
Received September 16, 2019, accepted November 7, 2019, date of publication November 14, 2019,
date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953511

Leveraging WebAssembly for Numerical
JavaScript Code Virtualization
SHUAI WANG 1,2, GUIXIN YE1,2, MENG LI1,2, LU YUAN 1, ZHANYONG TANG 1,2,
HUANTING WANG1,2, WEI WANG 1,2, FUWEI WANG 1,2, JIE REN 3,
DINGYI FANG1,2, AND ZHENG WANG 4,5
1School of Computer Science and Technology, Northwest University, Xi’an 710127, China
2Shaanxi International Joint Research Centre for the Battery-Free Internet of Things, Xi’an 710127, China
3School of Computer Science, Shaanxi Normal University, Xi’an 710062, China
4School of Computing, Lancaster University, Lancaster LA1 4YW, U.K.
5School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Corresponding author: Fuwei Wang (wfw@nwu.edu.cn)

This work was supported in part by the NSFC under Grant 61672427 and Grant 61672428, in part by the International Cooperation Project
of Shaanxi Province under Grant 2019KW-009 and Grant 2017KW-008, in part by the Key Research and Development Project of Shaanxi
Province under Grant 2017GY-191, in part by the Shaanxi Science and Technology Innovation Team Support Project under Grant
2018TD-O26, and in part by the Ant Financial through the Ant Financial Science Funds for Security Research.

ABSTRACT Code obfuscation built upon code virtualization technology is one of the viable means
for protecting sensitive algorithms and data against code reverse engineering attacks. Code virtualization
has been successfully applied to programming languages like C, C++, and Java. However, it remains an
outstanding challenge to apply this promising technique to JavaScript, a popular web programming language.
This is primarily due to the open visibility of JavaScript code and the expensive runtime overhead associated
with code virtualization. This paper presents JSPro, a novel code virtualization system for JavaScript.
JSPro is the first JavaScript code obfuscation tool that builds upon the emerging WebAssembly language
standard. It is designed to provide more secure code protection but without incurring a significant runtime
penalty, explicitly targeting numerical JavaScript kernels. We achieve this by first automatically translating
the target JavaScript code into WebAssembly and then performing code obfuscation on the compiled
WebAssembly binary. Our design has two advantages over existing solutions: (1) it increases the code reverse
entering complexity by implementing code obfuscation at a lower binary level and (2) it significantly reduces
the performance impact of code virtualization over the native JavaScript code by using the performance-tuned
WebAssembly language. We evaluate JSPro on a set of numerical JavaScript algorithms widely used in
many applications. To test the performance, we apply JSPro to four mainstream web browsers running on
three distinct mobile devices. Compared to state-of-the-art JavaScript obfuscation tools, JSPro not only
provides stronger protection but also reduces the runtime overhead by at least 15% (up to 38.2%) and the
code size by 28.2% on average.

INDEX TERMS Code obfuscation, javascript, webassembly, security, performance.

I. INTRODUCTION
Unauthorized reverse engineering andmodification of code is
a major concern for software vendors [1]–[3]. Such activities
are often associated with malicious behaviors such as cheat-
ing, unauthorized use of software, or bypassing security and
authentication mechanisms.

By making sensitive code hard to be traced and ana-
lyzed, code obfuscation offers a solution for unauthorized

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

code reverse engineering [4], [5]. In recent years, code vir-
tualization [6], [7] is emerging as a promising method for
implementing code obfuscation. This technique translates
the native instructions into bespoke virtual instructions to
increase the strength of code obfuscation [8], [9]. The idea
behinds code virtualization is that by forcing the attacker
to work on a new, unfamiliar instruction set, one can sig-
nificantly increase the difficulties of launching code reverse
engineering attacks [4].

Despite code virtualization techniques have been success-
fully applied to native program binary [10] and program

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 182711

https://orcid.org/0000-0002-2838-7249
https://orcid.org/0000-0002-7301-0352
https://orcid.org/0000-0002-4333-2334
https://orcid.org/0000-0002-9817-7079
https://orcid.org/0000-0003-4885-2600
https://orcid.org/0000-0003-3183-7228
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0001-9338-4274


S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

languages like C [11], C++ [12] and Java [13], it remains
unclear how this promising technology can be used for
JavaScript, a popular programming language for web-based
applications. The challenge mostly comes from two aspects.
First, JavaScript is an interpreted language, and applica-
tions written in JavaScripts are often shipped in the form
of plain source code. As a result, prior works on JavaScript
code obfuscations [14] typically perform at the source code
level, and the obfuscated program will be released again
as JavaScript source code. However, the rich semantics at
the source code level provide much information needed for
reconstructing a simpler yet semantically equivalent code ver-
sion where reserve engineering can be easily performed [15].
This drawback limits the strength of protection a code
obfuscation can provide for JavaScript. Secondly, because
JavaScript code is interpreted and just-in-time compiled for
execution, the additional code associated with code virtual-
ization can lead to significantly runtime overhead [16]. Such
overhead often leads to poor user experience for interactive
and computation-intensive applications. This prevents code
virtualization to be adopted for JavaScript although it just
needs much attention for code protection as other program-
ming languages.

