response maps. This method further improves
the performance of the regression tracker. Wang et al. [47]
proposedMulti-Cue Correlation Filters which combining dif-
ferent types of features. It constructs multiple experts through
Discriminative Correlation Filter (DCF) for robust tracking.
In this work, we introduce KCF based on CNN features into
WLMC methods as a local search method to improve the
efficiency of the tracker and robustness about appearance
variation.

III. WLMC AND KCF TRACKING ALGORITHMS
A. KCF TRACKING ALGORITHM
KCF is a discriminating tracking method, which generally
trains a target detector during the tracking process and uses
the target detector to detect whether the predicted position
of the next frame is a target. The training set and the target
detector (essentially regression) are updated with the new
detection results. The target region is generally selected as
a positive sample, and the surrounding region of the tar-
get as a negative sample. Of course, the closer it is to the
target region, the more likely it is to be a positive sample.
KCF uses the number in the range of [0,1] as the regression
value of samples, so as to give different weights of samples
under different offsets.

KCF constructs training samples by using cyclic shift of
target window to form cyclic shift matrix of sample data. The
purpose of this is, on the one hand, to maintain intensive sam-
pling around the target, rather than random sampling; On the
other hand, because of the particularity of cyclic shift matrix,
the solution of the problem is transformed into the discrete
Fourier domain. With the help of FFT transform, the con-
volution is transformed into the dot product of frequency
domain, which avoids inverse matrix operation, reduces the
complexity of operation and improves the processing speed.

At the same time, KCF maps ridge regression of linear
space to nonlinear space through kernel function, and sim-
plifies calculation by solving a dual problem in nonlinear
space. The process of the KCF mentioned above can be
described [35] as follows with the mathematical language.

In the linear ridge regression, the object of training in the
linear ridge regression is to find a w that makes the function
f (z) = wT z enableminimizing the squared error over samples
xi and their regression targets yi

min
w

(f (xi)− yi)2 + λ ‖w‖ (1)

Let ϕ(x) be a non-linear mapping from low dimension
space to the high dimension space, and write the form of
the dot product as ϕT (x)ϕ(x ′) = κ(x, x ′), which is com-
puted using the kernel function K (e.g., Gaussian or Poly-
nomial), where x and x ′ are all different samples. Express the
solution w as a linear combination of samples xi.
Consequently f (z) = wT z is converted into:

f (z) = wT z =
n∑
i=1

αiκ(z, xi) (2)

where αi is the element of the variable α which is becoming
the alternative of w. Substituting Eq. (2) into Eq. (1), we can
get the optimized solution which is given by [48]

α = (K + λI )−1y (3)

where K is the kernel matrix with the elements Ki,j =
κ
(
xi, xj

)
which represents the dot product between all pairs

of samples, y means the regression target and λ is a regular-
ization parameter that controls overfitting. It is natural for
us to diagonalize Eq. (3) when we selected the appropriate
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kernels to make K circulant. Thus we can easily calculate α̂
corresponding to the counterpart of α shown in Eq. (3).

α̂ =
ŷ

K̂ xx + λ
(4)

where K̂ xx is the first row of the kernel matrix K , and
‘‘̂’’ represents discrete Fourier transform (DFT) of a vector.
If Gaussian kernel is adopted in dealing with multiple chan-
nels, and a vector x concatenating the individual vectors for
C channels is given as = [x1, x2, · · · , xc], then

K̂ xx
= exp(−

1
σ 2 (‖x‖

2
+
∥∥x ′∥∥2−2F−1(∑

c

x̂∗c � x̂
′
c))) (5)

where F−1 represents the inverse DFT, and σ is the variance
of the Gaussian function. Suppose the new sample is z, a con-
fidence map y can be obtained by:

y = F−1(K̂ xz)� z (6)

where the multiplication � is performed element-wise. The
position with a maximum value y can be predicted as new
position of the detecting object.

