
Received August 27, 2019, accepted November 8, 2019, date of publication November 15, 2019,
date of current version December 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953858

A Research Landscape on Formal Verification
of Software Architecture Descriptions
CAMILA ARAÚJO 1,2, EVERTON CAVALCANTE 2, THAIS BATISTA2,
MARCEL OLIVEIRA2, AND FLAVIO OQUENDO3
1State University of Rio Grande do Norte, Natal, Brazil
2DIMAp, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil
3IRISA-UMR CNRS/Université Bretagne Sud, 56017 Vannes, France

Corresponding author: Camila Araújo (cmlaraujo@gmail.com)

This work was supported in part by the INES 2.0, in part by the FACEPE under Grant APQ-0399-1.03/17, in part by the CAPES under
Grant 88887.136410/2017-00, and in part by the CNPq under Grant 465614/2014-0. The work of T. Batista was supported by the CNPq
under Grant 308274/2016-4.

ABSTRACT One of the many different purposes of software architecture descriptions is contributing to
an early analysis of the architecture with respect to quality attributes. The critical nature of many software
systems calls for formal approaches aiming at precisely verifying if their designed architectures can meet
important properties such as consistency, completeness, and correctness. In this context, it is worthwhile
investigating the role of architecture descriptions to support the formal verification of software architectures
to ensure their quality, as well as how such a process happens and is supported by existing languages and
verification tools. To evaluate the research landscape on this subject, we have carried out a systematic
mapping study in which we collected and analyzed studies available at the literature on formal verification of
architecture descriptions. This work contributes with (i) a structured overview and taxonomy of the current
state of the art on this topic and (ii) the elicitation of important issues to be addressed in future research.

INDEX TERMS Architecture description, formal verification, property specification, software architectures,
systematic mapping.

I. INTRODUCTION
Software architectures play a significant role in the develop-
ment of software-intensive systems as they contribute to the
achievement of both business goals and quality requirements.
A way of making software architectures more concrete is
through architecture descriptions expressed in some archi-
tecture description language (ADL) [1]. These architecture
descriptions can be used as models at design time or run-
time as well as support software architecture documentation,
maintenance, evaluation, and evolution. Classically, ADLs
have been classified into three broad categories: (i) formal,
i.e., notations with precise (often mathematically-based) syn-
tax and semantics that support automated architectural analy-
sis; (ii) semi-formal, i.e., notations with well-defined syntax,
but lack of complete semantics; and (iii) informal, ad-hoc
box-and-lines diagrams that cannot be formally analyzed and
limit the usefulness of the architecture description [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .

One of the major challenges in the design of software-
intensive systems is related to their architectural analysis,
i.e., the activity of discovering important system proper-
ties using architectural models even before its implemen-
tation [4]. Performing such an activity as early as possible
is essential to avoid possible incorrectness, inconsistencies,
and undesirable issues until later phases of the develop-
ment process when a correction will be surely costly. This
is imperative mainly when dealing with the critical nature
of many complex systems, whose envisioned architecture
must be verified with respect to their correctness and fulfill-
ment of required behavior and properties of interest. For this
purpose, formal architecture descriptions are highly desir-
able as means of better supporting automated architectural
analysis, acknowledged as an important activity in software
industry [5], [6]. The main advantage of adopting a for-
mal approach is precisely determining if a software system
can satisfy properties and constraints related to require-
ments and check the accuracy and correctness of architectural
designs.

171752 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4392-3000
https://orcid.org/0000-0002-2475-5075
https://orcid.org/0000-0001-7654-5574


C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

The literature reports the existence of many approaches
related to the formal verification of software architectures
having their architecture descriptions as one of their main
elements and some works have attempted to provide a com-
prehensive overview of the research landscape on this topic.
Tsai and Xu [7] compared formal verification tools applied
over software architecture specifications, whereas Dobrica
and Nimelä [8] and Babar and Gorton [9] proposed frame-
works aimed to compare existing architectural analysis and
evaluation approaches, but not specifically focusing on for-
mal methodologies. More recently, Zhang et al. [10] per-
formed a valuable literature review on the formal verification
of software architectures, but they (i) did not specifically
considered architecture descriptions, (ii) focused only on
model checking as formal verification technique, and (iii)
conducted their study in an ad-hoc way, thus not following
a systematic, well-defined procedure. Despite its relevance,
this body of work has now almost ten to twenty years and
other approaches on the formal software architecture verifi-
cation have been proposed since then.

Given the importance of formal verification in the software
architecture context as means of contributing to ensure qual-
ity in the contemporary software systems, an extended, up-to-
date literature overview is quite relevant. Such an overview
can enable both researchers and practitioners to critically
reflect on the current state of the art, identify important issues
to drive future research, and understand how existing and
future research can be suitable for technical, business, and
organizational needs. To reach this goal, we have performed a
systematic mapping study (or shortly systematic mapping) on
approaches for the formal verification of architecture descrip-
tions. A systematic mapping is well-established form of sec-
ondary study aimed to obtain a comprehensive overview of a
research topic, identify research gaps, and collect evidences
to commission future research through a systematic, rigorous
procedure of collection, selection, and analysis of available
primary studies [11], [12].

The goal of this systematic mapping is threefold: (i) to
provide an overview of the research on the formal verifica-
tion of software architecture descriptions; (ii) to understand
features of languages used to describe software architectures
and properties of interest to be formally verified; and (iii)
to understand how software architecture formal verification
has been conducted in this context. For this purpose, stud-
ies published in journals, conferences, and workshops were
collected from electronic databases, systematically analyzed,
and selected as best fitting a set of inclusion and exclusion
criteria. In this paper, we report (i) the main findings of the
performed systematic mapping, (ii) a structured overview and
taxonomy of the current state of the art on this topic, and
(iii) a discussion on important issues to be addressed by future
work.

The remainder of this paper is structured as follows.
Section II provides the background of this work. Section III
presents the methodology adopted in this work in terms of
the research questions to be answered and study search and

selection strategies, as well as details on how the relevant
primary studies were selected. Section IV provides a syn-
thesis resulting from the analysis of the studies as answers
to the research questions. Section V presents a taxonomy for
the formal verification of software architecture descriptions.
Section VI discusses some important issues that can drive
further research. Section VII raises some threats to empirical
validity. Finally, Section VIII summarizes the main findings
of this study along with some concluding remarks.

II. BACKGROUND
ADLs emerged since the 1990s mainly resulting from the
research devoted to the problem of providing more precise
ways to characterize the structure and behavior of software
architectures as well as derive properties on these struc-
tures. Malavolta et al. [5] conducted a survey on the use
of ADLs in industry to understand the practitioners’ point
of view regarding strengths, limitations, and requirements of
current languages. They observed that ADLs should support
(i) the definition of functional and non-functional properties,
(ii) formal semantics for improving precision and allowing
for automated analysis, (iii) both graphical and textual repre-
sentations for easing the communication among stakeholders
and users of architecture descriptions, and (iv) features such
as simplicity and intuitiveness.

