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ABSTRACT Large integer factorization is one of the basic issues in number theory and is the subject of
this paper. Our research shows that the Pisano period of the product of two prime numbers (or an integer
multiple of it) can be derived from the two prime numbers themselves and their product, and we can
therefore decompose the two prime numbers by means of the Pisano period of their product. We reduce
the computational complexity of modulo operation through the ‘‘fast Fibonacci modulo algorithm’’ and
design a stochastic algorithm for finding the Pisano periods of large integers. The Pisano period factorization
method, which is proved to be slightly better than the quadratic sieve method and the elliptic curve method,
consumes as much time as Fermat’s method, the continued fractional factorization method and the Pollard
p-1 method on small integer factorization cases. When factoring super-large integers, the Pisano period
factorization method has shown as strong performance as subexponential complexity methods; thus, this
method demonstrates a certain practicability. We suggest that this paper may provide a completely new idea
in the area of integer factorization problems.

INDEX TERMS Fibonacci, integer factorization, Pisano periods, RSA.

I. INTRODUCTION
Large integer factorization is one of the basic issues in
number theory. It has been studied for hundreds of years
and has been a topic of great interest to mathematicians,
computer scientists and cryptographers in recent decades.
Integer factorization is not only the most direct attack
means on the asymmetric cryptographic algorithm RSA,
but also the most critical entry point for RSA secu-
rity analysis. Therefore, any progress in large integer fac-
torization will attract the attention of the cryptography
community.

RSA’s asymmetry comes from the invertible operation of
modular exponentiation, and its security is mainly based on
the practical difficulty of integer factorization. Whether the
security of RSA is equivalent to integer factorization has
not been proven theoretically since there is no proof that
breaking RSA requires large integer factorization. For exam-
ple, Wang and Yan [1] proposed a new quantum algorithm
for attacking RSA based on the quantum Fourier transform
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and variable substitution by using the fixed point property of
RSA, which does not need to factorize n but directly restores
its plaintextM from the RSA ciphertext C . Many other ways
of cracking RSA have been proven to be feasible, including
but not limited to the chosen ciphertext attack, the pub-
lic module attack, the small exponential attack, the Wiener
attack, the Coppersmith theorem attack, and the side-channel
attack [2]. Integer factorization is the most obvious and
the most plausible means of attacking. In number theory,
the problem of large integer factorization can be summarized
as follows: for a known integer N = p1p2, where p1 and p2
are two prime numbers, how do we calculate the values of p1
and p2?

Common large integer factorization methods include Fer-
mat’s factorization method, continued fractional factoriza-
tion method (abbreviated as CF) [3], the quadratic sieve
method (abbreviated as QS) [4], Pollard’s p-1 algorithm [5],
the elliptic curve factorization method (abbreviated as EC)
[6] and the general number field sieve method (abbreviated as
GNFS) [7]. Until now, the largest factored RSA number was
768 bits long (known as RSA-768, which has 232 decimal
digits) by GNFS. In 1994, Peter Shor showed that a quantum
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computer—if one could ever be created for the purpose—
would be able to factor large integers in polynomial time
(with the time complexity of o(η2(lg η)(lg lg η)) for factoriz-
ing an η-bit long number), thereby breaking RSA [8]. The
basic principle of Shor’s algorithm is to use the quantum
Fourier transform to transform the problem of large integer
factorization into finding the period of a function. Some
testbed quantum computing platforms are already available,
such as cloud quantum computers from IBM and computers
based on nuclear magnetic resonance (NMR) [9]. Geller and
Zhou [10] employed Fermat numbers and eight qubits to
decompose 51 and 85, the largest numbers to be factored
by Shor’s algorithm thus far. However, 2k + 1 qubits are
required to factor k-bit integers, so the scalability of universal
quantum devices limits their application on a large scale [11].
Another promising approach to integer factorization is quan-
tum adiabatic computing (QAC), which was first proposed by
Burges [12]. Jiang et al. [13] recently proposed a generalized
quadratic unconstrained binary optimization (QUBO) model
to represent the multiplication tables and was able to factor
376298. Peng et al. [14] (Jan. 2019) factored 1005973 with
only 89 qubits, which is the largest integer factored using
quantum factorization to date.

From a universal quantum computation perspective [15],
existing quantum computers are not yet able to learn practical
quantum factorization algorithms.

The sequence Fn satisfying F0 = 0, F1 = 1, . . . ,Fn+1 =
Fn + Fn−1, n ∈ Z, n ≥ 1 is called the Fibonacci sequence,
where Fn denotes the nth Fibonacci number. The series
obtained by taking each element of the Fibonacci sequence
modulo any modulus is periodic, and these periods are known
as Pisano periods [16], [17]. However, there are few studies
on the relationship between Pisano periods and integer fac-
torization. In this paper, the Pisano period of the product of
two prime numbers will be studied in-depth and associated
with large integer factorization.