B. WLMC TRACKING ALGORITHM
The WLMC sampling method is one of the methods
used to accurately estimate DOS in the statistical physics.
Kwon Junseok et al. combinedWLMC samplingmethodwith
MCMC method in abrupt motion tracking [19]. This method
consists of three steps: the proposal step, the acceptance
step, and the estimation step. First of all, the state space S
is defined by a set of all possible states under Bayesian
framework: S =

{(
X xt ,X

y
t ,X

s
t
)
|
(
X xt ,X

y
t ,X

s
t
)
∈ D

}
, where

D denotes the domain of the states. Let the state of target
X = Xpt × X st at time t , where Xpt and X st represent the
position and scale states, respectively. Fig. 2(a) illustrates an
example of the state. Then in order to cope with the abrupt
motion of the target, SP is divided into d disjoint subregions:
Spi , i = {1, · · · , d}, as the shown in Fig. 2(b).

1) PROPOSAL STEP
There are many cases, in which an abrupt motion occurs.
In this paper, we only consider abrupt changes in the state
space of position and assume that the scale of the target is
smooth over time. The algorithm uses two different types of
proposal density to propose position and scales, respectively.
Gaussian perturbation is used to set a large variance in pro-
posal density an showen in Eq. (7):Q

(
X x
′

t ;X
x
t

)
= G(X xt ; σx

2)

Q
(
X y
′

t ;X
y
t

)
= G(X yt ; σy

2)
(7)

where X x
′

t and X y
′

t denote the new x and y positions, respec-
tively, σx and σy denote the proposal variance of x and
y coordinates, respectively. For dealing with smooth changes
in scale, the second-order autoregressive model is adopted in
proposal step [20].

FIGURE 2. Example of state and subregion. (a) Target state representation
X = Xp

t × X s
t . (b) State spaceSp

i .

2) ACCEPTANCE STEP
Due to the large variance, the proposal density proposes many
unnecessary states. WLMC method inserts the novel DOS
term into the acceptance ratio of MCMC to form the accep-
tance function, it can solve this inefficiency in acceptance
step. The acceptance ratio a is calculated by the ML and
DOS terms as follows:

a = min

1, p
(
Yt |S

p′

i

)
1

g(Sp
′

i )
Q
(
Xt ;Xt ′

)
p
(
Yt |S

p
i

) 1
g(Spi )

Q
(
Xt ′;Xt

)
 (8)

where Sp
′

i and Spi denote the subregions that contains the pro-
posed state Xt ′ and previous state Xt , respectively, p

(
Yt |S

p
i

)
indicates the ML score of the subregion Spi , and g(S

p
i ) is the

DOS score of the subregion Spi . By using 1

g(Sp
′

i )
in Eq. (8),

when the DOS score of the subregion which include new
state is larger than the old one, the acceptance ratio is low,
and vice versa. For the ML term p

(
Yt |S

p
i

)
, if it has a high

ML score in new subregion, then the state will be accepted
with a greater probability. By trading off the ML term and the
DOS term, WLMC method can accept or reject a new state,
and exploitation and exploration can be efficiently achieved
at the same time.

3) ESTIMATION STEP
The estimation step is performed after the acceptance step.
This step is used to update the DOS score g(Spi ) and the
corresponding statistical histogram h(Spi ). WLMC tracking
method approximately estimates DOS by using the Monte
Carlo simulation, and states-of-density indicates the number
of states in a subspace. Initially, the DOS of each subregion
is initially set to1, and the histogram h(Spi ) is initialized to 0.
Sampling process constructs Markova chains by visiting each
subregions through random walk. For each sampling, if the
proposed state is accepted, the histogram and DOS of the
subregion are updated according to Eq. (9) and Eq. (10).
Otherwise, WLMC method does the same works for the
subregion to which includes the original state:

h(Spi ) ← h(Spi )+ 1 (9)

g(Spi ) ← g(Spi )× f (10)

where f is the modification factor, which is larger than one.
As the method progresses, DOS is constantly updated in
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FIGURE 3. A brief illustration for our method.

accordance with the given setting, and the histogram h(Spi )
will be gradually increased in accordance with the algorithm,
eventually generating a semiflat histogram. The semiflat
histogram is defined as: if the value of the lowest bin is
80 percent larger than the average value of all bins in the
histogram, then the histogram is considered to semiflat [49].
When the histogram has reached its semiflat one, the algo-
rithm will adjust the modification factor to obtain more accu-
rate DOS estimation, shown as Eq. (11):

f ←
√
f (11)

At the same time, the histogram statistics are reset to 0 and
the above estimation is redone until the histogram flattens
again and starts over with amore accuratemodification factor.
When f approaches 1 or the number of iterations reaches the
predefined value, the algorithm terminates.