This work aims to unlock the potential of code virtualiza-
tion on JavaScript, and it aims to do sowithout paying the cost
of significant runtime overhead. Our work is enabled by the
recently proposed WebAssembly standard [17]. WebAssem-
bly is a new type of code in binary instruction format,
and it is widely supported by and built into major web
browsers including Firefox, Chrome, Safari and Microsoft
Edge. Thanks to the ahead-of-time compilation feature [18],
WebAssembly can run at nearly native speed by taking advan-
tages of hardware features that are commonly available on
modern computing devices.

The performance-tuned and ahead-of-time compiled
WebAssembly brings in two potential benefits over prior
methods that solely perform code obfuscation at the
JavaScript source code level. Firstly, WebAssembly is sup-
ported bymajorweb browser vendors. Thismeans that we can
translate the target JavaScript code intoWebAssembly to per-
form code obfuscation at the compiled binary. As code obfus-
cation is done at a lower level instead of at the source code,
this increases the difficulty for code analysis [19]. Secondly,
the heavily optimized WebAssembly code can amortize the
overhead brought by code virtualization, resulting in a code
version that has only modest runtime overhead compared
to the vanilla JavaScript implementation. The saving in the
running time is essential for removing the barriers of applying
code virtualization on JavaScript code.

However, translating this high-level idea into a prac-
tical system is non-trivial because of two specific chal-
lenges. Firstly, JavaScript uses JIT compilation to compile the
source code while WebAssembly uses AOT pre-compilation.
Since they work at different layers of the runtime software
stack, we need to have a way to automatically translate the
JavaScript code into WebAssembly and to seemingly switch

between the two different execution modes during runtime.
Secondly, JavaScript is a weakly and dynamically typed lan-
guage, i.e., the type of data and variables can change dynami-
cally during execution time [20]. By contrast, WebAssembly
is a strongly typed language and requires the data type to
be known at compile time. As a result, any code translation
scheme from JavaScript to WebAssembly must be to ensure
the type inferring process is automatic and precise.

This paper presents JSPro, a novel code virtualization
system for JavaScript code. JSPro is the first JavaScript
code obfuscation scheme built upon the recently proposed
WebAssembly standard. It is designed to specifically tar-
get the computation-intensive numerical JavaScript kernels,
which are commonly available in many JavaScript applica-
tions including image processing, cryptography and gam-
ing. When implementing JSPro, we proposed a set of new
methods, analysis and algorithms to overcome the afore-
mentioned challenges for using WebAssembly to protect
JavaScript code. Specifically, We divide the JavaScript code
into computational code and DOM code. The computational
code is virtualized and stored in a WebAssembly file. When
running the protected JavaScript code, the WebAssembly file
is first loaded to provide API functions. Then the DOM code
invokes the WebAssembly API to execute the computational
code. It’s to note that we don’t virtualize the computational
JavaScript code whose parameters contain object type. The
reason is that this kind of code virtualization will increase the
time cost dramatically. Furthermore, we probably need to use
more policies to ensure the translation correctness between
object type operation with no object type operation. When
encountering this case, we apply inline assembly to translate
the code to WebAssembly.

We evaluate JSPro by applying it to 10 widely used
numerical JavaScript kernels on four mainstream web
browsers including Chrome, Firefox, Safari and Microsoft
Edge. Our testing platforms including three distinct mobile
devices where response time is a key constraint. Compared
to state-of-the-art commercial JavaScript obfuscation tools,
JSPro provides stronger code protection, and it achieves this
by delivering at least 15% (up to 38.2%) faster running time
with an average 28.2% reduction in the code size.

The key contribution of this paper is a novel code virtu-
alization system for JavaScript built on WebAssembly. Our
work demonstrates that by carefully exploiting WebAssem-
bly, one can build a code obfuscation scheme that provides
strong code protection for JavaScript without introducing
significant runtime overhead. We hope our work can encour-
age further work in protecting JavaScript applications against
code reverse engineering.

II. BACKGROUND
A. JAVASCRIPT SECURITY AND PERFORMANCE
JavaScript and web applications often suffer from injection-
based attack [21]. At the same time, there is another issue,
the accessibility of the application specific code of the
applications. To prevent piracy or at least make it more

182712 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 1. We show the protection performance results of four types of
obfuscation methods focus on code obfuscation. The optimum result is
that the protected code run less time than native C, and the size is smaller
than the source code. The rectangular area in the figure is our design goal.

difficult, we often use encryption and obfuscation tools to
keep JavaScript code safe [22]. Code encryption usually
encrypts the code in the form of a string and then executing
through the eval function. The main idea of code obfuscation
is to convert the source code into a functionally equivalent
form, but it is difficult to be understood. According to the
purpose, we can category the obfuscation into the following
forms, 1. Layout obfuscation, 2. Name obfuscation 3. Data
obfuscation 4. Control flow obfuscation [23]. As an interpre-
tative language, all these obfuscation methods will seriously
affect the JS running performance. As shown in Figure 1,
the traditional obfuscation algorithm will increase the run-
time and size expansion of the program.