II. PISANO PERIOD
A. GENERAL PROPERTIES
Let

A =
[
1 1
1 0

]
. (1)

It is easy to show that

An =
[
Fn+1 Fn
Fn Fn−1

]
, n ≥ 1, (2)

which is the matrix representation of the Fibonacci
sequence [18].
Theorem 1: For any nonnegative integer k , the following

equations hold.
a) F0 + F1 + F2 + . . .+ Fn = Fn+2 − 1.
b) Fn = Fk+1Fn−k + FkFn−k−1(n ≥ k); in particular,

F2n+1 = F2
n+1 + F

2
n .

c) Fn−1Fn+1 − F2
n = (−1)n; from this we can see that the

adjacent Fibonacci numbers are coprime.

d) F(n+2)k = (Fk−1 + Fk+1)F(n+1)k − (−1)kFnk , n ≥ 0; in
particular, F2k = (Fk−1 + Fk+1)Fk .

Proof: From (1), we have (I − A)−1 = −A; it follows
from the fact that I + A+ . . .+ An = (I − A)−1(I − A)(I +
A+ . . .+ An) = (−A)(I − An+1) = An+2 − A that a) holds.
Equation b) can be obtained by matrix multiplication.
Since detA = −1, we obtain c) from the fact that detAn =

(detA)n = (−1)n.
Let M = Ak . By the Cayley-Hamilton theorem, the char-

acteristic polynomial of M equals 0, i.e., ϕ(M ) = M2
− T ·

M +1 · I = 0, where T = tr(M ), 1 = detM . Therefore

M2
= T ·M −1 · I . (3)

Multiplying by Mn on both sides of the equation, we have

Mn+2
= T ·Mn+1

−1 ·Mn. (4)

Replacing M with Ak , we have

A(n+2)k = T · A(n+1)k −1 · Ank , (5)

that means that[
F(n+2)k+1 F(n+2)k
F(n+2)k F(n+2)k−1

]
= T

[
F(n+1)k+1 F(n+1)k
F(n+1)k F(n+1)k−1

]
−1

[
Fnk+1 Fnk
Fnk Fnk−1

]
. (6)

By equating the cells in the matrix, we have

F(n+2)k = T · F(n+1)k −1 · Fnk . (7)

Because T = tr(Ak ) = Fk−1 + Fk+1 and 1 = detAk =
(detA)k = (−1)k , d) holds naturally.

The nth Pisano period, written π (n), is the period with
which the sequence of Fibonacci numbers taken modulo n
repeats. For example, the sequence of Fibonacci numbers
modulo 3 begins: 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2,
1, 0, 1, 1, 2, 0, 2, 2, 1, 0, . . .This sequence has period 8,
so π (3) = 8. For convenience, we refer to the remainders
of the Fibonacci sequence modulo an integer m(m ≥ 1) as
the ‘‘Pisano sequence’’, denoted {Fn(m)}, i.e., the nth term of
the sequence is Fn(m), where Fn(m) means Fn (mod m).
Define d(m) = min {n|n ≥ 1,m | Fn}.
Theorem 2: m | Fn ⇔ d(m) | n
Proof: Since F0 = 0, suppose m | Fkd(m) and m |

F(k+1)d(m). Then obviously m | F(k+2)d(m) (Let the first
subscript k be k + 1; then, F(k+2)d(m) = F((k+1)+1)d(m), and
thus, m | F(k+2)d(m) holds inevitably). Let n = kd(m); by
mathematical induction, we have d(m) | n⇒ m | Fn.
If instead m | Fn but d(m) - n, then n = ad(m) + r ,

where a, r are integers satisfying a ≥ 0, 0 < r < d(m).
Obviously m|Fad(m) holds since we have proved d(m) | n⇒
m | Fn, and from Theorem 1 b), 0 ≡ Fn = Fad(m)Fr+1 +
Fad(m)−1Fr ≡ Fad(m)−1Fr (mod m). From Theorem 1 c) we
get gcd(Fad(m),Fad(m)−1) = 1; thus gcd(m,Fad(m)−1) = 1
and therefore m | Fr . This contradicts the definition of d(m),
hence m | Fn ⇒ d(m) | n.
It is not difficult to deduce the following corollaries from

the above theorem.
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Corollaries: For positive integers n1, n2,m1,m2, we have
a) n1 | n2 ⇔ Fn1 | Fn2 .
b) m1 | m2 ⇒ d(m1)|d(m2).
c) When gcd(m1,m2)=1, d(m1m2) = lcm(d(m1), d(m2)).
d) When m = pα11 . . . pαss is the standard decomposition of

m, d(m) = lcm
(
d(pα11 ), . . . , d(pαss )

)
.

Theorem 3: d(m) | π (m) and the ratio r = π (m)/d(m)
satisfies r = min

{
s|s ≥ 1,Fsd(m)−1 ≡ 1 (mod m)

}
.

Proof: Since Fπ (m)(m) = F0(m) = 0, then m | Fπ (m),
thus d(m) | π (m) follows from Theorem 2.
Assume t = Fd(m)−1(m). Then, we have t = Fd(m)+1(m)

and t = Fd(m)+2(m). Thus, t = Fd(m)+k (m) = tFk (m)
(mod m), where 0 ≤ k ≤ d(m)− 1. Let k = d(m)− 1; then
tFd(m)−1(m) ≡ t2 (mod m) and F2d(m)+1(m) ≡ t2 (mod m).
Repeat this process to getFrd(m)+1(m) = Frd(m)+2(m) ≡ tr ≡
1 (mod m).

