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ABSTRACT Due to the complexity of the underwater environment, underwater images captured by optical
cameras usually suffer from haze and color distortion. Based on the similarity between the underwater
imaging model and the atmosphere model, the dehazing algorithm is widely adopted for underwater image
enhancement. As a key factor of the dehazing model, background light directly affects the quality of image
enhancement. This paper proposes a novel background light estimation method which can enhance the
underwater image. And it can be applied in 30-60m depth with artificial light. The method combines
deep learning to obtain red channel information of the background light in the dark channel of the
underwater image. Then, the background light is obtained by adaptive color deviation correction. Finally,
the experiments of underwater images enhancement are carried out, using the dark channel prior algorithm
based on the proposed background light estimation method. The results show that the proposed method
effectively improves underwater image blur and color deviation, and is superior to other methods in multiple
non-reference image evaluation indicators.

INDEX TERMS Adaptive background light estimation, color correction, deep learning, dark channel prior,
underwater image enhancement.

I. INTRODUCTION
With the rapid development of underwater robots, the tasks of
underwater environment detection and deep-sea exploration
are increasing [1]. Clear underwater images are important for
exploring the marine environment and rescuing in underwa-
ter. However, the underwater image acquired by the camera
has poor visibility, which mostly due to haze caused by
light that is reflected from surface and is scattered by water
particles, and color deviation caused by the various attenua-
tion degrees of the light varies among different wavelengths
[2]–[4]. Also, in a complex underwater environment, both of
the fluidity of the water and the constant movement of the
object can cause the image becoming blurred.

To date, researchers have made important contributions
to underwater image enhancement. He et al. [4] proposed
a simple and effective dark channel prior model in 2011,
which has achieved remarkable results in image dehazing.
Then, based on the similarity between the underwater imag-
ing model and atmosphere imaging model, the dark channel
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prior model has gradually been applied to underwater image
restoration. Yang et al. [5] implemented a low-complexity
underwater image enhancement method based on dark chan-
nel prior. Galdran et al. [6] proposed a red channel prior
model for underwater environments based on dark channel
prior and corrected the transmission map in combination
with the saturation of the image to achieve natural color
correction and visibility improvement. Ding et al. [7] esti-
mated the transmission map by scene depth and used the
dark channel prior to achieve underwater image dehazing.
Finally, the white balance algorithm was used to correct color
deviation. Zhu et al. [8] integrated the histogram equalization
with the dark channel prior, which effectively improved the
contrast of underwater images. Ancuti et al. [9] improved
the accuracy of background light estimation by building on
the blending of two images that are directly derived from a
color-compensated and white-balanced version of the orig-
inal degraded image. Xie et al. [10] improved the dark
channel prior model by estimating the theoretical values of
global background light, and used the relationship between
the scattering coefficient and the wavelength to calculate
the transmission map of the three channels, which better
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solved the problems such as color deviation and blurring
caused by background scattering under illumination condi-
tions. Li et al. [11] proposed an improved bright channel
model, and a corresponding denoising algorithm and color
correction method. Akkaynak and Treibitz [12] calculates
backscatter using the darkest pixels in the image and their
known range information. Then, it uses an estimate of the
spatially varying illuminant to obtain the range-dependent
attenuation coefficient.

However, existing researches usually focused on improv-
ing the dark channel prior algorithm by refining the transmis-
sion map and estimating the background light by changing
the color channel, whereas ignoring the background light
information of the original image provided by the dark chan-
nel itself. In this paper, a novel background light estimation
method which combined maximum scene depth estimation
and adaptive color correction is proposed. The method can
improve the brightness of the underwater image, remove the
haze and correct the color deviation, only need to correct the
background light of the underwater image, and just need a
single image as an input.

The remainder of this paper is organized as follows,
Section 2 introduces the relevant theories and algorithms used
in this paper. Section 3 details the principles of adaptive
background light estimation. Experiments were carried out in
Section 4 to verify the proposedmethods. Finally, we summa-
rize this paper in Section 5.