B. WEBASSEMBLY
In modern browsers, like Chrome, Firefox, Edge,
or Safari, the code is interpreted and executed by the
JavaScript engine, which only runs JavaScript. Unfortunately,
JavaScript is not ideal for every task we want to perform.
WebAssembly defines a text format that will be rendered
when developers view the source of a WebAssembly module
with any development tool. It is a binary instruction format
for a stack-based virtual machine. WASM is designed as a
portable target for compilation of high-level languages like
C/C++/Rust so that it could support the deployment of
client and server applications on the web [17]. As mentioned,
obfuscation and encryption of JavaScript source code are easy
to be cracked, so we use WebAssembly to rewrite instruction
for numerical JavaScript protection. Compared to JavaScript
source code,WebAssembly code is more difficult in semantic
understanding. Furthermore,WebAssembly has better perfor-
mance in running time, so we can conclude that JS protection
withWebAssembly can speed up code execution while reduc-
ing the size of the protected code.

III. THE THREAT MODEL
Ourwork aims to protect JavaScript code against code reverse
engineering attacks. In this work, we assume that the adver-
sary can launch the attack from a malicious host and has
access to sophisticated tools for tracking and analyzing the
program behaviors. This is a reasonable assumption as many
of the JavaScript applications run on a client device (e.g.,
a web browser). Our threat model assumes the attacker has
access to the target JavaScript code and can locate, copy and

FIGURE 2. The Fast Fourier Transform (FFT) function is applied to a
random data set, and which is used to evaluate the performance and size
increasement.

modify the code. We also assume the attacker can intervene
in the execution of the JavaScript host, e.g., a web browser.
This can be achieved by running the JavaScript code in a
modified open-source web browser. We note that to launch
a code reverse engineering attack in our scenario will require
the attacker to understand the logic of the target application
through static or dynamic code analysis.

Protecting JavaScript code from such an environment is
highly challenging as the attacker has access to the code
and an unprotected execution environment. This work aims
to increase the difficulties of tracing and understanding the
target program’s logic.

IV. MOTIVATING EXAMPLES
Generally, the C program not only runs faster than JavaScript
but also has a smaller size. It can be illustrated in Figure 1
that presents the comparison results. We take the C code
in Figure 2 as an example. The gray dot line in Figure 1 shows
the run time, and the blue dot line shows the size of this
example. As can be seen, the cost values are all lower than that
of JavaScript execution shown as the histograms. The obfus-
cated code size are almost identical is because the garbage
instructions dominate the obfuscated code size. Since garbage
code does not get executed, it does not affect the running
time; but due to the difference in security strength, we observe
different running time between 2-Js-Online and 3-Decent-
Mess. The combination of these two figures illustrates that
exist obfuscation methods applied to JavaScript protection

VOLUME 7, 2019 182713



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 3. We give an example of a de-obfuscated code snippet. It shows
that the adversary could crack classic JavaScript obfuscation method.
After careful analysis and review of obfuscation data, it appears that the
Name Obfuscation method is used from lines 1 to 4, the Control Flow
Flattening method and Junk code method are used from lines 9 to 21, the
String Transfer and Split method are used from lines 23 to 26. Finally,
we can find that _0xd210[0] is the encryption key.

would actively expand the code volume and increase running
time consumption.

Take another example in Figure 3, and it shows that the
obfuscation code of the file AES.js have concise param-
eters and variable names, which is difficult to understand.
However, after reconstructing the name, as shown in Figure 3,
we can easily distinguish the position of the encryption key.
Thanks for the code semantics, even for larger, more complex
programs, we also can recover sensitive code elements within
an acceptable timeframe for those JavaScript source level
obfuscation. These obfuscation mechanisms that are running
on JavaScript source code level are ineffective and easily
evaded.

The two limitations posed by de-obfuscation adversaries
motivate us to revisit the research of protection using a
new method. We also expect that this method would race
the run and reduce the code size. Furthermore, it is best
to offer non-source code level protection. To satisfy the
above requirements, we may then set our sights on the
WebAssembly.