Therefore, Frd(m)+n(m) = Fn(m)(n ≥ 0), and Theorem 3 is
proven.

The significance of Theorem 3 is that it fully reveals the
structure of the Pisano sequence. Still using the notation t =
Fd(m)+1(m), the Pisano sequence within one period consists
of the following r segments:
0, 1, 1,F3, . . . ,Fd(m)−1 ≡ t (mod m)
0, t, t, tF3, . . . , tFd(m)−1 ≡ t2 (mod m)
· · ·

0, tr−1, tr−1, tr−1F3, . . . , tr−1Fd(m)−1 ≡ tr (mod m)
(8)

It can be seen that the subsequence, {Fkd(m)+j(m)}, k ≥
0, 0 ≤ j ≤ d(m) − 1, of the Pisano sequence is a geometric
series modulo m for a fixed j, with Fj(m) as the first term and
t as the common ratio: Fkd(m)+j(m) ≡ Fj(m)tk−1 (mod m).
Therefore, the sequence {Fn(m)} is a rearrangement of the
items from the d(m) geometric series modulom. Specifically,
these series own F0(m),F1(m), . . . ,Fd(m)−1(m) as their first
terms with the same common ratio t .
Definition: For the integer sequence {ωn}, an integer m

greater than 1, an integer s greater than 0, a nonnegative
integer n0 and an integer c, if gcd(m, c) = 1, n ≥ n0, ωn+s ≡
cωn (mod m), then the minimum positive integer s satisfy-
ing the above equation is called the constraint period of
{ωn (mod m)}, the corresponding n0 is called the preliminary
constraint period, and c is called a multiplier [19].
From the above definition, we can see that {Fn(m)} is a

purely constrained periodic sequence with constraint period
d(m) and multiplier c = t .

Next, we give the values of r in Theorem 3.
Theorem 4: Suppose ε = (1 +

√
5)/2, ε̄ = (1 −

√
5)/2,

and Fn′(n ≥ 0) are integers satisfying Fn′ = εn + ε̄n. Then
the values of r in Theorem 3 are

r =


4, 2 - d(m)
1, 2 ‖ d(m) and m|F ′d(m)/2
2, 4 | d(m).

(9)

Proof: For a nonnegative integer n and positive integer s,

FsF ′n−s =
(εs − ε̄s)(εn−s + ε̄n−s)

ε − ε̄

=
(εn − ε̄n)− (εε̄)s(εn−2s + ε̄n−2s)

ε − ε̄
(10)

From (10), we have

Fn ≡ (−1)sFn−2s (mod FsF ′n−s). (11)

Let s = 2d(m). Since m | Fd(m), Fn ≡ Fn+4d(m) (mod m)
follows from (11), soπ (m) | 4d(m), i.e., r | 4.When 2 - d(m),
let s = d(m); then from (11) we know that there is a n for
which Fn 6≡ Fn+2d(m) (mod m), so r > 2 and r = 4. When
2 | d(m), let s = d(m) then it follows from (11) that r | 2. Let
s = d(m)/2. Then, (12) follows from (11):

Fn − (−1)d(m)/2Fn−d(m) = Fd(m)/2F ′n−d(m)/2. (12)

According to the definition of d(m), m - Fd(m)/2 is known.
It follows from (12) that when 4 | d(m), r > 1 and r = 2.
When 2 ‖ d(m), then (as in the argument above using (12))
we have

Fn − Fn−d(m) = Fd(m)/2F ′n−d(m)/2. (13)

Therefore, if m|F ′d(m)/2, then r = 1 holds due to (13);
otherwise r = 2.

B. PISANO PERIOD OF A PRIME NUMBER
We know that for the prime number p, p | Fp−( p5 ), where (

p
5 )

denotes the Legendre symbol [20], i.e., ( p5 ) is defined as

(
p
5
) =


0, p ≡ 0(mod 5)
1, p 6≡ 0(mod 5), ∃x ∈ Z, x2 ≡ p(mod 5)
−1, p 6≡ 0(mod 5), 6 ∃x ∈ Z, x2 ≡ p(mod 5).

Since d(p) = min {n|n ≥ 1, p | Fn}, we obtain d(p) |
p − ( p5 ) from Theorem 2. Theorem 3 shows that the Pisano
period is r times the constrained period, i.e., π (p) = rd(p).
Therefore,

π (p)/r | p− (
p
5
). (14)

i.e.,

p− (
p
5
) = k · π (p)/r . (15)

and hence

p− (
p
5
) = (k/r) · π (p). (16)

where k is a positive integer not less than 1, i.e., k ∈ Z+.
Theorem 4 tells us that r has three possible values: 4, 1, 2.
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C. PISANO PERIOD OF THE PRODUCT OF TWO PRIME
NUMBERS
Let N be the product of two prime numbers p1 and p2, p1 6=
p2.
Theorem 5: If N = p1p2, p1 6= p2, then π (N ) =

lcm(π (p1), π(p2)),where π (N ) is the Pisano period of N ,
π (p1) is the Pisano period of p1 and π (p2) is the Pisano period
of (p2).