II. RELATED WORK
A. UNDERWATER IMAGING MODEL
In 1980,McGlamery proposed a classical model of the under-
water imaging system in [13], which pointed out that water
and a large number of suspended particles can absorb and
scatter light, and make underwater images to be color distor-
tion, blurred detail, low overall brightness, and low contrast.
According to the underwater optical imaging model shown
in Fig.1. The total light intensity IT received by the under-
water imaging system is composed of three partials linear
superposition: 1) the direct components ID reflected by the
object; 2) the forward-scattering component IF which repre-
sents the small angle scattering during the object reflection
process; 3) the back-scattering component IB which repre-
sents the influence of light scattering caused by the suspended
particles.

IT (x, λ) = ID (x, λ)+ IF (x, λ)+ IB(x, λ) (1)

where x represents the pixel point in the image and
λ ∈ {R,G,B} is the color channel.

The energy components ID, IF and IB are exponentially
attenuated as they propagate from the target to the imaging
device, so the three light components can be represented as:

ID (x, λ) = I0 (x, λ) e−c(λ)d(x) (2)

IF (x, λ) = [I0 (x, λ) e
−c(λ)d(x)] ∗ g (x, λ) (3)

IB (x, λ) = A (λ) [1−e−c(λ)d(x)] (4)

FIGURE 1. Underwater imaging model [10].

where I0 (x, λ) is the light intensity at the location of the
object, c(λ) is the total attenuation coefficient caused by the
absorption and scattering of the light, d (x) is the distance
between the object and the camera, and can also be seen as
scene depth, e−c(λ)d(x) is the underwater transmission map
expressed by t0 (x, λ), ∗ is the convolution operation, g(x, λ)
is the point spread function, and A(λ) is the background light
of λ channel. Comprehensive (1)-(4), the total light intensity
received by the camera can be expressed as:

IT (x, λ) = [I0 (x, λ)+ I0 (x, λ) ∗ g (x, λ)] e−c(λ)d(x)

+ A (λ) [1− e−c(λ)d(x)] (5)

The target reflection image J (x, λ) is defined as:

J (x, λ) = I0 (x, λ)+ I0 (x, λ) ∗ g (x, λ) (6)

Then equation (5) can be reduced to:

IT (x, λ) = J (x, λ) t0 (x, λ)+ A (λ) [1− t0 (x, λ)] (7)

where, IT (x, λ) is equivalent to low-quality underwater
image, and J(x, λ) is clear image. In summary, accurate
prediction of underwater transmission map t0 (x, λ) and
background light A (λ) is essential for underwater image
enhancement.

Also, as shown in Fig. 2. When light propagates underwa-
ter, the underwater attenuation of light vary among different

FIGURE 2. Underwat attenuation of light with different wavelengths [13].
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wavelengths, in which red light has longer wavelengths and
lower frequencies. Therefore, red light is attenuated faster
than blue and green light, which makes the underwater image
blue-green tone [14], [15].

B. DARK CHANNEL PRIOR
He et al. [4] proposed that most local patches in haze-free
outdoor images contain some pixels which have very low
intensities in at least one color channel [4], which is:

Jdark (x) = min
cε{r,g,b}

( min
yε�(x)

(J c(y)))→ 0 (8)

where J is a haze − free outdoor image, J c and Jdark (x)
is a color channel and a dark channel of J , and �(x) is a
local patch centered at x. The dark channel prior states that
except for the sky region, the intensity of Jdark (x) is low and
tends to be zero. According to the dark channel prior and the
traditional air-based mathematic image acquirement model,
the transmission map is calculated by

min
cε{r,g,b}

( min
yε�(x)

(I c (y)) = min
cε{r,g,b}

( min
yε�(x)

(
J c (y) t (x)

+Ac [1− t (x)]
)
) (9)

t (x) = 1− ω min
cε{r,g,b}

min
yε�(x)

(
I c (y)
Ac

) (10)

where the value of ω is between 0 and 1 according to
application-based. Atmospheric light Ac is calculated by ini-
tially choosing the 0.1% brightest pixels of the image. Finally,
the dehazing image can be obtained.