V. SYSTEM OVERVIEW
Our virtualization-based approach, as depicted in Figure 4,
is entirely automated. As we know, WebAssembly does not
currently support manipulation of DOM objects in JavaScript.
JSPro separates the code of all non-calculation classes

FIGURE 4. The overview of JSPro system framework. It shows that a
given JavaScript is firstly divided into JDOM type and the calculation type.
Then JSPro aims to translate the calculation type into the virtualization
code. JSpro draw out the interactive DOM and the virtual interpreter
interactive each other using share stream.

named JDOM in target JS code, allowing the separated JDOM
operations and VM interpreter interactions to be implemented
in sharedmemory so that our approach can reduce the number
of interaction. For a given input JavaScript, the symbolic
execution is used to extract the JDOM interactions. In this
way, a pure numerical application could be easily virtual-
ized. Further, we design virtual instructions as non-separable
atomic operations (similar to assembly instructions), in order
to enable virtual instructions to simulate JavaScript opera-
tions, we will split JavaScript code. After these operations
are encoded and virtualized, the interpreter could start to
perform instructions. However, if the input.js contains
several JDOM operations, the numerical code still needs to
interact with the shared stream.

VI. IMPLEMENTATION DETAILS
In this paper, we implement the virtualization process by
stack virtual machine [24]. If we utilize VM to simulate the
normal execution of the program, it is necessary to build
the structure of the stack and register in the WebAssem-
bly environment. Similar to other virtualization-based code
protection methods, the interpreter uses a loop statement
to implement the scheduling process. As described above,
according to the function of input JavaScript, the code is
divided into the JDOM type and calculation type. JDOM type
contains JavaScript specific functions such as string process-
ing, attributes, and so on. Calculation type includes simple
numerical operations. Our system JSPro does not virtualize
JDOM type code using WebAssembly. As Figure 4 shows the
two parts of the code interact by sharing memory.

A. SPLIT, VIRTUALIZE AND ENCODE INSTRUCTIONS
Typical code virtualization constantly utilizes native binary
instructions, which have basic operational characteristics.
Different from common compiled programs, JavaScript
applications are textual code with syntax attributes. Due to
JavaScript does not hold the atomic properties of native oper-
ation instructions, it is difficult to be virtualized comparing to
classic binary code. So how to virtualize the JavaScript code?
The solution is to realize the special split conversion of the

182714 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 5. We take an example of the instruction segmentation and the
process of virtualization. Due to the text attribute of JavaScript,
the program state should be split firstly and then construct the
instruction, which is different from C/C++ type.

target code, destroy the readable syntax attributes, extract the
intermediate code with the characteristics of atomic opera-
tion, and then design the corresponding virtual instructions
and processing functions. Finally, the virtualization opera-
tion is accomplished through instruction encoding. As shown
in Figure 5, we will specify the virtualization process of
JavaScript code with a simple example.

1) SPLIT THE INSTRUCTIONS
As shown in Figure 4 Step 1©, we show a simple example
in Figure 5 to illustrate why we need to split JavaScript. The
expression “q=a+b” is a simple text, rather than adding
semantics to JavaScript. So this expression first needs to
be altered to an intermediate code sequence, which can be
restored by a set of atomic operations. To achieve this goal,
we extract abstract syntax trees from the input JavaScript
code and split each statement to realize the separation of
operands and operators. Note that in program loop statements
and condition statements, we need to insert branch tags to
indicate which branch to execute or whether to end the loop.
After that, we finally got the atomic instructions (IR) set and
complete instructions split.

2) VIRTUALIZE THE INSTRUCTIONS AND DESIGN THE
HANDLES
To accomplish the virtualization of IR, JSPro offers
three kinds of virtual instructions, Data transfer instruc-
tion, Control transfer instruction and Operation statement
instruction. As shown in Figure 6, data transfer instruc-
tions are designed to transfer variable value to register or
VarList which is contained in VMcontext. As Con-
trol transfer instruction is designed for replacing branch
tags (‘‘ifjmp’’,‘‘elsepart’’ and ‘‘endif’’ in Figure 5 )
which is inserted into IR.Operation statement is designed for
mapping symbol of operation.For example, we use ‘‘add’’
to express ‘‘+’’ in Figure 5. Handler is a component for
restoring semantics. We design handler corresponding to the
virtual instruction. For example, for the virtual instruction
‘‘lod_r’’ in Figure 5, we design handler to load variable
value from register. For the virtual instruction ‘‘lod_v’’,
we design handler to load variable value from VarList.

FIGURE 6. The execution process of the protected code, DOM operation
are not virtualized and JSPro separate these codes. And the VM will
interact with DOM using share stream. The number indicates the execution
step sequences.

Algorithm 1 Virtual Interpreter Scheduling Algorithm
1: function DispatchJSVMP
2: InitVMcontext
3: bytecode← Fetch(VMdata)
4: while bytecode! = END do
5: HandlerNum← Decode(bytecode)
6: if HandlerNum == ret] then
7: return STA.pop()
8: end if
9: DoHandler(HandlerNum)

10: end while
11: return result

3) ENCODE THE INSTRUCTIONS
As shown in Figure 4 Step 2©, after completing the virtual-
ization, we design a set of mapping rules to encode the virtual
instructions. To be precise, rules are defined as a type of driver
data like ‘‘03 01’’ in Figure 5 that can be used to get and run
instructions. In the encoding process, the virtual instructions
are divided into operation codes and operands to distinguish
different registers or immediate data. Finally, JSpro uses
these bytecodes instead of each virtual instruction, and these
bytecodes will be saved in the VMdata as part of the virtual
interpreter.