Recent studies on the use of ADLs by practitioners have
confirmed and complemented some findings brought by
Malavolta et al. [5]. Ozkaya [13] analyzedmore than one hun-
dred ADLs with respect to a set of requirements considered
as crucial for practitioners. Some important findings provided
by his study are: (i) a small part of existing ADLs considers
non-functional requirements despite their relevance to ensure
quality in software systems; (ii) formal semantics are sup-
ported by almost half of the existing notations, especially
process algebras; (iii) exhaustive model checking is the most
preferred automated analysis method, enabled by formal
ADLs; and (iv) consistency has been considered as the most
relevant property in automated verification of architectural
models. In another survey with practitioners, Ozkaya [6]
observed that they follow the common sense about the crit-
icism on informal notations, which fail to support complex
design decisions. Although formal notations could fill this
gap, users do not often use them due to the significant learning
curve, lack of knowledge among stakeholders, low popu-
larity in industry, and weak support with respect to tools
and guidance. In spite of the inherent difficulty of pursuing
formal methods, such a recent research has acknowledged the
role of formal verification of architectural models as means
of precisely determining if a software system can satisfy
properties related to user requirements.

As reported by Zhang et al. [10], one of the most used tech-
niques for formally verifying software architectures is model
checking, an exhaustive, automatic verification technique
whose general goal is to check if an architectural specification
satisfies architectural properties. These authors analyzed a
set of model checking techniques to formally verify software

VOLUME 7, 2019 171753



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 1. A process to formally verifying software architecture properties – adapted from Zhang et al. [10].

architectures and came up with a framework to classify and
compare them. Figure 1 illustrates a process to formally
verifying software architectures with model checking. This
process takes as inputs specifications of both software archi-
tecture (e.g., a description in an ADL) and architectural prop-
erties expressed in some notation. If these specifications are
not formally described, then a translation to a formal notation
is first required. Next, the architectural properties regarding
the software architecture under consideration are formally
verified. The verification returns true, if the properties are
satisfied, or false when a given property is violated.

III. RESEARCH METHODOLOGY
The systematic mapping study presented in this paper was
conducted by following well-defined guidelines established
in the literature [11], [12]. The basic steps are: (i) planning,
which yields a protocol defining the research questions to be
answered, the search strategy to be adopted, the criteria to
be used for selecting primary studies, and the methods for
extracting and synthesizing data; (ii) execution, in which pri-
mary studies are identified, selected, and evaluated according
to the protocol; and (iii) reporting (or analysis), which aggre-
gates information extracted from the relevant primary studies
considering the research questions and outlines conclusions
from them.

Research questions. Aiming at finding primary studies
with approaches on the formal verification of software archi-
tecture descriptions, we have proposed the following research
questions (RQs):

RQ1: What languages are used towards supporting verifica-
tion, their characteristics, and supported views?

RQ2: What languages are used to specify architectural prop-
erties, their characteristics, and supported views?

RQ3: Which type of formal verification is addressed by the
existing approaches?

Search strategy. To retrieve primary studies, we have
used an automated search process performed over four pop-
ular electronic publication databases, namely ACM Digital
Library, IEEEXplore, ScienceDirect.com, and Scopus. Based
on the defined research questions, three main terms were ini-
tially identified, namely architecture description language,
formal language, and software architecture. In addition,

possible variations such as synonyms and singular/plural
forms were considered, thereby resulting in the following
search string:

(architecture description language OR
ADL) AND (formal language OR

specification language OR formal
semantics OR formal verification OR

formal analysis) AND software
architecture

The main terms were connected using the AND logical oper-
ator while the possible variations and synonyms were con-
nected using the OR logical operator.

Selection criteria. Selection criteria were used to eval-
uate each primary study according to the defined research
questions. The main goal was including studies that would
be potentially relevant to answer the research questions and
excluding the ones that would not contribute to answer them.

Three inclusion criteria (ICs) were considered:
IC1: The study proposes an approach to formally specify or

verify software architectures.
IC2: The study proposes a framework or a tool to support the

formal verification of software architectures.
IC3: The study analyzes software architecture verification

approaches.
Seven exclusion criteria (ECs) were also established:

EC1: The study does not proposes an approach to formally
specify or verify software architectures.

EC2: The study does not concern languages, techniques
or approaches to formally specify or verify software
architectures.

EC3: The study mentions a formal software architecture
verification technique, but it does not detail the ver-
ification process itself.

EC4: The study is a previous version of a more recent study
on the same research.

EC5: The study does not have an abstract or the full text is
not available.

EC6: The study is a table of contents, foreword, tuto-
rial, editorial, keynote talk or summary of confer-
ence/workshop.

171754 VOLUME 7, 2019



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 2. Phases for selecting the relevant primary studies.

EC7: The study is not written in English, which is the most
common language in scientific papers.

In this work, a given primary studywas considered as relevant
if it has not met any exclusion criterion and met at least one
inclusion criterion.

Data extraction and synthesis. To extract data from the
selected primary studies as well as synthesize the results,
a data extraction sheet was built with items related to the
research questions and other relevant information. Besides
basic information such as title and publication year and
venue, extracted data concerned information about: (i) archi-
tecture description, in terms of used languages, visual sup-
port, formalism degree, and supported architectural views;
(ii) property specification, in terms of used languages, type
of architectural property, and expressed quality attributes or
other properties of interest; (iii) the translation process from a
given notation to a formal one, concerning automation degree
and translation target language; and (iv) formal verification
process, i.e., which type of verification is performed and if it
is supported by some tool.

Selection process.As this study was carried out in Decem-
ber 2018, we considered primary studies published until then,
thus covering a time window in which it would be possible
to find consolidated research on the Software Architecture
discipline. During the search process, the search string has
undergone minor changes to make it compatible with the
specificities of each database engine. Afterwards, the auto-
mated search procedure was performed over each electronic
database according to the adapted search string. The auto-
mated searchwas limited to title, abstract, and keyword fields.

After retrieving the studies from the electronic databases,
the selection process was conducted in five phases. In the
first phase, results were unified into a single repository and
duplicates were removed. The second phase encompassed
reading title, abstract, and keywords of the retrieved studies,
which were filtered according to the defined selection criteria
(ICs/ECs). The third phase encompassed reading both intro-
duction and conclusion of the studies and a new application of
the selection criteria. The fourth phase consisted of fully read-
ing the studies and filling out the data extraction sheet. At last,
expert1 suggestions were considered about the inclusion of

1An expert is a person with lengthy experience in both theory and practice
regarding software architecture descriptions and formalisms.

possibly relevant studies. Figure 2 depicts the execution of
these phases, which resulted in 39 studies selected as relevant
(see Appendix A).