J c (x) =
I c (x)− A (λ)
max(t (x) , t0)

+ A (λ) (11)

where t0 is a constant, in order to avoid the t (x) is close to
zero and the value of J c (x) is infinite. The value of t0 should
be set according to the actual situation.

C. FULLY CONVOLUTIONAL RESIDUAL NETWORKS
Laina et al. [16] proposed a new method to solve the depth
estimation problem of a single image. The method replaced
the fully-connected layer, which was part of the original
architecture, with the novel up-sampling blocks and used
the reverse Huber [17], [18] as loss function to improve the
convolutional neural network. Compared to a typical convo-
lutional neural network (CNN), the model is not only simpler
than existing methods, can be trained with less data in less
time, but also achieves higher quality results. The proposed
architecture builds upon Res Net-50[19], and the network is
trained using NYU Depth v2 [20] and Make3D [21] datasets
respectively.

Ultimately, the method achieves more accurate depth esti-
mation of a single image. The method code is open-source
and can be downloaded at https://github.com/iro-cp/FCRN-
DepthPrediction.

III. ADAPTIVE BACKGROUND LIGHT ESTIMATION
Equation (11) indicates that the acquisition of background
light A (λ) has a crucial influence on the clear image J (x, λ).
Fig.3 shows the underwater image enhancing process. The
background light estimation in this paper can be divided into
the following steps:

1) The scene depth is accurately estimated by pre-
processing the underwater blurred image with CLAHEwhich
can enhance the contrast of blurred images;

2) Using the Fully Convolutional Residual Networks
(FCRN) to estimate the depth of the underwater image and
find the maximum scene depth dmax(x, λ);

3) Obtaining the RGB values (Ar ,Ag,Ab) at the maximum
scene depth in the dark channel map;

4) Using the RGB values of the maximum scene depth in
the original image to obtain the ratio of the three color lights,
represented by αr,g, αr,b;

FIGURE 3. Underwater image enhancing process.
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5) Based on Ar , adjust the green channel and blue channel
values proportionally to get A′g,A

′
b, and as the final back-

ground light A (λ) = (Ar ,A′g,A
′
b);

6) Finally, the dark channel prior and the new background
light are used to enhance the underwater image.

A. UNDERWATER IMAGE PREPROCESSING
Underwater images usually has the characteristics of blur,
color deviation and low contrast. To obtain a more accurate
scene depth, underwater images need to be pre-processed.
Zhu et al. [22] experimented with a large number of haze
images and found that the haze is positively correlated with
the difference between the brightness and saturation of the
image in the HSV color space. Based on the relationship
between scene depth and haze, the relationship between scene
depth, brightness and saturation can be derived as below:

d (x) ∝ c (x) ∝ v (x)− s (x) (12)

where d (x) is the scene depth at point x in the image, c (x)
is the concentration of the haze, the brightness of the scene is
represented by v (x), and s(x) is the saturation. Also, contrast
is an important measure of image brightness and saturation.
Therefore, we should select the method that can effectively
improve the image brightness, saturation and contrast to pre-
process the underwater image, thus reducing the influence of

haze on the scene depth estimation. In this paper, we use con-
trast limited adaptive histogram equalization (CLAHE) [23],
dark channel prior [4], gray world algorithm [24],
Automatic Color Enhancement (ACE) [25], Lab Color Cor-
rection (LAB)[26], Non-Local Dehazing (NLD) [27] and
Screened Poisson equation (SP) [28] to preprocess underwa-
ter images separately.

Fig. 4 shows that the enhanced images obtained by pre-
processing with the various methods and the corresponding
scene depth map. And the enhanced image processed by the
CLAHE, ACE, and SP methods works well. Although the
enhancement of the ACE method is the best, the method
reduces some of the valid information in the original image,
so that the resulting depth information is not complete.
The CLAHE method enhances noise, but it retains richer
depth information. The ultimate goal of this step is to
obtain more accurate scene depth information. Therefore,
CLAHE is finally selected to preprocess the underwater
image. The depth prediction method used in Fig. 4 is detailed
in Section B.