B. DESIGN OF VIRTUAL MACHINE PROTECTION BASED
ON WEBASSEMBLY
After splitting the JavaScript statement and claiming a custom
VMdata, as shown in Figure 4 step 3©, we need to design
the virtual machine to perform the functions represented by
the VMdata. As shown in Figure 6, the virtual machine inter-
preter of JSPro contains four components: Dispatcher,
VMdata, Handler and VMconext.
When design virtualization protection method, semantics

regularly hid in the bytecode program at runtime, so it is
very important for the virtual interpreter to exactly explain
the semantics and restore the function of the program. Next,
we briefly describe the primary workflow of the virtual
machine.

As shown in Algorithm 1, the browser executes the
target script file, and once the protected numerical script is

VOLUME 7, 2019 182715



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

satisfied, the virtual interpreter entry function will take
over the process and goes into the interpreter’s workflow.
After that, the virtual execution environment is initialized.
VMcontext will be utilized to complete the continuation
of the execution context. After entering the decoding cycle,
the scheduler center fetches bytecode one by one from
VMdata, then decodes it and searches for the corresponding
Handler according to the mapping table. Once achieving
decoding all the bytecode, it returns directly, exits the virtual
interpreter, or returns the value of the stack.

1) VMCONTEXT
The classic binary virtual interpreter run in the OS native
layer, which makes the stack and register could participate in
the computing process. With these characteristics, the inter-
preter only needs a part of memory to map the real local
registers. Our approach implements virtual interpreter logic
of JavaScript code by C language. In other words, we need
to stimulate the OS running environment in the JavaScript
source code level. As Figure 6 shows, VMcontext is mainly
composed of three parts, namely Stack, Registers andVarList.
In general, Registers store temporary variables and VarList is
a memory-like pool of variable.

2) VMDATA AND HANDLER
VMdata is a custom bytecode generated based on virtual
instruction that can represent the execution logic of the origi-
nal program. Handler is explanation of a custom VMdata
that can be used to restore the function of the program through
instructions.

We implement the entire virtual machine interpreter in
C language and generate WASM through EMSCRIPTEN
compilation.The design of the Handler is described in
section VI-A.2. According to the virtual mapping relation-
ship, the corresponding Handler is designed to restore the
semantics of bytecode stored in VMdata. An example of the
Handler is shown in Figure 7.

3) DISPATCHER
As shown in Figure 6, the Dispatcher is a key part of
the virtual interpreter. It plays an important role in how to
dispatch the corresponding Handler for execution. First,
the Dispatcher gets the bytecode in VMdata based on
VPC (program counter). Besides, it tries to execute the cor-
responding Handler. Lastly, the process loops until all
bytecode have been explained, the Dispatcherwill invoke
the Handler to restore program function based on VMdata.
A simple example of the structure of the Dispatcher can
be found in Figure 7.

4) COMPILING AND CALLING THE VIRTUAL INTERPRETER
As shown in Figure 4 part 4©, after finishing the design of
the virtual interpreter, we need to compile it into WebAssem-
bly. Figure 8 shows the process of compiling and loading
the virtual machine. Compile the C file containing the vir-
tual machine protection program into the WASM file with

FIGURE 7. JSPro gives code examples of Dispatcher and Handler,
which illustrates the fundamental structure.

FIGURE 8. The process of compiling and loading the WebAssembly
module.

EMSCRIPTEN. At the same time, the glue code for call-
ing WASM is also generated. Finally, add the load state of
the glue code, and add the call statement and the param-
eter transfer statement of the virtualization protection pro-
gram in the original file. So the original program can suc-
cessfully invoke the virtualization protection of JavaScript
code.

C. SHARED STREAM FOR DOM INTERACTION
As shown in Figure 4 step 5©, for scripts containing DOM
operations, wewill keep theDOM operation part in the original
JavaScript, and the calculation part will be extracted and pro-
tected by virtualization. So we need to consider how the DOM
element stored in JavaScript interacts with the calculation part
stored in WASM after virtualization to ensure the correctness
of the program. In this article, we solve this problem by using
shared stream. WebAssembly can apply for a continuous
memory address, we regard it as a shared stream. Specifically,
when the computation in the virtual interpreter needs to be
processed by the DOM element, we call the WebAssembly
API functions so that deliver variables stored in DOM element
to shared stream. Similarly, when the calculated value in the
interpreter needs to be used by the DOM element, the value is
passed to the shared stream, and the DOM element can obtain
the value in the shared stream by calling the corresponding
API.