IV. RESULTS
In this section, we summarize the results of the performed
systematic mapping considering the research questions and
data extracted/synthesized from the analyzed primary studies.
We first present a brief overview of the selected primary
studies (Section IV-A) and then the answers to each research
question encompassing architecture descriptions, property
specification, and formal verification processes (Sections IV-
B to IV-D).

A. OVERVIEW OF SELECTED PRIMARY STUDIES
Distribution along the years. Figure 5 presents the
distribution of publications along 24 years of research
(1994-2018). It is possible to notice an average of 2.64 studies
per year, but with a varying behavior in the research commu-
nity, i.e., the number of studies increases and decreases along
the
years.

Publication venues. Figure 4 illustrates the publication
venues of the selected primary studies.Most papers were pub-
lished in conferences (30/39), followed by journals (7/39).
The low number of workshop papers (2/39) may be an indi-
cator of the fact that the proposals have undergone a more
solid evaluation, in line with the effort required for proposing
solutions in this context. We also noticed that the selected
studies are spread across 33 different venues, thus indicating
that there is no main conference or workshop where studied
related to the formal verification of architectural descriptions
would be published.

Validation/evaluation methods. We have noticed that
almost 92% of studies present some method of validation.
However, more than half of these studies (20/39) merely
give an example illustrating a possible scenario in which the
proposed approach could be applied. Other forms of eval-
uation include case studies in real-world scenarios (13/39)
as well as controlled experiments (3/39). Therefore, it is
possible to conclude that stronger methods are required
to validate/evaluate the proposed approaches as means of

VOLUME 7, 2019 171755



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 3. Publication of the selected primary studies along the years.

FIGURE 4. Venue types where the selected primary studies were
published.

providing robust evidence about their efficiency, effective-
ness, and feasibility.

B. ARCHITECTURE DESCRIPTION LANGUAGES
One of the goals of our study was identifying what ADLs
have been used in the primary studies for architecture
description towards supporting verification, their character-
istics, and supported views. By analyzing data extracted
from the selected studies, we have identified several lan-
guages and notations for describing software architectures,
with no proposal being widely used towards a formal ver-
ification process. AADL and EAST-ADL have stood out
among the used notations (reported in three studies each)
due to their use in critical-domain embedded systems, which
typically require formally verifying their software architec-
tures. AADL has been used to describe architectural mod-
els in chaotic systems (S7), systems based on synchronous
programming modules (S16), and real-time embedded sys-
tems (S39). In turn, EAST-ADL has been used to describe

automotive embedded systems (S9, S12, S19) and support
the verification of properties related to fault tolerance and
correctness.

Besides identifying the ADLs used in the selected studies,
we were interested into understanding their characteristics in
terms of (i) representation, whether textual, visual or both,
(ii) semantic formalism, and (iii) encompassed architectural
viewpoints. We found 59% of the selected primary studies
(23/39) using a visual notation to ease architectural modeling.
In particular, UML/SysML profiles have stood out as means
of visually representing software architectures in a fifth of
these studies (S9, S12, S19, S21, S24, S28, S31, S34, S35).
Such a representativeness of UML profiles is in line with the
findings from Malavolta et al. [5] and Ozkaya [6] regarding
the preference of practitioners to use this type of representa-
tion to support architecture description.

We have found 32 studies using an approach to describe
software architectures. These approaches can be character-
ized in terms of formal ADLs (e.g., S16, S28), semi-formal
ADLs (such as the ones based on UML (S9, S19) and
XML (S5, S11)) or non-ADL formal notations (e.g., S2,
S17), i.e., the direct use of mathematical formalisms without
abstractions over them to describe a software architecture.
We also realized that most studies have preferred to use visual
notations likely due to reasons similar to those previously evi-
denced by Malavolta et al. [5] and Ozkaya [6], [13], such as
the lower learning curve on describing software architectures
with these languages.

Another investigated feature regarding the existing soft-
ware architecture description notations stands for the archi-
tectural viewpoints that they can represent. Ninety-five per-
cent of the selected studies (37/39) encompass both structural
and behavioral concerns about the architecture whereas the
other ones focus only on the behavioral viewpoint. Soft-
ware industry practitioners are indeed interested in archi-

171756 VOLUME 7, 2019



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 5. Publication of the selected primary studies along the years.

tecture description approaches supporting multiple view-
points according to their needs [5]. Therefore, the expres-
sive percentage of studies representing both structural and
behavioral concerns in architecture description towards
their formal verification is aligned with the interest of
industry.

Main findings (RQ1). There is no widely used
ADL towards a formal verification process, even though
there is a preference for approaches that use visual
notation to facilitate architectural modeling, especially
UML/SysML profiles. Most studies address both struc-
tural and behavioral concerns about software architec-
tures when considering their formal verification.

C. SPECIFICATION OF ARCHITECTURAL PROPERTIES
We were interested into identifying what notations have been
used in the primary studies to specify architectural proper-
ties. We have noticed that there is no single notation with
wide use for specifying architectural properties. Most authors
have preferred using their own formalisms (28% ≈ 11/39 of
the selected studies) or combining them with some exist-
ing mathematical formalism (23% ≈ 9/39 of the selected
studies). In turn, a third of the primary studies have used
predicate, temporal or other type of logic. The particular
interest in temporal logics as a formalism to express architec-
tural properties is also evidenced by Zhang et al. [10] since
most of these properties are temporal, i.e., they are qualified
and grounded in a sequence of states of the system over
time.

Based on the information about the notations for spec-
ifying both software architectures and their properties,
we drawn a possible relationship among the used for-
malisms. As shown in Figure 5, we noticed a high

concentration of studies associating the architectural descrip-
tion with an ADL and the specification of properties
with mathematical formalisms, especially the logic-based
ones.

We were also interested into understanding some features
of the notations used to specify architectural properties in
terms of the concerned viewpoints, whether structural or
behavioral. We expected that most studies would claim to
consider properties from both viewpoints since (i) previous
studies have regarded this as an important gap in the past of
ADLs [14] and (ii) supporting these multiple viewpoints is
an expectation and current practice in industry [5]. However,
the collected data contradicted our belief as most studies
(27/39) address only behavioral concerns regarding architec-
tural properties.

Another investigated feature about the notations used for
specifying properties is related to what architectural prop-
erties or quality attributes can be specified with these lan-
guages. We have clustered the several properties found in
three main categories. The first one was addressed by 19 stud-
ies and refers to properties related to reliability concerns.
The second category refers to important properties related
to concurrent systems, such as fairness, safety, liveness,
deadlock-freedom, criticality, and priority, as concerned by
21 studies. The third category is related to properties specif-
ically observed in real-time systems, which were addressed
in five studies. It is possible to notice that the properties
falling into these three categories are often found in crit-
ical systems, so that it is not by chance that the effort
invested in formal approaches and verification techniques
is larger in this class of systems. Safety standards to criti-
cal software such as DO178B/C for avionic systems [15],
IEC 62304 for medical systems [16], and IEC 62279 [17]
for rail systems strongly recommend adopting formal ver-
ification techniques as means of ensuring safety in these
systems.