B. UNDERWATER IMAGE SCENE DEPTH PREDICTION
Image depth estimation can be obtained by analyzing image
features and depth cameras [29]. For example, the distance
between the object and the camera can be predicted by

FIGURE 4. Underwater image depth prediction. (a) Original image(up) and scene depth map(down).
(b) Pretreated by CLAHE(up) and scene depth map(down). (c) Pretreated by dark channel prior(up) and scene
depth map(down). (d) Pretreated by gray world(up) and scene depth map(down). (e) Pretreated by ACE (up) and
scene depth map(down). (f) Pretreated by LAB(up) and scene depth map(down). (g) Pretreated by NLD(up) and
scene depth map(down). (h) Pretreated by SP(up) and scene depth map(down).
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evaluating the haze in the image based on the relationship
between the haze and the scene depth. The dark channel priori
theory indicates that, when the atmosphere is homogenous,
the transmission map t (x, λ) can be expressed as:

t (x, λ) = e−βd(x,λ) (13)

where β is the scattering coefficient of the atmosphere.
Equation (13) indicates that the transmission map t (x, λ) is
attenuated exponentially with the scene depth d (x). Then,
the scene depth d(x, λ) can be expressed by:

d (x, λ) =
−log t (x, λ)

β
(14)

Equation (14) indicates that, in theory, we can obtain
the scene depth through the transmission map t (x, λ) and
the atmospheric scattering coefficient β. However, the for-
mula (13) is established with the condition that the atmo-
sphere is homogenous. For the underwater environment, not
only the particulate matter but also the density of water is
not uniform. The scattering coefficient β changes with the
water environment and the specific value cannot be obtained.
Fig.5 shows the scene depth map of the same image with the
different values of β and it reflects that the value of β has a
great influence on the scene depth estimation. In the case of
β unknown, accurate scene depth cannot be obtained.

FIGURE 5. Scene depth map of the same image with different β
(a) Original underwater image. (b) Transmission map. (c) β = 0.5, Scene
depth map. (d) β = 1, Scene depth map. (e) β = 2, Scene depth map.
(f)β = 4, Scene depth map.

It is difficult to obtain accurate scene depth using depth
camera and feature analysis, which is caused by the incon-
venience of depth camera operation and the difference of β
in different waters. It is effective to restore the visual quality
of the images with statistical priors [30]. Deep learning has
the advantage of efficient and accurate feature extraction
based on statistical prior. Therefore, this paper selects the
full convolutional residual networks (FCRN) [16] trained by
Make3D dataset and NYU Depth v2 dataset to estimate the
depth of the underwater image. The error of networks in
estimating the scene depth can be as low as 0.127, which
fully meets our requirements for accuracy of scene depth.
Fig.6 shows the effect of the network on the depth estimation

FIGURE 6. Scene depth map of the underwater image.

of underwater pictures. It can be easily seen that the reddish
part of the color is the distant view area, the blue part is
the near view area, and the darkness of the color represents
the distance. The red circle point in Fig.6 represents the
maximum scene depth.

C. ADAPTIVE BACKGROUND LIGHT ESTIMATE
According to equations (7) and (13), based on the inverse
relationship between the scene depth and the transmission
map, it can be concluded that the transmission map is approx-
imately zero at the infinity of the scene depth, and the image
IT (x, λ) is equal to the background light A (λ). So we can
assume that the background light of the image is at the
maximum scene depth.

Derivation of equation (11) as follows:

J (x, λ) =
IT (x, λ)− A (λ)

t0 (x, λ)
+ A (λ)

=
IT (x, λ)
t0 (x, λ)

−
A (λ)
t0 (x, λ)

+ A (λ)

=
IT (x, λ)
t0 (x, λ)

− A (λ) [
1

t0 (x, λ)
+ 1] (15)

The larger the gray level, the brighter the image [31]. For
equation (15), in the case where IT (x, λ) , t0 (x, λ) are known
and fixed, the smaller A (λ), the larger J (x, λ). The dark
channel is obtained from the three-channel minimum, that
is, the gray level of the dark channel is smaller than the
corresponding original image. Underwater images are usually
dark due to lighting problems. In the case of enhancing
the underwater image, the image which taking the point in
the dark channel as the background light is brighter than the
image obtained by taking the point in the original image as
the background light. Therefore, in this paper, the background
light is corrected based on the point of maximum depth of
the dark channel and the three channel values of the point are
recorded as (Ar ,Ag,Ab).