VII. AN EXAMPLE
In this section, we utilize a short JavaScript code snippet as
an example to illustrate how JSPro virtualizes the original
code and explain how it works, as shown in Figure 6 and 9.

182716 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 9. JSPro takes JavaScript code snippet as an example to
illustrate code virtualization and execution process in memory after
protection.

A. JAVASCRIPT CODE VIRTUALIZATION
As mentioned in section VI, JSPro mainly protects the
computation type code, we first extract the calculation part
of the code snippet and then virtualize it. Figure 5 shows the
process of virtualization. As we known, JavaScript code will
not be compiled ahead of time, which leads to non-semantics
nature of the source code. Therefore, unlike traditional virtual
protection methods, our method needs to split the instructions
first. The specific virtualization process is as follows. First,
we separate the computational JavaScript code into atomic
operations based on the abstract syntax tree of the JavaScript
code. We then translate the atomic operations to IR for
getting the control flow. Finally, according to the control flow,
we use IR to simulate each atomic operations for achieving
equivalent translation. It’s to note that to ensure the correct-
ness of the code execution after translation, we use JavaScript
to control the execution of the whole program. When running
the virtualized computational JavaScript code, the control
flow will be transformed to the VM which is implemented by
WebAssembly.

B. RUNTIME EXECUTION
Execution of the protected code is illustrated in Figure 6.
As mentioned above, our protect method to neglect the
DOM part of JavaScript, and using virtual interpreter entry
function instead of the calculation part after virtualization.
During implementation, when executing the virtualization
part, the code segment enters the virtual interpreter by call-
ing the virtual interpreter entry function, then transmits the
digital variable to shared stream following step 1©. After
that, following step 2© and 3©, the Dispatcher starts
loading binary codes one by one from VMdata. When the
binary codes representing the Handler number are loaded,
the appropriate Handler is selected for semantic restora-
tion, as shown in step 4©. In the process of semantic

reduction, the storage of intermediate results and the vari-
able transfer between different Handlers are accomplished
through VMcontext as shown in step 5© and 6©. When
the digital variable values received by DOM elements are
needed in the process of scheduling Handler’s computa-
tion, incoming values only can be obtained by accessing
the shared stream through step 7©. After the calculation
is done, the result will be passed to the shared stream for
DOM elements to use, as shown in step 8© and 9©. The
Dispatcher will load all of the bytecodes in VMdata and
restored semantics by loopstep 3©.When all the bytecodes
in VMdata are parsed, manually garbage collection of vari-
ables in WebAssembly, and then following step 10© to exit
the virtual interpreter.

VIII. EVALUATION
A. EVALUATION SCENARIOS AND SETUP
JSPro can be evaluated in two aspects: performance and
security. We will analyze its performance on three differ-
ent mobile devices and four different browsers. Table 1
shows the four browsers and the corresponding operating
system and hardware specifications. Table 2 summarizes the
specifications of the three mobile devices. In this section,
we select some valid test cases from the research [25]. More-
over, these test cases must follow these principles: 1© Cover
a wide variety of applications. 2© Test cases are mainly
related to numerical calculation. In order to obtain a rela-
tively objective conclusion, we compared several methods
that combined mainstream encryptions and obfuscation tools.
Specifically, we chose four common JavaScript protection
tools for comparison,including: (1) Jsonline,b10, (2)
Decent Mess Up,b8, (3) Js-Obfuscator,b9 and
(4) Obfuscator,b7. The results of the performance tests
are illustrated below in terms of code expansion and time
extension.

B. PERFORMANCE EVALUATION
In this section, we will show the time and space overhead of
the test cases before and after protection.

1) TIME OVERHEAD COMPARISON
To evaluate the performance of five kinds of protec-
tion methods, we experimented with benchmark instances
(selected test cases) on different browsers and different
mobile devices. Before evaluation, each benchmark instance
is firstly protected by JSPro and other four traditional
methods respectively. Then the protected instances and the
original instance run five times at each specific browser
or mobile device. We calculate the average runtime of
five tests as the performance. (1) Experimental results on
different browsers are shown in Figure 10. It shows that
the existing protection methods will lead to significant
decrease in system performance. On the contrary, experimen-
tal results on benchmark instances show that JSPro per-
forms well, in some cases, the performance even better than

VOLUME 7, 2019 182717



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

TABLE 1. Browser, operating system and hardware specs.

TABLE 2. Mobile device and browser specs.