VOLUME 7, 2019 171757



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 6. A multifaceted taxonomy for the formal verification of software architecture descriptions.

Main findings (RQ2). There is no single notation
widely used to specify architectural properties. Most
authors have preferred to use their own formalisms,
sometimes combining them with some existing mathe-
matical formalisms. Most of the found studies consid-
ered only behavioral concerns related to architectural
properties.

D. FORMAL VERIFICATION APPROACHES
At last, we aimed to identify the most used techniques in the
formal verification of software architectures and if they have
tool support. In their literature review, Zhang et al. [10] identi-
fied model checking as a frequently used formal verification
technique. This was confirmed in our study as 77% of the
analyzed studies (30/39) have applied such an approach to
verify if a given software architecture satisfies architectural
properties of interest. In a second place, two studies have
used theorem proving to support formal verification and two
other studies have used it along with model checking as
complementary approaches. There are some possible reasons
explaining such a prevalence of model checking. First, model
checking is fully automated as opposed to theorem proving,
which normally requires human guidance. Second, theorem
proving requires much more effort from users, thus limiting
its usage to experts and proficients in proving. Third, a soft-
ware architecture (and its description) is one of the earliest
models of a software system and hence it is a suitable input
to model checking.

We also noticed that formal verification is often supported
by one or more tools, either using model checking or theorem
proving. Well-known tools such as Uppaal, PAT, and FDR
have been used by a third of the selected primary studies.
Zhang et al. [10] state that formal verification approaches in
software architecture often make use of mature existing veri-
fication mechanisms such as FDR and UPPAAL, which have
been successfully used in both academic and industry set-
tings. Possible reasons in favor of these tools are (i) the ability
of FDR to handle complex, industrial-sized model checking
with respect to safety and liveness conditions and (ii) the high

scalability and usefulness of UPPAAL tomodel, validate, and
verify real-time systems and properties of interest. In turn,
PAT comes with an user-interactive tool to verify temporal
properties.

Main findings (RQ3).Model checking showed to be
the most commonly used formal verification technique.
Formal verification is often supported by well-known
tools such as UPPAAL, PAT, and FDR.

V. A TAXONOMY FOR THE FORMAL VERIFICATION OF
SOFTWARE ARCHITECTURE DESCRIPTIONS
Taxonomies have been directly or indirectly used in the
Software Architecture community to mature the knowledge
field, in particular as means of understanding and classifying
existing work. One of the contributions of this paper is a
taxonomy arisen from the analysis of the studies selected in
our systematic mapping study aiming at capturing important
aspects related to the formal verification of software archi-
tecture descriptions. The proposed taxonomy is not solely
intended to summarize the current state of the art on this topic,
but it can also provide a basis to classify existing approaches
and understanding their characteristics. Furthermore, the tax-
onomy can also serve as a reasoning framework towards
proposing novel or improved approaches in this context.

Due to the multiplicity of perspectives under which
existing work could be classified, our taxonomy has been
structured upon the principles of the faceted analysis
approach [18], one of the most used classification structures
for taxonomies in Software Engineering [19]. In multifaceted
taxonomies, there are more than one perspective (facet) to
view and classify a given entity, so that each facet is inde-
pendent and can have its own classes.

Figure 6 presents our taxonomy for the formal verifica-
tion of software architecture descriptions. Such a taxonomy
encompasses six main axes: (i) the architectural descrip-
tion formalisms, whether a typical ADL or a non-ADL for-
mal notation; (ii) the architecture description representation,
whether using visual and/or textual notations; (iii) archi-
tecture description viewpoints; (iv) property viewpoints of

171758 VOLUME 7, 2019



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

FIGURE 7. Classification of the selected primary studies according to the taxonomy axes.

interest; (v) the types of properties commonly found in for-
mal architectural analysis approaches; and (vi) the formal
verification approach for software architecture descriptions.
The categories within the proposed taxonomy are not disjoint
and other ones not currently covered can be easily included.
As matter of future work, we intend to validate our taxonomy
with respect to reliability and usefulness by surveying experts
or conducting experimental studies.

The utility of a taxonomy can be demonstrated or exempli-
fied by classifying existing literature [19]. Figure 7 presents
a classification of the selected primary studies according to
the main axes defined in our multifaceted taxonomy. It is
important to mention that some studies do not present clear,
sufficient information about their proposal, so that we have
preferred leaving them unclassified for the sake of reliability
and aiming to avoid any sort of misunderstanding. For exam-
ple, one study does not restrict the ADL to be used, so that
it is not possible to classify it into one of the categories of
the architecture description representation axis. Nine studies
do not detail what properties are specified by the proposed
approach, thus hampering the classification of these studies
with respect to the type of property axis. In turn, five studies
do not report the approach used for formal verification pur-
poses and hence they cannot be classified into any category
of the formal verification approach axis.

VI. FUTURE DIRECTIONS IN RESEARCH AND
DEVELOPMENT
Based on the analysis of the selected studies and the obtained
findings, we came up with three potentially relevant direc-
tions for research and development regarding the formal ver-
ification of software architectures. As there is a growing need

for verifying non-functional properties at the architectural
level, we briefly discuss these issues with particular focus on
scalability and dynamicity concerns. Another discussed issue
is related to the use of semi-formal ADLs for verification
purposes and the criticism from practitioners concerning the
usability of formal ADLs.

Addressing scalability concerns in formal verification
of software architectures. As reported in Section IV-D,
model checking has been themost used verification technique
in the analyzed studies, thereby confirming findings provided
by Zhang et al. [10] almost ten years ago. Despite its wide
and successful use, model checking has well-known limita-
tions with respect to scalability. Traditional model checking
approaches are not exempted from the exponential growth
of the state space, the so-called state space explosion prob-
lem. This makes such a technique to be a prohibitive choice
in many cases due to unneglectable execution time, com-
putational resources, and effort from architects, important
reasons that often hinder the adoption of formal-based tech-
niques in industry [5]. Aiming at overcoming these lim-
itations, alternative techniques such as assume-guarantee
model-checking [20], compositional model-checking [21],
[22], parallel model-checking [23], statistical model check-
ing [24], and probabilistic model checking [25] have been
proposed in the last years concerning affordable, computa-
tionally efficient approaches to rigorously verify properties
of general specification. Despite our study did not have a
specific research question about scalability issues on for-
mal verification approaches for software architecture descrip-
tions, this was a point that called our attention since our
findings revealed a major use of model checking (77% of
the selected studies). Among the 30 studies using model

VOLUME 7, 2019 171759



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

checking as formal verification technique, only three stud-
ies (S10, S24, S27) have concerned the scalability of their
approaches. The exploration of strategies aimed to provide
model checking techniques with more scalability when ver-
ifying complex, critical can drive further research in this
direction.