Proof: According to the definition of the Pisano period,
let t = π (N ). Then, we have

Fn+t ≡ Fn (mod N ),N = p1p2. (17)

Therefore,

Fn+t ≡ Fn (mod p1p2) ≡ Fn (mod p1 and p2). (18)

That means π (p1) | t and π (p2) | t . Let s denote their least
common multiple lcm(π (p1), π(p2)); then, we have s | t .

Conversely, if Fn+s ≡ Fn (mod p1 and p2), then since
p1 and p2 are coprime, Fn+s ≡ Fn (mod p1p2), i.e., t | s.
Therefore, t = s. Li et al. [21] noted that the Pisano period
of N is a multiple of 4 and is equal to two times its constraint
period, that is, π (N ) = 2d(N ). We give Theorem 6 without
proof.
Theorem 6: If p1 and p2 are odd prime numbers and N =

p1p2, then r = 2, i.e., π (N ) = 2d(N ) and 4 | π (N ).
Combined with Theorem 3, Theorem 6 essentially indi-

cates that the Pisano period of p1p2 consists of the following
two parts:{

0, 1, 1,F3, . . . ,Fd(N )−1

0, t, t, tF3, . . . , tFd(N )−1
(mod N ). (19)

where t = Fd(N )−1 (mod N ).
We now present an example to confirm this conclusion. Let

p1 = 17, p2 = 19, N = 17 × 19 = 323. Then, the Pisano
sequence {Fn(N )}n≥0 is { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 54, 287, 18, 305, 0, 305, 305, 287, 269, 233,
179, 89, 268, 34, 302, 13, 315, 5, 320, 2, 322, 1,. . . }. We find
that the Pisano period π (323) = 36, the constraint period
d(323) = 18, and π (323) = 2 · d(323), i.e., r = 2, 4 | π and
the multiplier t = 305.

III. INTEGER FACTORIZATION ALGORITHM USING THE
PISANO PERIOD
From Theorem 5, we know that π (N ) = lcm(π (p1), π(p2)).
Let π1 = π (p1), π2 = π (p2), π = π (N ); then, π1π2 =
gcd(π1, π2) · π . Let k = gcd(π1, π2).
Using (14), we have π1 = (r1/k1) ·

(
p1 − ( p15 )

)
, π2 =

(r2/k2) ·
(
p2 − ( p25 )

)
. Then

(kk1k2/r1r2) · π =
(
p1 − (

p1
5
)
) (

p2 − (
p2
5
)
)
. (20)

where k ,k1 and k2 are positive integers not less than 1 and the
set of values of r1,r2 is {4,1,2}.
Let π ′ = (kk1k2/r1r2) · π . Then (16) becomes

π ′ =
(
p1 − (

p1
5
)
) (

p2 − (
p2
5
)
)
. (21)

Only when the prime number p is equal to 5 does ( p5 ) = 0.
When p 6= 5, it is easy to see that ( p5 ) = 1⇔ p (mod 10) ≡
{1, 9}, ( p5 ) = −1⇔ p (mod 10) ≡ {3, 7}.
When p1 (mod 10) ≡ {1, 9}, p2 (mod 10) ≡ {1, 9}(we

denote this case {1, 1}), when p1 (mod 10) ≡ {3, 7}, p2
(mod 10) ≡ {1, 9}(we denote this case {−1, 1}), when
p1 (mod 10) ≡ {1, 9}, p2 (mod 10) ≡ {3, 7}(we denote
this case {1,−1}), or when p1 (mod 10) ≡ {3, 7}, p2
(mod 10) ≡ {3, 7}(we denote this case {−1,−1}), then

π ′ = p1p2 − p1 − p2 + 1,when {1, 1} , (22a)

π ′ = p1p2 + p1 − p2 − 1,when {−1, 1} , (22b)

π ′ = p1p2 − p1 + p2 − 1,when {1,−1} , (22c)

π ′ = p1p2 + p1 + p2 + 1,when {−1,−1} , (22d)

N = p1p2. (22e)

The problem of integer factorization is as follows: Given
the product N of two prime numbers p1, p2, how can the
values of p1 and p2 be calculated from N?
We design the following algorithm:
Step 1: find π ′.
Step 2: determine the values of p1 by (22a)(22e),

(22b)(22e), (22c)(22e) and (22d)(22e); then, we obtain:

p1 =
(
N − π ′ + 1±

√
(N − π ′ + 1)2 − 4N

)
/2, (23a)

p1 =
(
N − π ′ − 1±

√
(N − π ′ − 1)2 + 4N

)
/2, (23b)

p1 =
(
π ′ − N + 1±

√
(N − π ′ − 1)2 + 4N

)
/2, (23c)

p1 =
(
π ′ − N − 1±

√
(N − π ′ + 1)2 − 4N

)
/2. (23d)