FIGURE 10. This figure shows the performance under different browsers that contain 10 cases. We can see that there are certain differences in
performance of test cases under different browsers. However, traditional protection methods will cause obvious performance loss in different browsers,
while our protection method JSPro will basically not cause performance loss, or even improve performance in some cases.

source code. (2) Further study on mobile devices with limited
resources reveal that the performance of traditional protec-
tion methods is significantly declining, as shown in Fig-
ure 11. However, JSPro’s performance is basically consis-
tent with source code, and even better than pre-virtualization,
resulting in overall performance improvements. In particular,
we test with WebAssembly-enabled browsers like Chrome,
Firefox, Safari and Microsoft Edge four kinds of
browsers. We also choose three kinds of devices including
Vivoxplay6l, Iphone8, and Xiaomi mix2 to evalu-
ate the performance. In different browser performance (exe-
cution time) tests, the best performance improvement is
42.2%, the worst is 8.5%, and the average performance
improvement is 15.7%. In different mobile devices, the best
performance improvement is 80.1%, the worst is 9.3%, and
the average performance improvement is 38.2%.

2) SIZE CHANGE COMPARISON
Figure 12 shows the comparison of size change. As we all
know, classic code obfuscation always increases the pro-
gram size, it is one of the negative effects. Especially for
devices with limited resources, volume expansion may lead

to requested operation to be not performed, or lead to insuf-
ficient storage space in system. For JSPro, the results
are remarkable, and the size of the virtualized code is the
same as the source code, or even smaller. As seen in the
above experiments, under different conditions, we performed
ten sets of experiments on the size increase of the pro-
tected code. The best size decreased by 61.6%, the worst
size decreased by 1%, and the average size decreased
by 28.2%.

C. SECURITY ASSESSMENT
Obfuscation in this work means making the code hard to
understand and debug. By outlining some of the JavaScript
code and compiled them down to WebAssembly, our
approach makes it difficult to understand the program logic.
This is because it is more difficult to track and understand the
low-level compiled machine instructions than doing that for
the high-level JavaScript. By translating the native machine
instructions to bespoke virtual instructions, our approach
forces the adversary to work on an unfamiliar instruction set.
This further increases the difficulty and efforts of understand-
ing and debugging the code. In order to evaluate the security
of our system JSPro against a known attack, we will show

182718 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 11. This diagram shows the performance under different mobile devices that contain 10 cases. We can see that there are some differences in the
performance of test cases under different mobile devices. However, the performance loss of mobile devices with limited resources of traditional
protection methods is very serious, while our protection method JSPro will not cause performance loss, and even can improve performance in some
cases.

FIGURE 12. This diagram shows size change comparison that contain 10 cases.we can see that traditional protection methods will bring volume
expansion, while our protection method JSPro can achieve smaller volume than the original program.

the reverse-engineered results on cracking tools. The specific
test case is a section of the code in ‘‘Cat load’’, as shown
in Figure 13, this code segment is regular and short, and
has rich calculation process, which makes it easier for us
to compare the effect of reverse analysis. We will analyze
the protection results of encryption, obfuscation and JSPro
respectively when they involve reverse cracks.

1) ENCRYPTION TOOL PROTECTION REVERSE ANALYSIS
Figure 14 (a) shows the result of the target protected code
by ToolJS encryption. For an adversary, if he/she wants to
restore the original code, some analysis tools should be first
used to find the most common encryption method. In this
example, the main structure of this encryption method con-
sists of a decryption function and a section of encrypted
string, and the deciphered string is decoded through the ‘‘eval
()’’ function. Therefore, by modifying the ‘‘eval ()’’ in Fig-
ure 14 (a) to ‘‘console.log ()’’, an adversary can get a string of
compressed states, which can be formatted to the final target
code, as shown in Figure 14 (b). It can be seen that the result is

FIGURE 13. We provide a small code snippet demonstrating the attack
experiment, and three kinds of tools will be used to compare one target
against another.

almost the same as source code as shown in Figure 13 exclude
a partial variable name. The main logic and structure of the
code have been completely restored, so it is insecurity and
easy to be cracked.

As the example tell us: Hiding the ‘‘eval ()’’ function’s
body in the protected code maybe stop debugging the
program, if so, the specific decryption method must be
embedded to the protected code, however, it will increase

VOLUME 7, 2019 182719



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 14. Protected code using ToolJS encryption, we show the result
of the reverse analysis in the attack experiment. As we can see, the main
logic and functions are restored.

extra code size. Therefore, encryption is not an appropriate
choice of JavaScript protection methods to defend an actual
attack.

2) REVERSE ANALYSIS OF OBFUSCATING TOOL
PROTECTION
Js-Online is a kind of typical code protection tool, which
uses a variety of obfuscation rules. The following simply
describe the obfuscation process. As Figure 15 (a) shows,
First, Js-Online extracts DOM element, numeric variables
and string variables. After that, split DOM element and string
variables into multiple substrings, then put them into arrays.
Second, the system uses anonymous functions with four
arrays as parameters to shell the original code segment as
well as replace the DOM elements and variables of the original
code by four arrays. Besides, it also applies control flow
flat method, inserts garbage code and so on to transform the
original code.