IV. PROPOSED TRACKING ALGORITHM
In this section, we propose our tracking method. To obtain
higher quality region proposal information in the process
of WLMC sampling, we establish a reliable DOS distribu-
tion to propose the subregions that may contain the target.
In this regard, we extend the WLMC method through the
MSML, which can improve sample quality by introducing
a multi-scope likelihood evaluation, so that the proposed
subregions have a greater probability of containing the tar-
get. In order to improve efficiency, KCF is introduced into
tracking to replace the complex sampling process, and the
object location is obtained through the maximum response.
At the same time, deep feature can improve the robustness and

tracking precision of the tracker’s appearance model. The
proposed EWLCF-DP tracking framework is shown in Fig. 3.
We describe each part of the algorithm in detail below.

In Fig. 3, when the tracker gets a new frame from the video,
the 2-D density grid is initialized and the correlation filter
is updated. In the preliminary sampling phase, the WLMC
method withMSML is used to obtain the region proposal heat
map (DOS distribution). According to the descending order
of DOS score, T promising regions are found after the sam-
pling phase. In the correlation filtering phase, extract the deep
features of the promising regions. Then, the KCF process is
carried out to obtain the T response maps of these subregions,
respectively. Among all response maps, the location of the
maximum response is considered the location of the target.

A. THE MULTI- SCOPE MARGINAL LIKELIHOOD
By using DOS and ML term, WLMC tracking method sim-
ulates the motions in the region far from the current local
maximum or near the current local maximum, respectively.
In the process of the simulating the motion near the current
local maximum, the subregion ML term p

(
Yt |S

p
i

)
is used

as the basis to decide whether to accept the new sample in
the Eq. (8), or not. p

(
Yt |S

p
i

)
is approximated by:

p
(
Yt |S

p
i

)
←

mp
(
Yt |S

p
i

)
+p

(
Yt |X

m+1
t

)
m+1

, Xm+1t ∈ Spi (12)

where Xm+1t is the m+ 1 − th sampled state of the
subregion Spi , and m denotes the total number of the sampled
states. Eq. (12) estimates the subregion ML score through
the average likelihood degree of existing samples in the
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subregion. The subregion ML is updated and used for the
next sampling as the Monte Carlo simulation goes on. In the
process of accepting new samples, Eq. (8) only compares the
ML score between new subregion and old subregion. That is
to say, the acceptance function seldom considers the similar-
ity between samples and targets. Because of a large variance,
Eq. (8) just considers the similarity between subregions may
lead to the existence ofmany unnecessary samples. These low
quality samples will reduce the ML score of the subregion
which include the local maximum. And the probability of
the sampler remaining in the region containing the local
optimum is reduced. Under the updating strategy in Eq. (10),
the DOS score for these subregions is still not prominent
compared to other subregions. The reliability of region pro-
posal strategy based on adaptive updating of the DOS distri-
bution cannot be guaranteed. This problem causes theWLMC
method to use a lot of low-quality regional recommendation
information [19], [20].

By improve the acceptance probability of samples in the
subregion that containing the target state to improve samples
quality, the reliability of DOS distribution can be guaranteed.
To this end, we introduce MSML to guide the construction of
Markov chain:

M
(
xt ′; xt

)
=

p
(
Yt ;Xt ′

)
p
(
Yt |S

p′

i

)
p (Yt ;Xt) p

(
Yt |S

p
i

) (13)

where xt ′ donates new sample and xt donates the old sample,
p
(
Yt ;Xt ′

)
means the likelihood term over the sample xt ′,

and p
(
Yt |S

p′

i

)
is calculated by Eq. (12). The MSML item

contains the ML information in two scope of the sample and
its subregion. Using MSML to improve Eq. (8), the MSML
is inserted into the acceptance function:

a = min

1,
p(Yt ;Xt ′)p

(
Yt |S

p′

i

)
g(Sp

′

i )
Q
(
Xt ;Xt ′

)
p(Yt ;Xt )p(Yt |S

p
i )

g(Spi )
Q
(
Xt ′;Xt

)
 (14)