Calculate (23a) (23b) (23c) (23d) in turn; then, p2 is cal-
culated by p2 = N/p1. If the values of p1 and p2 are both
integers, output p1 and p2.
We refer to this algorithm as the ‘‘Pisano period factoriza-

tion algorithm’’ (abbreviated as PP). The pseudocode of PP
is represented as follows:

Algorithm 1 Pisano Period Factorization Algorithm
Input: π ′;
Output: p1, p2;
1: function PisanoPeriodFactorization(π ′)
2: calculate p1 by (23a) (23b) (23c) (23d), p2 = N/p1;
3: if p1, p2 are both integers then
4: return p1, p2;
5: end if
6: end function

For example, suppose N = 256961, π ′ = 258132.
We wish to find the values of p1 and p2.
Solution: By calculating (23a) (23b) (23c) (23d) succes-

sively, we find that only the value of p1, that is obtained
from (23d) is an integer 293; p2 equals 877 in this
circumstance.
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IV. PISANO PERIOD SEARCHING ALGORITHM
In section III, it is noted that if the Pisano period of the product
of two prime numbers is known, we can easily factor the
product. In this section, wewill discuss how to find the Pisano
period.

A. FAST FIBONACCI MODULO ALGORITHM
First, we need to study how to obtain the nth item of the
Fibonacci sequence as quickly as possible. There are three
algorithms: the recursive algorithm, the loop algorithm, and
the fast doubling algorithm [22]. The time complexities of
these three algorithms are o(φn), o(n), o(log n), i.e., the com-
plexity successively decreases, with the recursive algorithm
being the slowest and the fast doubling algorithm being the
fastest.

F2k = Fk (2Fk+1 − Fk) . (24)

F2k+1 = F2
k+1 + F

2
k . (25)

Equation (24) is actually Theorem 1 d), and (25) is Theo-
rem 1 b).

To find the value of the nth item of the Fibonacci sequence
modulo an integer d , we can derive a fast modulo algorithm.
By (24) and (25), we have

F2k (mod d) = [Fk (mod d)(2Fk+1 − Fk )(mod d)]

× (mod d), (26)

F2k+1(mod d) = [F2
k (mod d)+ F

2
k+1(mod d)]

× (mod d). (27)

Using (26) and (27), we can design a fast algorithm for
finding the nth item of the Fibonacci sequence modulo an
integer d . The algorithmic logic can be expressed as the
following sequence of steps.

Step 1: determine whether n is even; if yes, execute Step 2;
if not, execute Step 3.

Step 2: calculate Fn(mod d) = [Fn/2(mod d)(2Fn/2+1 −
Fn/2(mod d))](mod d).
Step 3: calculate Fn(mod d) = [F2

n/2+1(mod d) +
F2
n/2(mod d)](mod d).
Repeat steps 1, 2 and 3 recursively.
This method converts the operation of the nth item of the

Fibonacci sequence modulo an integer d into the operation
of the n/2th(or (n/2 + 1)th) item. This constant ‘‘take half’’
approach reduces the complexity of the modulo operation to
o(log n).

For convenience, this algorithm is called the ‘‘fast
Fibonacci modulo algorithm’’ in this paper. To facilitate
understanding and implementation the algorithm, we give the
pseudocode of ‘‘fast Fibonacci modulo algorithm’’ below.

B. PISANO PERIOD SEARCHING ALGORITHM FOR LARGE
INTEGERS
Bauer has given a computer algorithm and provided the pro-
gram for finding the Pisano period of prime numbers [23], but
there is currently no general method for finding the Pisano

Algorithm 2 Fast Fibonacci Modulo Algorithm
Input: index of Fibonacci sequence, n; modulus, m;
Output: results with an even/odd sequence index;
1: function FibonacciModulo(n,m)
2: a, b = FibonacciModulo(bn/2c,m);
3: c = [a(mod m) · (2b− a)(mod m)](mod m);
4: d = [a2(mod m)+ b2(mod m)](mod m);
5: if n(mod 2) == 0 then
6: return c, d ;
7: else
8: return d, c+ d ;
9: end if
10: end function

period of the product of two prime numbers or even arbitrary
integers [19].

Equations (23a),(23b),(23c) and (23d) tell us that π ′ =
N ±p2±p1±1, π ′ is an integral multiple of π (or constraint
period, d(m)). Therefore, π ′ is also the period of the Pisano
sequence {Fn (N )}n≥0. The value of π ′ is approximately in
the range of [N −max {p1, p2} ,N +max {p1, p2}], which
means that the searching range for π ′ is determined by the
magnitude of the larger prime number.

As a stochastic algorithm, Shor’s algorithm increases the
factorization success rate by increasing the number of exper-
iments. Following this algorithm, random numbers were
adopted to apply to the design of the searching algorithm for
the Pisano period.

Therefore, it can be seen that if a number r is randomly
selected within the searching range, the algorithm should
calculate Fr (N ); if Fr (N ) appears in a previous location s,
we can determine a possible period, r − s. If verified wrong,
indicating that there is a repetition in one period, then the
algorithm searches again.