Addressing dynamicity concerns in formal verifica-
tion of software architectures. Dynamicity is increasingly
becoming an intrinsic property of the contemporary systems,
which operate on environments that are highly dynamic,
subjected to a number of changes. Software architectures
for these systems hence need to be dynamic to accom-
modate such changes during runtime, ideally with mini-
mum or no disruption as it is the case of certain safety-
and mission-critical systems. The inherent characteristics of
dynamic software architectures challenge activities such as
formal architecture description and verification of architec-
tural properties. Therefore, languages tailored to support both
architecture description and property specification must con-
sider the creation, interconnection or removal of architectural
elements at runtime, which exist at a given instant in time
and no longer exist at another. On the one hand, most of
the existing formal ADLs have limitations with respect to
the description of dynamic software architectures. On the
other hand, the notations available in the literature to formally
express architectural properties are not able to copewith these
characteristics. We found only two studies (S23, S29) with
proposals on the formal verification of properties of dynamic
software architectures, thus revealing the scarcity of studies
on this topic.

Addressing usability for formal ADLs. As formal
ADLs provide unambiguous semantics, they are essential
for supporting verification of architectures. However, Mala-
volta et al. [5] report that these notations are rarely used
mainly due to the lack of mature tools and the need of
specialized competencies for using them. Practitioners have
indeed considered formal ADLs as quite difficult to use,
besides requiring a high learning curve and huge effort to
specify a system. They also argue that the supported auto-
mated analysis provided by formal ADLs is not compatible to
the level of effort required for specifying a system using such
ADLs. Therefore, an important research direction to foster
the use of formal ADLs is the development of easy-to-use
tools associated to formal ADLs aiming at facilitating the
specification of architectures and allowing for early formal
verification, thus positioning such ADLs in the mainstream
of the architectural process.

VII. THREATS TO VALIDITY
To ensure high quality and scientific value to the findings
of our systematic mapping study, a protocol was established
a priori with clear research questions and explicit criteria
to evaluate and select primary studies. This protocol was
strictly followed according to well-accepted guidelines for
systematic literature reviews and mapping studies [11], [12].
Nonetheless, potential threats to validity may affect the

obtained results. In this section, we discuss some of
these limitations and how we have attempted to mitigate
them.

External validity. The most significant threat to exter-
nal validity of this study is related to its incompleteness
as relevant studies may have been missed. To reduce this
threat, we have considered four of the most relevant available
sources in Software Engineering. However, there are still
limitations. First, some studies may have been missed due to
technical limitations of the automated search engines them-
selves. Second, the selected databases do not represent an
exhaustive list of publication sources, so that other databases
might also be included. Third, we have not performed snow-
balling [26], a technique that allows checking the reference
lists of the read studies aiming to find additional studies not
retrieved in the automated search procedure. Fourth, grey
literature (e.g., white papers, non peer-reviewed papers, etc.)
was not herein considered as source of studies, but we deem
that this does not constitute an additional threat as peer-review
processes are a standard requirement of high quality
publications.

Construct validity. To mitigate potential threats to con-
struct validity, we established a well-defined protocol that
guided all activities performed in this study. The selection
of the primary studies according to the documented inclu-
sion and exclusion criteria was rigorously carried out to
ensure that they were indeed suited to answer the research
questions.

Conclusion validity. Bias on data extraction may result
in inaccuracy of the extracted data items and not all studies
sufficiently and clearly describe information extracted as data
items to support answering the research questions. To miti-
gate potential threats to conclusion validity, we have striven
to reduce these bias by strictly adhering to the established pro-
tocol. Furthermore, the taxonomy resulted from the analysis
of the selected studies could be another source of threat to the
conclusion validity of our study as it has not been evaluated
with other experts yet.

VIII. CONCLUSION
This paper presented the results of a systematic mapping
study aimed to provide a panorama of the current state of
the art on the role of architecture descriptions and prop-
erty specification in supporting the formal verification of
software architectures, an important activity to ensure the
quality of software systems. We have systematically ana-
lyzed 39 primary studies found in electronic publication
databases to (i) provide an overview of the research on
this topic, (ii) understand features of languages used to
describe software architectures and related properties of inter-
est to be formally verified, and (iii) understand how software
architecture formal verification has been conducted in this
context.

Our analyses of the selected studies have resulted in several
findings about the current state of the art on the formal
verification of architecture descriptions:

171760 VOLUME 7, 2019



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

• at least two studies about this topic have been published
per year (on average), possibly indicating that it contin-
ues being a research topic of interest;

• the research landscape has shown to be quite frag-
mented, with studies published in a variety of venues;

• there is no reference language used to formally describe
software architectures and specify architectural proper-
ties, thus resulting in a plethora of used languages and
notations;

• visual and semi-formal notations have appeared as
means of supporting software architecture description
despite requiring an additional process to translate the
produced models towards formal verification;

• supporting multiple viewpoints (in particular the struc-
tural and behavioral ones) has been considered as a rel-
evant concern and hence addressed by both architecture
description and property specifications;

• properties related to reliability, concurrency, and
real-time characteristics have been addressed in the
studies as a reflex of the relevance of these concerns in
many critical systems;

• model checking has been the most used technique to
support the formal verification of architectural proper-
ties despite its well-known limitations with respect to
scalability; and

• verification mechanisms traditionally found in the for-
mal methods field has been applied to software archi-
tectures over the years.

Besides the analysis of these studies and resulted find-
ings, an important contribution brought by this paper is
a taxonomy representing the research landscape on this
topic and that can be used to further classify existing and
future approaches as well as understand their characteris-
tics. We have also discussed some promising directions in
research and development in this context, such as (i) propos-
ing alternative approaches to ease the architectural analysis
activity, (ii) addressing dynamicity as an important concern
in the architectural life cycle of the contemporary software
systems, and (iii) putting effort on an attempt to make for-
mal ADLs and related approaches more usable, mainly in
industry.

APPENDIX A
SELECTED STUDIES
S1 M. Auguston, ‘‘Software architecture built from behav-

ior models,’’ ACM SIGSOFT Software Engineering
Notes, vol. 34, no. 5, 2009.

S2 A. Bracciali, A. Brogi, and F. Turini, ‘‘A framework
for specifying and verifying the behaviour of open sys-
tems,’’ Journal of Logic and Algebraic Programming,
vol. 63, no. 2, pp. 215-240, 2005.

S3 C. Braga, F. Chalub, and A. Sztajnberg, ‘‘A formal
semantics for a Quality of Service contract language,’’
Electronic Notes in Theoretical Computer Science,
vol. 203, no. 7, pp. 103-120, 2009.