In Eq. (14), we consider the similarity of samples and sub-
regions to the target at the same time. When sampler is trans-
ferred between subregions, it tends to stay in subregions with
higher regional likelihood, and samples within these regions
will have a higher acceptance rate, and vice versa. However,
even in the region with high regional likelihood, there are still
a large number of low-quality samples, which will reduce the
quality of theMarkov chain. Therefore, we consider the trans-
fer between samples to suppress the large acceptance of low-
quality samples, the tracker will use the sample likelihood to
control the samples that accept higher likelihood values, so as
to ensure the quality of the samples accepted in the region.
By defining the MSML in two scopes, the sample quality is
introduced into the acceptance function, the subregion which
include the target state will provide more valid samples. And
the improved sampling quality makes the DOS distribution
based on state transition update more reliable.

FIGURE 4. Fitness distribution diagrams and matching results. X, Y and Z
axes represent X, Y coordinates and fitness values of sample points,
respectively. (a) Fitness distribution of WLMC (The maximum value is
0.592). (b) Fitness distribution of Extend WLMC containing MSML (The
maximum value is 0.794).

Fig. 4 shows the impact of MSML on fitness distribution
in tracking. Although the final result is still near the target,
it only covers a part of targets. By analyzing the fitness
distribution of the samples, the optimal state is not found,
and the fitness distribution near the local optimal is relatively
smooth. With the same sample size, the result of extended
WLMC is closer to the target, and the crest is steeper. From
the experimental results, the extended WLMC can accept
more samples from the regions near the target, so that the
DOS score in these subregions are higher. And ultimately the
reliability of region proposal strategy is increased.

By using improved WLMC acceptance function, the reli-
ability of promising regions that derived from DOS distribu-
tion is better guaranteed after the end of the sampling phase.
Compared with AWLMC method, our tracker chooses d/4
subregions as promising regions. And these fewer and higher
quality regions are used as search space for finding targets.

B. THE EWLCF-DP METHOD
Although region proposal strategy reduces the number of
samples and improves the sampling efficiency of the algo-
rithm to some degree, as shown in Fig. 5. However, this
local search method based on random sampling has two
disadvantages: 1) Due to the randomwalk, it is still inevitable
that the tracker needs long iterations to reach the promising
object state. And each iteration requires a relatively complex
evaluation with low efficiency. 2) Traditional sampling track-
ers are mostly based on hand-crafted features (for example,
HOG or color feature), and the robustness of the appearance
model is insufficient.

To further improve the search efficiency of tracking
algorithm, we introduce the KCF to the WLMC method.
By replacing the traditional sampling method with the cor-
relation filtering process, the target position is determined.
In this phase, our tracker is to learn a correlation filters
online so as to localize the object in consecutive frames
by identifying the location of maximal correlation response
from candidate regions of interest. The long iterations can be
simplified. In addition, CF can transform the time-consuming
convolution operation in time domain to an element-wise
multiplication in Fourier domain, which enables the tracker
to have a low computational cost. Recently, features based
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FIGURE 5. Examples of search space in traditional trackers and our
tracker. The selected subregions color is white. Red mask means
correlation filters. The yellow and red dots represent the samples at
different sampling stages respectively. For traditional sampling trackers,
proposal regions are gradually shrunk and refined as the sampling goes
on. For our method, we are using preliminary region proposal to
simplified iterative optimization process. The complex sampling process
in the spatial domain is replaced by correlation filters in the frequency
domain.

on convolutional neural networks (CNNs) have demonstrated
state-of-the-art results on a wide range of visual recogni-
tion tasks. To further improve tracking precision and robust-
ness, we use the convolutional feature maps, VGG-Net [44],
to encode target appearance. Compared with hand-crafted
features, KCF based CNNs tracker can significantly improve
its robustness to geometric and appearance.