This is a bit like a ‘‘birthday paradox’’; in our intuition,
the probability of a value in the searching range collid-
ing with one in the sorting range is small, but in fact,
the probability of such a collision is larger than expected.
We will analyze the probability of a collision or hit in
subsection C.

Therefore, an algorithm is designed as follows:
Step 1: determine the searching range. Estimate the dif-

ference in the decimal digits of p1 and p2. If the difference
is x and N has θ decimal digits in total, then the magni-
tude of max {p1, p2} is (θ + x)/2 and the searching range is[
N − 10(θ+x)/2,N + 10(θ+x)/2

]
.

Step 2: determine the sorting range [0, k]. Calculate Fi(N )
for all i ∈ [0, k] and sort them. Maintain a correspondence
table of Fi(N ) and i.

Step 3: generate a random number r in [N−10(θ+x)/2,N+
10(θ+x)/2], calculate Fr (N ) and search Fr (N ) in the sorted
sequence by the binary searchmethod. If there is a hit, find the
location s by the correspondence table of Fi(N ) and i. Then,
the difference in the two locations, r − s, is considered to
be π ′, which is the period we’re looking for.
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Verify whether the result is correct by checking whether
Fr−s (mod N ) = 0. If not, go back to Step 3; otherwise
further check whether Fr−s+1 (mod N ) = 1. If yes, π ′ =
r− s; if not, then π ′ is a constraint period, i.e., π ′ = 2(r− s).

Algorithm 3 Period Searching Algorithm
Input: Digit difference, x; large integer, N ; sort length, s;
Output: the Pisano period, π ′;
1: function PeriodSearch(x,N ,x)
2: search area = [N − 10(θ+x)/2,N + 10(θ+x)/2];
3: sort the first s residuals;
4: repeat
5: generate r , compute Fr (modN );
6: if Fr (modN ) hit the sorted residuals then
7: π ′ = r − postionhit ;
8: end if
9: until π ′ is verified to be a period
10: return π ′;
11: end function

For example, take p1 = 7, p2 = 11, N = 77; assuming
the difference between the decimal digits is 1, the searching
range should be [77− 10, 77+ 10] = [67, 87]. After the first
30 residuals are ranked, the rank will be 0, 1, 1, 1, 2, 2, 3, 5,
8, 12, 12, 13, 13, 14, 21, 23, 27, 32, 34, 41, 43, 55, 57, 63, 66,
67, 68, 69 and 71, and the corresponding original positions
will be 0, 1, 2, 22, 3, 13, 4, 5, 6, 11, 21, 7, 23, 24, 8, 19, 25,
28, 9, 26, 18, 10, 17, 16, 20, 12, 27, 14 and 15. Let r be a
randomly chosen number in [67, 87]; for example, when r =
86, we have F86 (mod 77) = 8. After we search this ranked
list 4 times by using the binary search method, the original
position of the hit residual is 6, so the period may be π ′ =
86− 6 = 80 (as shown in Figure 1). We find that this period
is correct because F80 (mod 77) = 0, F81 (mod 77) = 1.

C. THE ALGORITHM COMPLEXITY ANALYSIS
As explained above, the time complexity of the fast Fibonacci
modulo algorithm is o

(
log2 N

)
.

Suppose that the length of the sorting area is N1, sorted
by heap sorting or quick sorting method. Thus, the time
complexity is complexitysort = o(N1 log2 N1) · o

(
log2 N1

)
,

where o(N1 log2 N1) denotes the complexity of the sorting
operation and o

(
log2 N1

)
denotes the complexity of the mod-

ulo operation.
Assuming that the length of the search area is N2, it takes√
N2 times on average to traverse any number within the

range by using a random method [24]. Assuming that the
distribution of the sequence Fn(N ) is sufficiently discrete,
there are π (N ) possible values of Fn(N ) (which means that
there is almost no coincidence within a period). We wish
to determine the probability of a collision after

√
N2 search

times in the searching area.
This actually is a ‘‘birthday paradox’’ problem. It can be

transformed into the following interesting small example:

FIGURE 1. A diagram of the Pisano period searching algorithm. For
N = 77, rank the residuals of the first 30 Fibonacci numbers modulo N .
Mark [67,87] as the search area, generate the random number 86 in
[67,87], and calculate F86 (mod 77) = 8. By using the binary search
method, we find F6 (mod 77) = 8. Therefore, the Pisano period is
86− 6 = 80.

FIGURE 2. The probabilistic problem of the Pisano period searching
algorithm is actually a ‘‘birthday paradox’’ problem and can be
transformed into the following interesting small example. Both baskets
have π(N) balls of different colors, N1 balls from basket 1 are taken out
first and then

√
N2 balls from the basket 2 are taken out in turn without

putting them back. What is the probability of color collision of the balls
taken from basket 2 and that from basket 1?.