S4 L. Brim, I. Černá, P. Vařeková, and
B. Zimmerova, ‘‘Component-interaction automata as
a verification-oriented component-based system Spec-
ification,’’ in Proceedings of the 2005 Conference on
Specification and Verification of Component-based
Systems. USA: ACM, 2005.

S5 L. Chen, L. Huang, C. Li, L. Wu, and W. Luo,
‘‘Design and safety analysis for system architecture: A
Breeze/ADL-based approach,’’ in Proceedings of 38th
IEEE Annual Computer Software and Applications
Conference. USA: IEEE, 2014, pp. 261-266.

S6 X. Ling, ‘‘A categorical approach for modeling and
verifying dynamic software architecture,’’ in Proceed-
ings of the 7th IEEE International Conference on Soft-
ware Security and Reliability Companion. USA: IEEE,
2013, pp. 168-175.

S7 D. De Niz, ‘‘Architectural concurrency equivalence
with chaotic models,’’ in Proceedings of the 5th Inter-
nationalWorkshop onModel-BasedMethodologies for
Pervasive and Embedded Software. USA: IEEE, 2008,
pp. 57-67.

S8 A. T. E. Dib and Z. Sahnoun, ‘‘Model checking of multi
agent system architectures using BigMC,’’ in Proceed-
ings of the 2015 Federated Conference on Computer
Science and Information Systems. USA: IEEE, 2015,
pp. 1717-1722.

S9 E. P. Enoiu, R. Marinescu, C. Seceleanu, and
P. Pettersson, ‘‘ViTAL: A verification tool for
EAST-ADL models using UPPAAL PORT,’’ in Pro-
ceedings of the 17th IEEE International Conference
on Engineering of Complex Computer Systems. USA:
IEEE, 2012, pp. 328-337.

S10 J. M. Franco, R. Barbosa, and M. Zenha-Rela, ‘‘Auto-
mated reliability prediction from formal architectural
descriptions,’’ in Proceedings of the 2012 Joint Work-
ing Conference on Software Architecture and 6th
European Conference on Software Architecture. USA:
IEEE, 2012, pp. 302-309.

S11 Y. Fu, ‘‘Modeling, validation and automated compo-
sition of Web services,’’ in Proceedings of the 6th
International Conference on Web Engineering. USA:
ACM, 2006, pp. 217-224.

S12 A. Goknil, J. Suryadevara, M. A. Peraldi-Frati, and
F. Mallet, ‘‘Analysis support for TADL2 timing con-
straints on EAST-ADL models,’’ in K. Drira, Ed. Pro-
ceedings of the 7th European Conference on Sofware
Architecture. Lecture Notes in Computer Science,
vol. 7957. Germany: Springer Berlin Heidelberg, 2013,
pp. 89-105.

S13 X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, ‘‘For-
mally analyzing software architectural specifications
using SAM,’’ Journal of Systems and Software, vol. 71,
no. 1-2, pp. 11-29, 2004.

S14 D. Hemer and D. Yulin, ‘‘Specifying software architec-
tures using a formal-based approach,’’ in Proceedings

VOLUME 7, 2019 171761



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

of the 19th Australian Software Engineering Confer-
ence. USA: IEEE, 2008, pp. 279-288.

S15 H. Hoyos, R. Casallas, and F. Jimenez, ‘‘HiLeS-T:: An
ADL for early requirement verification of embedded
systems,’’ in Proceedings of the 5th InternationalWork-
shop onModel Based Architecting and Construction of
Embedded Systems. USA: ACM, 2012, pp. 7-12, 2012.

S16 E. Jahier, N. Halbwachs, and P. Raymond, ‘‘Syn-
chronous modeling and validation of priority inher-
itance schedulers,’’ in M. Chechik and M. Wirsing,
Eds. Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering.
Lecture Notes in Computer Science, vol. 5503. Ger-
many: Springer Berlin Heidelberg, 2009, pp. 140-154.

S17 C. Jerad and K. Barkaoui, ‘‘On the use of rewriting
logic for verification of distributed software architec-
ture description based LfP,’’ in Proceedings of the 16th
IEEE International Workshop on Rapid System Proto-
typing. USA: IEEE, 2005, pp. 202-208.

S18 A. Kamandi and J. Habibi, ‘‘Toward a new analyzable
architectural description language based on OSAN,’’
in Proceedings of the 2nd International Conference on
Software Engineering Advances. USA: IEEE, 2007,
pp. 2-7.

S19 E. Y. Kang, L. Ke,M. Z. Hua, and Y. X.Wang, ‘‘Verify-
ing automotive systems in EAST-ADL/Stateflow using
UPPAAL,’’ in Proceedings of the 2015 Asia-Pacific
Software Engineering Conference. USA: IEEE, 2016,
pp. 143-150.

S20 M. Khalgui, H.-M. Hanisch, and A. Gharbi,
‘‘Model-checking for the functional safety of con-
trol component-based heterogeneous embedded sys-
tems,’’ in Proceedings of the 2009 IEEE Conference
on Emerging Technologies and Factory Automation.
USA: IEEE, 2009, pp. 1-10.

S21 L. Lima, A. Miyazawa, A. Cavalcanti, M. Cornelio,
J. Iyoda, A. Sampaio, R. Hains, A. Larkham, and
V. Lewis, ‘‘An integrated semantics for reasoning about
SysMLdesignmodels using refinement,’’ Software and
Systems Modeling, vol. 16, no. 3, pp. 875-902, 2017.

S22 R. Maraoui and E. Cariou, ‘‘A mediation based
approach for formal verification of Web services Com-
position’’, in Proceedings of the 2017 International
Conference on Engineering &MIS. USA: IEEE, 2017,
pp. 1-6.

S23 R. Mateescu and F. Oquendo, ‘‘π-AAL: An architec-
ture analysis language for formally specifying and ver-
ifying structural and behavioural properties of software
architectures,’’ SIGSOFT Software Engineering Notes,
vol. 31, no. 2, pp. 1-19, 2006.

S24 S. Mesli-Kesraoui, D. Kesraoui, F. Oquendo,
A. Bignon, A. Toguyeni, and P. Berruet, ‘‘Formal
verification of software-intensive systems architec-
tures described with piping and instrumentation dia-
grams’’, in B. Tekinerdogan, U. Zdun, and A. Babar.
Proceedings of the 10th European Conference on

Software Architecture. Lecture Notes in Computer
Scince, vol. 9839. Switzerland: Springer International
Publishing AG, 2016, pp. 210-226.

S25 F. Oquendo, ‘‘Case study on formally describing the
architecture of a software-intensive system-of-systems
with SosADL,’’ in Proceedings of the 2016 IEEE Inter-
national Conference on Systems, Man, and Cybernet-
ics. USA: IEEE, 2017, pp. 2260-2266.