C. THE EWLCF-DP TRACKER
The proposed sampling-prediction-filter scheme substan-
tially speeds up the overall sampling process of abrupt motion
tracking. We utilize a certain number of iterations to quickly
explore the whole state space (image). Here, the DOS is
selected to be the predictive model for searching the promis-
ing regions of the sample space because of its computational
efficiency. In local neighborhood-searching, deep KCF is
introduced into tracking to locate the target.

For the appearance model, the HOG was selected as the
feature in sampling step. It has the invariance to local geomet-
ric and photometric transformations. In the process of search-
ing the whole state space, the efficiency of the algorithm can
be guaranteed by using hand-crafted features which have less
computation. In CF phase, tracker needs to obtain the accurate
position of the target through the correlation filtering process
with less evaluation times. The deep feature is selected in
this step because it is more robust to appearance variation.
The deep feature can further improve the precision of the
tracker. The proposed tracking framework is summarized
in Algorithm 1.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP AND METHODOLOGY
In this paper, our method is implemented in MATLAB
R2017a onWindows 10. The experiments are conducted on a
PC with Intel Core i3 3.60GHz, 8GB RAM and a 1060 GPU.
The average tracking speed is 9.7 FPS at OTB-100. N = 300
particles were used for EWLMC step. σx and σx in Eq.(7) was

Algorithm 1 EWLCF-DP Tracking Framework
Input: Image sequence.
Output: Object state in each frame.
1: Sampling phase.
2: for 1 to N
3: Proposal step: Propose a new state using (7).
4: Acceptance step:
5: 1. Calculating acceptance ratio using (14).
6: 2. Accepting or rejecting sample.
7: Estimation step:
8: 1. Update the histogram using (9).
9: 2. Estimate the DOS using DOS using (10).
10: 3. Estimate the marginal-likelihoods using (12).
11: 4. Adjust the modification factor f by the process
explained in Section 3.
12:end
13: Correlation Filters phase.
14: Using DOS score to sort subregions in descending
order.
15: The first d/4 subregions was selected for promising
regions.
16: Using KCF process to obtain d/4 response maps of
promising regions.
17: Output the location of the maximum response as the
target location.
18: Update correlation filters model.

set to 250. f in Eq.10 was set to 2.7. Correlation coefficient is
used as the fitness function. And the state space was divided
to 4 × 8 subregions. The values of parameters were fixed
throughout all experiments. To prove performance of our
EWLCFDP tracker, Experiment is divided into two groups.
The first group tests the EWLCFDP tracker on 10 sequences
which contains abrupt motion. And in the second group,
the proposed method was compared to 10 state-of-the-art
trackers in OTB dataset [50].

We follow the standard evaluation metrics from the bench-
marks. For the OTB-50 and OTB-100, we use the one-pass
evaluation (OPE) with precision and success plots metrics.
The precision metric measures the rate of frame locations
within a certain threshold distance from those of the ground
truth. The threshold distance is set as 20 for all the trackers.
The success plot metric measures the overlap ratio between
predicted and ground truth bounding boxes.

B. ABRUPTION MOTION SEQUENCES
To prove the proposed method can track visual object suc-
cessfully, especially for the object with the abrupt motion,
we test our method on 10 challenging videos, whose motion
displacement are more than 70 pixels. Targets displacement
between image frames is listed in Table.1. At the same time,
we compared our tracker EWLCFDP with 5 state-of-the-
art trackers, including TADT [5], HCFTstar [51], CF2 [7],
DCF_CA [52], KCFDP [53].
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FIGURE 6. The qualitative results of trackers on 5 challenging sequences. (From top to down: Zxj, Blurbody, Blurowl, Face2 and
Snowboard, respectively.)

TABLE 1. The image sequences and max displacement.

1) QUALITATIVE EVALUATION
Fig. 6 shows some results of the first five sequences. The dis-
placement of these sequences is more than 70 pixels and less
than 94 pixels. For Zxj sequence in the first line of figure 10,
before the frame #68, all tracker workwell. However, KCFDP
loses the target at #69 due to the abrupt motion.