Besides, we also need to define the position of the maxi-
mum scene depth (the red circle point in Fig.6.) and record
it as M (xi,j, λ), where xi,j is expressed as the maximum
scene depth, i, j are the position coordinates of the point x,

165322 VOLUME 7, 2019



S. Yang et al.: Underwater Image Enhancement Using Scene Depth-Based Adaptive Background Light Estimation

and λ represents the color channel. It should be noted that
the resolution of the image after the FCRN will be changed.
Assuming that the resolution of the original image is m × n,
and the resolution of the depth map is p × q. The positional
coordinates corresponding to the maximum scene depth of
the original image are calculated by the following equation:

M
(
xi,j,λ

)
=min

iεp
(min
jεq

Depth(xi,j)), λ∈{R,G,B} (16)

i′ =
m× i
p

, i′ ∈ {Z } (17)

j′ =
n× j
q
, j′ ∈ {Z } (18)

where i
′

, j
′

are respectively represented as coordinates at
the maximum scene depth of the original image, i

′

and j
′

and rounded to integer, and Depth(xi,j) represents the scene
depth map obtained by FCRN. The ratio of the maximum
scene depth (i.e., background light) of the original underwater
image is as follows:

αr,g =
M
′
(
xi′ ,j′ , g

)
M ′

(
xi′ ,j′ , r

) (19)

αr,b =
M
′
(
xi′ ,j′ , b

)
M ′

(
xi′ ,j′ , r

) (20)

where αr,g, αr,b represent the ratio of the green channel and
the blue channel to the red channel at the point M

′

(xi′ ,j′ , λ).
We can easily know the degree of color deviation through the
above ratio, and then the background light can be corrected.

A′g = αr,g × Ag (21)

A′b = αr,b × Ab (22)

In the above equations, A′g and A
′
b are the values of the cor-

rected G channel and B channel, so the final background light
can be expressed as A (λ) = (Ar ,A′g,A

′
b). Next, the under-

water image is processed by dark channel prior based on the
adaptive background light correction.

IV. EXPERIMENTAL VALIDATION
We performed image enhancement experiments on a large
number of underwater images and evaluated the effectiveness
of the method in this paper through subjective visual, ques-
tionnaire and objective data. Unfortunately, many authors do
not release the implementation of their algorithms. An imple-
mentation that relies only on what authors described in their
papers does not guarantee the accuracy of the enhancement
process and can mislead the evaluation of an algorithm.
Consequently, we selected those algorithms for which we
could find a trustworthy implementation performed by the
authors of the papers or by a reliable author, three of those
algorithms are implemented using software tool ‘‘IMAGE
ENHANCEMENT PROCESS TOOL’’ [32]–[33]. The
method proposed in this paper can be applied in 30-60m depth
and the light source is artificial light. The natural light is not

considered at the moment. The underwater images with five
different scenes used in experiments have significant blurring
of details, color distortion, low brightness, and contrast.

To ensure the fairness of the comparison results, all exper-
imental results were generated on the same computer. The
computer was configured as Intel(R) Core(TM) i7-8650U
CPU @ 2.11 GHz, 16.00 GB memory, Windows 10 system
and x64 processor. MatlabR2017a is software platform.

A. SUBJECTIVE PERFORMANCE EVALUATION
As shown in Fig.7, Fig.7 (a) shows some underwater images
of some websites and live-action shots as original images,
where (1) (3) (4) comes from web, (2) from the example
image in reference [4], and (5) was taken by the underwater
robot BlueROV2 in April 2019. Fig.7 (b) shows the results
of HE’s dark channel prior [4], Fig.7 (c) is the enhanced
image obtained by the automatic color enhancement(ACE)
of P.G [25], Fig.7 (d) shows the results of Bianco’s Lab
Color Correction(LAB) [26], Fig.7 (e) is the enhanced image
obtained by Screened Poisson equation (SP) [28], Fig.7 (f) is
the enhanced image obtained by the gray world algorithm of
D.A [23], and Fig.7 (g) shows that the result of Zhu’s algo-
rithm, which combined the dark channel prior and histogram
equalization [8], and the effect of Fig. 7 (h) obtained by the
method proposed in this paper.