Basket 1 has π (N ) balls of different colors. First, take out
N1 balls.
Basket 2 also has π (N ) balls of different colors. Take out
√
N2 balls in turn without putting them back. What is the

probability that the colors of the balls taken from basket 2 and
that the colors of the balls from basket 1 will be the same?
(Figure 2 illustrates this problem visually.)

The answer is as follows:

1− C
√
N2

π (N )−N1
/C
√
N2

π (N ). (28)
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This is just the probability of a collision (or hit) after
√
N2

search times in searching area of PP algorithm.
It is known from the theory of probability analysis that

the average time complexity of hitting the sorted residuals
sequence is complexitysearch = o(

√
N2/N1) · o(log 2 N1) ·

o(log 2 N ), where o(log 2 N1) represents the time complexity
of a binary search, o(log 2 N ) represents the complexity of a
modulo operation, and N is the large integer to be decom-
posed.

Therefore, the total time complexity of searching the
Pisano period is complexitysort + complexitysearch =

o(N1 log2 N1) · o(log2 N1) + o(
√
N2/N1) · o(log 2 N1) ·

o(log 2 N ), which is related to three factors: the length of the
sorting range N1, the length of the searching range N2 and the
larger integer N .

Essentially, the length of the search range is determined
by the decimal digit difference x between the two factors
to be decomposed, i.e., N2 = 2 · 10lgN+x . If we assume
the length of the sorting range N1 = N 1/6 (other alterna-
tives are certainly also permitted), then the computational
complexity is as follows: o(N 1/6 log 2N 1/6) · o(log 2N 1/6) +
o(
√
2 · 10lgN+x/N 1/6) · o(log 2N 1/6) · o(log 2N ).

V. INTEGER FACTORIZATION EXPERIMENTS
A. COMPLEXITY COMPARISON ANALYSIS
Generally, the principle of integer factorization methods is
to find an integer pair so that x2 ≡ y2 (mod N ) holds,
calculate gcd(x − y,N ) and decompose N with a probability
greater than 1/2. Methods based on this idea include the
continued fractional factorization method(CF), the quadratic
sieve method(QS) and the general number field sieve method
(GNFS) [24].

Let L = exp(
√
logN log logN ); then, the computational

complexity of L is subexponential. It has been proven that
the computational complexity of CF is L1+o(1) (o(1) for an
infinitesimal quantity); that of QS is L1+o(1); that of EC
is L = exp((1 + o(1))

√
logN log logN ) = L1+o(1); and

that of GNFS is LN
(
1/3, (64/9)1/3+o(1)

)
, where LN (a, b) =

exp
(
b(logN )a(logN )1−a

)
[24].

In the GNFS derivation process, the actual time consumed
largely depends on the selection of polynomials, the sieving
method, the solution of the linear equations, the solution
of algebraic square root and the selection of some parame-
ters [25]. In the following comparative study, we give up the
comparison with this method. In addition, the implementa-
tion of Shor’s algorithm relies on the invention of quantum
computers and related simulation platforms; the following
comparative study does not consider Shor’s algorithm for the
time being. Table 1 shows the computational complexity of
some factorization algorithms. CF, QS, EC, GNFS and PP
are all of subexponential time complexity.

B. INTEGER FACTORIZATION EXPERIMENTS
The process of integer factorization based on the Pisano
period is as follows:

TABLE 1. Complexity of Some Factorization Algorithms. Suppose N
represents the integer to be factored, it can be seen that PP algorithm,
like other algorithms (except Fermat’s), owns the subexponential
complexity.

FIGURE 3. For small values of N, in which all the integers to be factored
do not exceed 16 decimal digits (≤ 50Bit), the PP algorithm does not
perform worse than the baseline algorithms.

Phase 1: Find the period π ′ by Algorithm 3.
Phase 2: Get p1,p2 by Algorithm 1.
In addition to obtaining codes for CF, the Pollard

p-1 method, QS and EC on Github (see the acknowledge-
ment section), we also implement Fermat’s algorithm and
the PP Algorithm proposed in this paper with programming.
The experimental environment is a single-core machine with
an Intel Xeon E5-2600v4 processor running Ubuntu Linux
14.04 LTS.

1) SMALL INTEGER CASES
Through the Miller-Rabin method, we randomly generate
two prime numbers such that the difference between the
decimal digits does not exceed 2 and the sum of their
decimal digits does not exceed 16 (≤ 50Bit), and then
take N as the product of the two. We factor N using the
Fermat’s, CF, Pollard p-1, QS, EC algorithms and using
the PP method proposed in this paper. The parameters
of the PP method are as follows: the sort length N1 =

max
{
10000,N 1/6

}
and the estimated decimal digit differ-

ence
x = 2.
According to Figure 3, the time consumption of the PP

method is equivalent to that of the Fermat’s, CF, and Pol-
lard p-1 algorithms and slightly better than the QS and EC
methods in the small integer factorization cases, in which all
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FIGURE 4. The sorting time, searching time and total time taken by the
PP algorithm to factor N = 525220163614031 when setting different sort
ranges. Total time = sort time + search time. It can been seen that as the
sorting time increases, the searching time decreases accordingly, and an
appropriate choice of sorting range will minimize the total time
consumed. The best sorting range is [0,1000] in this case.

the integers to be factored do not exceed 16 decimal digits
(≤ 50 Bit).