For Blurbody and Blurowl sequences in second and third
line respectively, motion blur occurs simultaneously with
the abrupt motion. KCFDP deviate the target since abrupt
motion, but it can recover tracking. KCFDP, DCF_CA,
CF2 and HCFTstar lose the target in BLUROWL sequence.
Our method and TADT obtain the best performance.

For Snowboard sequence in the last line, a massive change
has taken place in the appearance of the target with the camera
switch. At #64 and #65, our method captures the target after
camera switch.

Fig. 7 shows some results of the last five sequences. The
displacement of these sequences is more than 96 pixels and
less than 296 pixels. For DragonBaby sequence in first line,
TADT, DCF_CA and KCFDP lose the target due to the abrupt
motion at #42. And at #79 and #80, our tracker, HCFTstar and
CF2 obtain the best performance after camera switch.

For Fhc and Zt sequences in second and third line respec-
tively, all trackers have run at a high resolution video
sequence and had better results. But due to the abrupt motion,
KCFDP still drift in Zt.

For Boxing sequence in the fourth line, this video is a
boxing match. The athlete moves very quickly and cam-
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FIGURE 7. The qualitative results of trackers on 5 challenging sequences. (From top to down: DragonBaby, Fhc, Zt, Boxing and Youngki,
respectively.)

eras change with the game. Because of abrupt motion, most
trackers lose the target at #6 and #7, but our tracker cap-
tures the target. After camera switch at #247 and #248,
other trackers lose the target, and our tracker obtain the best
performance.

For Youngki sequence in the last line, a person walks in
video. He walks out from one side at #37 and appears from
the other side at #38. All trackers lost their target except our
tracker. This condition was repeated at #117 and #118, and
our tracker still has best results.

2) QUANTITATIVE ANALYSIS
We compare our EWLCFDP tracker with 5 state-of-the-
art trackers, including TADT [5], HCFTstar [51], CF2 [7],
DCF_CA [52], KCFDP [53], on 10 challenge sequences
which are listed in Table.1. Fig. 8 show the results of one-pass
evaluation using the distance precision and overlap success
rate. It indicates that our EWLCFDP tracker performs better
than TADTwhich use the Siamese Network. The local search
strategymakes it difficult for TADT to keep track of the target
in the face of uncertain movement beyond the search scope,
so the accuracy performance is lower than that of HCFTstar

FIGURE 8. Precision and success plots over all 10 sequences using
one-pass evaluation. The legend contains the area-under-the-curve score
and the average distance precision score at 20 pixels for each tracker.

and our method. At the same time, because HCFTstar can
detect target lost and recover tracking by the re-detected mod-
ule, robust tracking results can still be obtained when facing a
certain range of displacement. But is still cannot recover from
excessive displacement. CF2, DCF_CA and KCFDP which
based on correlation filter have poor adaptability to uncertain
motion. Overall, our method achieves the best results in these
challenge sequences.
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FIGURE 9. Average overall performance on OTB-50 and OTB-100.

C. OVERALL PERFORMANCE
We evaluate the proposed tracker on OTB-50 and OTB-100.
The proposed algorithm is compared with 10 advanced track-
ers, such as CF2 [7], MEEM [54], SAMF [55], SiamFC [56],
LCT [38], KCFDP [53], DCFnet [57], Staple [58], KCF [35],
DSST [36]. In the following, we will present the results and
analyses.

The OTB-50 dataset with 50 sequences and the extended
OTB-100 dataset with additional 50 sequences are two
widely used tracking benchmarks. The sequences in the OTB
datasets include a wide variety of tracking challenging, such
as illumination variation, scale variation, deformation, occlu-
sion, fast motion, rotation, and background clutters. The OTB
benchmark adopts Center Location Error (CLE) and Overlap
Ratio (OR) as the base metrics. Based on CLE and OR,
the precision and success plots are used to evaluate the overall
tracking performance. The precision plot measures the per-
centage of frames whose CLE is within a given threshold,
which is usually set to 20 pixels. The success plot computes
the percentage of the successful frames whose OR is larger
than a given threshold. The area under the curve (AUC) of the
success plot is mainly used to rank tracking algorithms. This
experiment is used one-pass evaluation (OPE) method to ini-
tialize the tracking algorithm. OPE is the most common eval-
uation method which runs trackers on each sequence once.
It initializes the trackers with the ground truth object state in
the first frame and reports the average precision or success
rate of all the results. For more details about the adopted
evaluation methodology, we refer the reader to [50].