S26 M. Ozkaya and C. Kloukinas, ‘‘Towards Design-by-
Contract based software architecture design,’’ in Pro-
ceedings of the 12th IEEE International Conference on
Intelligent Software Methodologies, Tools and Tech-
niques. USA: IEEE, 2013, pp. 157-164.

S27 M. Ozkaya and C. Kloukinas, ‘‘Architectural specifi-
cation and analysis with XCD - The Aegis Combat
System case study,’’ in Proceedings of the 2nd Inter-
national Conference onModel-Driven Engineering and
Software Development. Portugal: SciTePress, 2014,
pp. 368-375.

S28 M. Ozkaya and M. A. Kose, ‘‘SAwUML - UML-
based, contractual software architectures and their for-
mal analysis using SPIN,’’ Computer Languages, Sys-
tems and Structures, vol. 54, pp. 71-94, 2018.

S29 E. Cavalcante, J. Quilbeuf, L. M. Traonouez, F.
Oquendo, T. Batista, and A. Legay, ‘‘Statistical model
checking of dynamic software architectures’’, in B.
Tekinerdogan, U. Zdun, and A. Babar. Proceedings of
the 10th European Conference on Software Architec-
ture. Lecture Notes in Computer Scince, vol. 9839.
Switzerland: Springer International Publishing AG,
2016, pp. 185-200.

S30 A. Rademaker, C. Braga, and A. Sztajnberg, ‘‘A rewrit-
ing semantics for a software architecture description
language,’’ Electronic Notes in Theoretical Computer
Science, vol. 130, pp. 345-377, 2005.

S31 D. Regep and F. Kordon, ‘‘Lfp: A specification lan-
guage for rapid prototyping of concurrent systems,’’
Proceedings of the 12th International Workshop on
Rapid System Prototyping. USA: IEEE, 2001, pp. 90-
96.

S32 S. Song, J. Zhang, Y. Liu, M. Auguston, J. Sun,
J. S. Dong, and T. Chen, ‘‘Formalizing and verify-
ing stochastic system architectures using Monterey
Phoenix,’’ Software and Systems Modeling, vol. 15,
no. 2, pp. 453-471, 2016.

S33 S. R. Taoufik, B. M. Tahar, S. Layth, and K. Mourad,
‘‘Towards a formal approach for the verification of
SCA/BPEL software architectures,’’ in Proceedings
of the 8th International Conference on Information,
Intelligence, Systems & Applications. USA: IEEE,
2017.

S34 S. R. Taoufik, B. M. Tahar, and K. Mourad, ‘‘Behav-
ioral verification of UML2.0 software architecture,’’ in
Proceedings of the 12th International Conference on
Semantics, Knowledge and Grids. USA: IEEE, 2017,
pp. 115-120.

171762 VOLUME 7, 2019



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

S35 S. R. Taoufik, B. M. Tahar, K. Mourad, and M. Faouzi,
‘‘UML2.0 formalization and Acme verification of the
qualitative properties of software architectures,’’ in
Proceedings of the 25th IEEE International Conference
on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises. USA: IEEE, 2016, pp. 192-197.

S36 G.-q. Zhang, H.-j. Shi, andM. Rong, ‘‘Mismatch detec-
tion of asynchronous Web services with timed con-
straints,’’ in Proceedings of the 2011 IEEEAsia-Pacific
Services Computing Conference. USA: IEEE, 2011,
pp. 251-258.

S37 J. Zhang, Y. Liu, M. Auguston, J. Sun, and
J. S. Dong, ‘‘Using Monterey Phoenix to formalize and
verify system architectures,’’ in Proceedings of the 19th
Asia-Pacific Software Engineering Conference. USA:
IEEE, 2012, pp. 644-653.

S38 J. Zhang, Y. Liu, J. Sun, J. S. Dong, and J. Sun, ‘‘Model
checking software architecture design,’’ in Proceedings
of the 2012 IEEE International Symposium on High
Assurance Systems Engineering. USA: IEEE, 2012,
pp. 193-200.

S39 Z. Yang, K. Hu, D. Ma, and L. Pi, ‘‘Towards a for-
mal semantics for the AADL behavior annex,’’ in Pro-
ceedings of the 2009 Design, Automation & Test in
Europe Conference & Exhibition. USA: IEEE, 2009,
pp. 1166-1171.

REFERENCES
[1] Systems and Software Engineering—Architecture Description, docu-

ment ISO/IEC/IEEE 42010:2011(E), Jan. 2011.
[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

3rd ed. Reading, MA, USA: Addison-Wesley, 2013.
[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.Merson,

R. Nord, and J. Stafford, Documenting Software Architectures: Views and
Beyond, 2nd ed. Reading, MA, USA: Addison-Wesley, 2011.

[4] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Hoboken, NJ, USA: Wiley, 2010.

[5] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, ‘‘What
industry needs from architectural languages: A survey,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 6, pp. 869–891, Jun. 2013.

[6] M. Ozkaya, ‘‘Do the informal & formal software modeling notations sat-
isfy practitioners for software architecture modeling?’’ Inf. Softw. Technol.,
vol. 95, pp. 15–33, Mar. 2018.

[7] J. J. P. Tsai and K. Xu, ‘‘A comparative study of formal verification
techniques for software architecture specifications,’’ Ann. Softw. Eng.,
vol. 10, nos. 1–4, pp. 207–223, Nov. 2000.

[8] L. Dobrica and E. Niemelä, ‘‘A survey on software architecture analysis
methods,’’ IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 638–653, Jul. 2002.

[9] M. A. Babar and I. Gorton, ‘‘Comparison of scenario-based software
architecture evaluation methods,’’ in Proc. 11th Asia–Pacific Softw. Eng.
Conf., Nov./Dec. 2004, pp. 600–607.

[10] P. Zhang, H. Muccini, and B. Li, ‘‘A classification and comparison of
model checking software architecture techniques,’’ J. Syst. Softw., vol. 83,
no. 5, pp. 723–744, 2010.

[11] B. A. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Usingmapping studies
as the basis for further research—A participant-observer case study,’’ Inf.
Softw. Technol., vol. 53, no. 6, pp. 638–651, Jun. 2011.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, ‘‘Systematic mapping
studies in software engineering,’’ in Proc. 12th Int. Conf. Eval. Assessment
Softw. Eng., U.K. BCS, 2008, pp. 68–77.

[13] M. Ozkaya, ‘‘The analysis of architectural languages for the needs of
practitioners,’’ Softw. Pract. Exper., vol. 48, pp. 985–1018, May 2018.

[14] R. Hilliard and T. Rice, ‘‘Expressiveness in architecture description lan-
guages,’’ in Proc. 3rd Int. Workshop Softw. Archit., 1998, pp. 65–68.