2) SORT LENGTH
For N = 525, 220, 163, 614, 031 (15 decimal digits long),
set the sort length to 100, 1000, 10000, 100000 and 1000000.
The factorization time is shown in Figure 4. It can be
seen that as the sorting time increases, the searching time
decreases accordingly; the total time consumption is the
superposition of the sorting time and the searching time,
and selecting the appropriate sort length will minimize the
factorization time. In this case, when the sorting range is set
to [0, 1000], the factorization time is reduced to aminimumof
0.51 seconds.

3) DECIMAL DIGIT DIFFERENCE
The decimal digit difference is the difference between the
decimal digits of two prime factors; for example, the decimal
digit difference between 17 and 12561229 is 6.

The Miller-Rabin method is used to generate two prime
numbers whose decimal digit difference is 0 to 16 and whose
decimal digit sum is 20. We take the product of these prime
numbers as N . Factorization is performed using the Fermat’s,
CF, Pollard p-1, QS, EC and PP algorithms, where the sort
length of PP is fixed to 100000.

It can be seen from Figure 5 that only Fermat’s algorithm
and PP algorithm will increase linearly with x; for almost
every same x, PP algorithm always performs much better
than Fermat’s algorithm (with less time consumed); With the
increase of the decimal digit difference, the performance gap
between this two algorithms will expand exponentially. The
time consumption of other factorization algorithms do not
show certain regularity to the variation of the decimal digit
difference.

Therefore, both Fermat’s method and the PP method are
suitable for the factorization of integers with little difference
between their two prime factors, but the sensitivity of the PP
method to the difference in the two prime factors is much less

FIGURE 5. A comparison of time consumption for different decimal digit
differences. The horizontal axis represents the decimal digit difference of
the two prime factors, and the vertical axis represents the
time-consuming seconds. Obviously, only Fermat’s algorithm and our PP
algorithm will consume more time linearly with x , suggesting that these
two algorithms are suitable for the factorization of integers with little
difference between their two prime factors.

TABLE 2. Memory Usage of PP Algorithm. For RSA-100 (100 decimal
digits, approximately 330 bits), the memory usage exceeds 50 GB. If we
continued to factor larger integers, the computational support of
super-large storage computers would need to be provided.

than that of Fermat’s method. However, the CF, Pollard p-1,
QS and EC methods show good robustness for decimal digit
differences.

4) MEMORY USAGE
Performing the CF, QS and some other algorithms will cause
a large memory footprint when factoring large integers that
a PC cannot provide. Since the PP algorithm is designed to
maintain a sorted array, the array will occupy too much mem-
ory to allow storage of that array when using this algorithm.

TABLE 2 gives the memory consumption of the PP algo-
rithm when decimal digits are 20, 59 (RSA-59) and 100
(RSA-100, approximately 330 bits). We can see that when
the factorization of 100-decimal-digit-long integers is imple-
mented, the memory usage exceeds 50 GB. Due to hardware
constraints, we did not continue the experiment; to do so,
the computational support of super-large storage computers
would be needed.

5) SUPER-LARGE INTEGER CASES
We successfully factored RSA-100 (100 decimal digits,
approximately 330 bits) with the PP method, which took
47,983 seconds (approximately 13.3 hours), this was slightly
better than the QS method, which took 54,271 seconds
(approximately 15 hours). That is, when dealing with
super-large integers, the PP algorithm has shown as strong
performance as subexponential complexity algorithms such
as the QS method.
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6) MULTITHREAD/MULTIPROCESS PARALLEL
ACCELERATION
Formulticore processors, the process that randomly generates
a number r in the searching range and checks whether Fr
(mod N ) hits the sorted list can be multithread/multiprocess
parallel accelerated. The specific method is as follows: cre-
ate a multithread/multiprocess; each child thread/process
searches for the Pisano period separately; if any of the child
threads/processes successfully finds the Pisano period, other
child threads/processes will be killed; then, return to the
main thread. Next, the main thread performs Algorithm 1 to
obtain p1,p2. It is worth noting that all threads/processes must
share memory (i.e., share a sorted array).

When decomposing RSA-100 as described above, we use
24 threads in parallel to speed up the Pisano period searching
process.

VI. CONCLUSION
The research in this paper attempts to provide a new idea
concerning integer factorization, which has shown some
practicability and given a strong performance. However, our
research is far from over. For example, we studied the general
distribution of the Pisano sequence in a minimum period but
did not fully utilize these characteristics in the design of the
period searching algorithm; inspired by the random method
of Shor’s algorithm, we adopted the random numbers to speed
up our algorithm, but there is no exponential improvement
in efficiency. In addition, the problems of memory con-
sumption, optimization of the sorting algorithm and accel-
eration of the modulo operation are still worthy of further
study.

APPENDIX
Access for our code can be found here: https://github.com/
wuliangshun/IntegerFactorizationWithPisanoPeriod.
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