As shown in Fig.7, the dark channel prior represented by
(b) is not ideal for the underwater image dehazing, and there
is still a problem common to the method: the image is too
dark. Fig.7 (c) is the effect of the ACE algorithm. It can be
seen from the Fig.7 (c) that the ACE algorithm works well
in dehazing and color correction, but the brightness is dark.
Fig.7 (d) shows the effect of LAB, which has little change
from the original image. Fig.7 (e) is the effect of the SP
algorithm, it can achieve dehazing, but the color deviation and
brightness are not significantly improved. Fig.7 (f) shows that
although the gray world can solve the problem of lack of red
light in underwater images, it cannot improve the brightness
and dehazing, and it over-adjusts the color deviation and
distorts the image. Compared with the two methods Fig.7 (b)
and Fig.7 (f), Fig. 7(g) has an improvement in brightness,
but the effect of color correction on underwater images is
not satisfactory. Fig.7 (h) shows the effect of our algorithm,
which removes haze, improves brightness and corrects under-
water image color deviation, but needs to be improved for
local brightness and contrast, and the color correction of
Fig.7 (3) and (4) is slightly worse than ACE.

B. QUESTIONNAIRE
For subjective performance evaluation, we designed a ques-
tionnaire to evaluate the underwater image enhancement
algorithms. A panel of review in the field of underwater
imagery (members of the National Key R&D Program of
China) was assembled. This panel is composed of several
professional fields, such as the field of computer vision,
underwater image processing, painting and other professional
fields with experience in underwater imagery. This panel
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FIGURE 7. Underwater image enhancement. (a) Original image. (b) DCP. (c) ACE. (d) LAB. (e) SP. (f) Gray world. (g) Zhu’s method.
(h) Proposed method.

TABLE 1. Average value of each algorithm.

expressed an evaluation of the quality of the enhancement
conducted on the underwater images through some selected
algorithms [31].

The questionnaire is composed of five underwater images
and seven enhancement methods. Each of the enhanced
images is labeled with the acronym of the algorithm that pro-
duced them. Then, the evaluator was to provide an evaluation
expressed as a number from one to ten, where ‘‘one’’ rep-
resents a very poor enhancement and ‘‘ten’’ a very good one.
The score can only be accurate to two decimal place. All these
evaluations, expressed by each evaluator on each enhanced
image, provide a lot of data that needs to be interpreted.

Table 1 shows the results of the average value of each
algorithm. Except for (3) and (4), the methods proposed in
this paper all obtained the highest average value. The ACE
algorithm obtained the highest average value on (3) and (4).
By analyzing the enhanced image, it can be concluded that
the image (3) and (4) processed by the ACE algorithm is
superior to our algorithm in color correction, but not all. This
is because the method proposed in this paper relies on the
accuracy of the maximum scene depth, so the effect of color
correction has slight fluctuations. But in general, the total
average score of our algorithm is 8.12, which is superior to
other enhancement algorithms.

To further analyze the questionnaire and verify the valid-
ity of our algorithms, we performed ANOVA (ANalysis Of
VAriance) on these data. The purpose is to determine whether
the difference between the average score of the algorithms is
significant. Also, to determine which algorithms are effec-
tively better than the others, we conducted a ‘‘post hoc’’
analysis, named LSD (Least-significant Difference), which
is a test that determines specifically which groups are signifi-
cantly different [31]. Table 2 shows that there is significances
between the seven algorithms.

TABLE 2. ANOVA test results and LSD analysis.