[15] Software Considerations Airborne Syst. Equip. Certification, document,
RTCA RTCA/DO-178C, 2012.

[16] A. Coronato, Engineering High Quality Medical Software: Regulations,
Standards, Methodologies And Tools For Certification. London, U.K.: IET,
2018.

[17] Railway Applications—Communication, Signalling And Processing
Systems—Software For Railway Control And Protection Systems, IEC
62279:2015, 2015.

[18] B. H. Kwasnik, ‘‘The role of classification in knowledge representation
and discovery,’’ Library Trends, vol. 48, no. 1, pp. 22–47, 1999.

[19] M. Usman, R. Britto, J. Börstler, and E. Mendes, ‘‘Taxonomies in software
engineering: A Systematic mapping study and a revised taxonomy devel-
opment method,’’ Inf. Softw. Technol., vol. 85, pp. 43–59, May 2017.

[20] C. S. Pǎsǎreanu, M. B. Dwyer, and M. Huth, ‘‘Assume-guarantee model
checking of software: A comparative case study,’’ in Theoretical and
Practical Aspects of SPIN Model Checking (Lecture Notes in Computer
Science), D. Dams, R. Gerth, S. Leue, and M. Massink, Eds., Berlin,
Germany: Springer-Verlag, 1999, pp. 168–183.

[21] M. V. M. Oliveira, P. Antonino, R. Ramos, A. Sampaio, A. Mota, and
A.W. Roscoe, ‘‘Rigorous development of component-based systems using
componentmetadata and patterns,’’Formal Aspects Comput., vol. 28, no. 6,
pp. 937–1004, 2016.

[22] M. S. C. Filho, M. V. M. Oliveira, A. Sampaio, and A. Cavalcanti, ‘‘Com-
positional and local livelock analysis for CSP,’’ Inf. Process. Lett., vol. 133,
pp. 21–25, May 2018.

[23] L. Brim and J. Barnat, ‘‘Tutorial: Parallel model checking,’’ in Model
Checking Software (Lecture Notes in Computer Science), vol. 4595,
D. Bošnački and S. Edelkamp, Eds. Berlin, Germany: Springer, 2007,
pp. 2–3.

[24] A. Legay, B. Delahaye, and S. Bensalem, ‘‘Statistical model checking: An
overview,’’ in Runtime Verification (Lecture Notes in Computer Science),
vol. 17, H. Barringer, Eds. Berlin, Germany: Springer, 2010, pp. 122–135.

[25] M. Kwiatkowska, G. Norman, and D. Parker, ‘‘Advances and challenges
of probabilistic model checking,’’ in Proc. 48th Annu. Allerton Conf.
Commun. Control Comput. (Allerton), Sep./Oct. 2010, pp. 1691–1698.

[26] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng., 2014, p. 38.

CAMILA ARAÚJO received the M.Sc. degree in
systems and computing from the Federal Univer-
sity of Rio Grande doNorte, Natal, Brazil, in 2006,
where she is currently pursuing the Ph.D. degree
in computer science. She is currently an Assistant
Professor with the Computer Science Department,
State University of Rio Grande do Norte, Natal.
Her current research interests include software
architecture, architectural description languages,
formal verification, and property specification.

EVERTON CAVALCANTE received the Ph.D.
degree in computer science from the Federal Uni-
versity of Rio Grande do Norte, Natal, Brazil,
in 2016, and the Ph.D. degree in informatics
from the University of Southern Brittany, France,
in 2016. He is currently an Assistant Professor
with the Department of Informatics and Applied
Mathematics, Federal University of Rio Grande
do Norte. He has expertise in computer science
with an emphasis on software architecture and

distributed systems. His current research interests include middleware, cloud
computing, ubiquitous computing, the Internet of Things, smart cities,
software dynamic reconfiguration, architecture description languages, and
systems-of-systems.

VOLUME 7, 2019 171763



C. Araújo et al.: Research Landscape on Formal Verification of Software Architecture Descriptions

THAIS BATISTA received the Ph.D. degree in
informatics from the Pontifical Catholic Univer-
sity of Rio de Janeiro, Brazil, in 2000. She did
the Postdoctoral Research and the Senior Intern-
ship with Lancaster University, U.K., from 2004 to
2005 and from 2013 to 2014, respectively. She
is currently a Full Professor with the Department
of Informatics and Applied Mathematics, Federal
University of Rio Grande do Norte, Natal, Brazil,
and a Research Fellow Level 1D of the Brazilian

National Council for Scientific and Technological Development. She has
expertise in computer science with an emphasis on software architecture
and distributed systems. Her current research interests include architecture
description language, cloud computing, the Internet of Things, middleware,
smart cities, and systems-of-systems.

MARCEL OLIVEIRA received the Ph.D. degree
in computer science from the University of York,
U.K., in 2005. He did the Postdoctoral Research
with the Federal University of Pernambuco, Brazil,
from 2011 to 2012. He is currently an Associate
Professor with the Department of Informatics and
Applied Mathematics, Federal University of Rio
Grande do Norte, Natal, Brazil. He is currently
a member of the Brazilian National Institute of
Software Engineering and the Special Committee

on Formal Methods of the Brazilian Computer Society. He has expertise
in computer science with an emphasis on formal methods. His current
research interests include refinement calculation and tactics, concurrency,
semantics of formal languages, formal methods, and code synthesis from
formal specifications.

FLAVIO OQUENDO received the Ph.D. and
Research Direction Habilitation degrees from
the University of Grenoble, France. He is cur-
rently a Full Professor of computing with
IRISA, a joint research unit of CNRS, Univer-
sité de Bretagne-Sud, France, where he leads the
research on formal approaches for architecting
software-intensive systems-of-systems. He has
published over 200 refereed journals and con-
ference papers in computer science and software

engineering. His current research interests include formal languages, pro-
cesses, and tools to support the efficient architecture of software-intensive
systems-of-systems. They include formal description and development
techniques for system-of-systems architecture, analysis, refinement, and
evolution and their applications in industrial settings. He served on Pro-
gram Committees of over 100 international conferences, chaired 10 of them,
and acted as a Referee for over 20 international journals. In particular,
he has been involved in the French, European, and IEEE/IFIP Conferences
on Software Architecture, namely, CAL, ECSA, and WICSA (now ICSA).
He was a recipient of the Research Excellence Award from the French
Ministry of Research and Higher Education. He has served as a General
Chair for ECSA, a Program Committee Chair for CAL, ECSA, and WICSA,
a Steering Committee Chair for ECSA, and a Steering Committee Member
for CAL, ECSA, andWICSA. He has acted as an Expert and an Evaluator for
Research Projects in ICT for several Programs of the European Commission,
in particular, FP7 and H2020 on Software-Intensive Systems-of-Systems and
Trustworthy Software-Intensive Systems.

171764 VOLUME 7, 2019