1) QUANTITATIVE ANALYSIS
Fig. 9 shows the average precision scores at a threshold
of 20 pixels and the average success scores at AUC model.
The best result for each attribute is highlighted in red, and

FIGURE 10. Fast motion sequences performance on OTB-50 and OTB-100.

the sub-optimal result is in green. Among all the trackers, our
EWLCFDP tracker performs favorably on both the distance
precision and overlap success rate. Our tracker used similar
feature layers as CF2, but our tracker has a good success
score by Sampling-Predict- Filters model. When the target
location undergoes obvious changes or escapes the search
area, existing DCF based trackers can not accurately locate
the target object.

Fig. 10 shows the success score of fast motion tracking
challenges at OTB-50 and OTB-100 in AUC model. For the
fast motion, our EWLCFDP tracker get the highest success
score at OTB-100. DCFnet tracker treat discriminative corre-
lation filters (DCF) as a special correlation filter layer added
in a Siamese network, it develops a network to automati-
cally learn the features. But DCFnet lacks target position
prediction, so that it prone to failure after large movement
of the target. And this automatic learning affects the subse-
quent tracking process to some extent. Our tracker obtains
the approximate location of the target and provides it to
the correlation filters. This strategy makes the update of the
KCF model is as useful as possible. It is observed that the
proposed approach almost achieves the best or sub-optimal
result. This clearly demonstrates that the region proposal
strategy by enhanced DOS distribution is very effective.

2) QUALITATIVE EVALUATION
Fig. 11 shows some results of the top performing trackers:
CF2, DCFnet, Staple, MEEM, SiamFC and our EWLCFDP
tracker on 6 challenging sequence. To prove the proposed
method can track visual object successfully, especially for
the object with the abrupt motion, these sequences all include
motion displacement which more than 30 pixels. The Staple
tracker does not perform well in all the presented sequences.
Because it adopts empirical operations for feature extrac-
tion. Although it combines color changes and deformations,
but usually abrupt motion is often accompanied by motion
blur, handcrafted features with limited performance are not
able to differentiate the target and background. In compar-
ison, due to the deep learning, other trackers have a good
performance when face to the motion blur by abruption.
However, when targets move quickly between frames, these
trackers cannot adapt well. For sequence ‘DragonBaby’, and
‘Ironman’, these sequences captured from the film are easily
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FIGURE 11. The qualitative results of trackers on 7 sequences (from top to down: DragonBaby, Blurcar1, Human7, Jumping, Woman,
Couple and Ironman, respectively).

switching camera. Our tracker predicts the location of the
targets through EWLMC model, allows the tracker to adapt
to such large changes in position from camera switching. Our
EWLCFDP algorithm further exploits the model potential
through region proposal strategy and strengthen this strategy
through multi-scope assessments. As a result, the response
map predicted by our tracker is more accurate for tar-
get exploration, especially in the presented abrupt motion
scenarios. Overall, the visual evaluation indicates that our
EWLCFDP tracker performs favorably against advanced
trackers.

VI. CONCLUSION
Wehave given an approach for uncertainmotion tracking. It is
inspired by fuzzy control [59], [60] and chaos control [61]
to deal with uncertain problems, we have introduced the
MSML into the acceptance function of WLMC to guarantee
the reliability of proposal regions that derived from DOS
distribution. Furthermore, we have introduced the KCF algo-
rithm to WLMC sampler. Compere with WLMC tracker,
this method can reduce the sample size and increase the
tracking efficiency. Considering the appearance adaptation,
we utilize deep feature to further strengthen the robustness

167086 VOLUME 7, 2019



H. Zhang et al.: Uncertain Motion Tracking Combined MCMC and Correlation Filters

to the appearance changes and the background distractions.
Extensive experiments have indicated that our method out-
performs other alternatives and exhibit better efficiency and
effectiveness in the tracking of abrupt motion.
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