A comprehensive analysis of Figure 7, Table 2 and the
LSD results (as shown in the appendix) leads to the following
conclusions:

Image (1): ACE and our algorithm are significantly better
than other algorithms, but ACE and our algorithm do not
show significant differences;
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Image (2): ACE and our algorithm are better than other
algorithms. The effect of SP is not ideal. There is no signifi-
cant difference between GW, DCP and LAB;

Image (3): ACE and our algorithm are better than other
algorithms. The ZHU’s algorithm is not significantly dif-
ferent with the LAB. The effect of all algorithms are better
than GW;

Image (4): The ACE algorithm is superior to our algorithm
and the SP, and these three algorithms are significantly better
than the other algorithms;

Image (5): Our algorithm is better than ACE and SP, and
the effects of GW and DCP are not ideal.

In a nutshell, our algorithm works well for the processing
effect of all underwater images. And our algorithm is not
significantly different with the ACE algorithm. So we need
another assessment method to verify the superiority of our
algorithm.

C. OBJECTIVE PERFORMANCE EVALUATION
Since the underwater image cannot obtain the waterless
image as reference, we should select the no-reference quality
assessment indicators to evaluate the image. The sharp-
ness is an important indicator to measure image quality,
which can better correspond to the subjective feelings of
humans [34]. This paper selects several popular and represen-
tative no-reference evaluation quality assessment indicators
to represent the enhancement image quality. The average
gradient [35] can reflect the details contrast and the texture
change. Generally, the larger average gradient, the richer
the image hierarchy and the clearer the image. No-reference
structural sharpness (NRSS) [36] is an improvement based
on structural similarity index (SSIM), which uses the char-
acteristics of human vision to be most sensitive to horizontal
and vertical edge information, using Sobel operator to extract
the edge information of horizontal direction and vertical
direction, then calculates the edge information variance.
So the larger the value of NRSS, the higher the image
quality. The entropy function based on statistical features is
also an important indicator to assess the richness of image
information. The larger the entropy, the more information,
the clearer the image. All three evaluation indicators can well
reflect the clarity of the enhancement image and the richness
of the details. The evaluation results are shown in Table 3.

According to Table 3, the NRSS values of the enhanced
images obtained by our algorithm are all better than the other
three algorithms, indicating that the images processed by our
algorithm have more detailed information. However, for the
average gradient and the entropy function, our algorithm are
not the best for Fig.7 (2) and (5), but the method second only
to Zhu. This is because the concentrated gray level of the
image is ‘‘stretched’’ by the histogram equalization, which
makes the picture have higher contrast, so the image has
larger gradient. However, regarding to the subjective visual
image, excessive stretching of the gray level causes the image
to appear undesired information, and the visual experience is
not ideal.

TABLE 3. Objective performance evaluation results.

Comprehensive analysis, our algorithm and the ACE algo-
rithm is superior to the other five methods. And our algorithm
is similar to the effect of the ACE algorithm, but the scores of
three assessment indicators of our algorithm are higher than
the ACE algorithm. Except that, after testing a large number
of underwater images, our algorithm gets better results more
often.

V. CONCLUSION
The adaptive background light estimation proposed in this
paper can effectively improve the color deviation caused by
red light attenuation and image blur caused by light scatter-
ing, and increase the image contrast. Also, the method in this
paper extracts data from the image itself, which makes the
enhanced image more consistent with the original image and
achieves image adaptive enhancement.

However, the accuracy of scene depth estimation has an
impact on our method. Since the salinity and the number of
suspended particles in the water vary with time, location and
season, the accuracy of the scene depth estimation are also
relatively reduced. Even accurate depth of the scene cannot be
obtained in transitional turbid waters. Therefore, the method
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TABLE 4. ‘‘Post hoc’’ analysis results.

in this paper dose not apply to ultra-turbid waters with low
visibility. The above problem may be solved by combining
with sonar imaging. Besides, the dark channel of the object in
the clear image mostly tends to zero, that is, the dark channel
value is zero when the maximum scene depth is on the object.
In this case, the background light A (λ) should take the value
of the maximum scene depth of the original image. In addi-
tion to the above two cases, the adaptive background light
estimation method proposed in this paper is satisfactory for
underwater image enhancement and provides a new method
for underwater image enhancement.

APPENDIX
See Table. 4.
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