Next, we will show attack process details. In this part,
we give a cracked example. Just like other evaluate methods,
we also choose a snippet sample to illustrate the crack pro-
cedure, and which helps to ‘‘simplify complex attack tasks’’.
Reverse to the protection, for the obfuscation method name
obfuscation, multivariate, string transfer and split, we can
based on array parameters and array index which is trans-
fer by anonymous functions to reduction DOM element and
string variables.While the control flow obfuscation is more
complex than the previous obfuscation method, the sequence
of execution hidden in the array of parameters, which requires
according to the index of the corresponding parameters and
branches. The garbage code also can be removed by dynamic
debugging and manual analysis, and the restoration of the
structure takes a certain amount of time. Finally, the reverse

FIGURE 15. Show the result of attack experiment aim to protected code
by JS-Online tool. From (a) to (d) are obfuscation rules used by
JS-Online, they will easily be removed because of its semantic
maintenance. After removed these rules, we get the result of
de-obfuscated which is shown in (e).

analysis result can be successfully obtained as shown
in Figure 15 (b).

3) REVERSE ANALYSIS OF JSPRO PROTECTION
For the application after JSPro protection, there is no way
to get the code segment directly after protection. As shown
in Figure 16, the function content of the target program has
been replaced by a function call. This function should be the
entrance of the virtual interpreter. If an adversary wants to
restore the logic of the target code, it first needs to enter
the virtual interpreter through dynamic debugging. However,
the interpreter’s logic has been translated and converted into
WASM module.

In the analysis process, it is found that the browser does
not support debugging WASMmodules and can only display
independent function modules, It is difficult to get suffi-
cient information during the dynamic debugging to enter the
follow-up analysis process.

For the traditional binary code virtualization protection,
there is a semantic-based anti obfuscation method, which
extracts program execution sequence through a dynamic
tracking the program, and further simplifies the code struc-
ture to get the final local code sequence [30]–[32] by the
instruction optimization. However, this method does not
apply to JSPro. Firstly, JSPro needs a combination of

182720 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

TABLE 3. Factor assessment of the effect of protection method on reverse analysis.

FIGURE 16. Analyzing JSPro protection application using Chrome
browser. We can see that the protected code is only contain interpreter
entrance,the content of interpreter cannot be debugged and the readable
code disassembled by WASM is difficult to understand.

WASM and JavaScript, and the environment and language
are different, making it difficult for analysts to track all the
execution paths to obtain a unified instruction sequence. Sec-
ondly, in binary code virtualization protection, the target code
and the interpreter is local x86 instructions, while JavaScript
does not have a one-to-one instruction set corresponding to it
as an explanatory language, so there is no mature simplified
rule. Therefore, the reverse analysis can only draw on the
traditional virtualization protection cracking process. Based
on understanding the basic principle and structure of virtual
machine, the method [33] is used based on the virtual exe-
cution feature, tracking and debugging the target program
repeatedly, collecting the Handler sequence and simplify-
ing the anti obfuscation knot which is close to the target code
by manual analysis and reduction. However, which requires
an attacker to have a certain understanding of the core mecha-
nism of code virtualization protection, and the need to devote
a lot of effort to manual analysis of the simplified code, will
greatly increase the difficulty and cost of reverse analysis.

4) CONTRASTIVE RESULTS OF REVERSE ANALYSIS
These above analyses indicate that some related factors have
an important impact on the protection strength anti-reverse
engineer. We will emphasize to analyze the results shown
in Table 3. As we can see, related factor(1), (4), (5),
(8) are mentioned by stochastic optimization of program

obfuscation [23], related factor(2), (9) are mentioned by
the power of obfuscation techniques in malicious JavaScript
code: A Measurement Study [34]. In addition, related fac-
tor(3), (6), (7) are customized by us where factor(3) means
use encryption algorithm encrypts source code, factor(6)
decomposition and the complexity of computing processes
to reduce readability, and factor(7) add code that does not
execute only reduces the readability of the code.

From the table, we can see that the general encryption
protection has clear decryption of structured information, and
the source code can be decrypted directly, and obfuscation
protection will often combine a variety of protection mea-
sures to reform the structure of the code, and increase the
difficulty of reverse analysis. The two kinds of methods are
mainly the changes in the structure based on the original
target code, and the virtualization protection of JSPro is to
transform the target code into a custom bytecode program
without the features of source code variables and control
structures.

IX. DISCUSSIONS AND LIMITATION
A. SCALABILITY AND VERSATILITY
Our system JSPro focus on approaches that reduce pro-
tection code size and strengthen execution efficiency. Using
instruction virtualization, we construct a framework based
on VM to improve security. As a practical matter, our
approach can be extended to the code including DOM oper-
ation, and the DOM operation code could be obfuscated using
the original method. However, in some specific experiment
designs, we also find that JavaScript code segments including
many DOM objects are not suitable for being translated to
WebAssembly. The intuition is that many DOM operations
may involve a lot of interaction operations with WebAssem-
bly, which results in increasing an execution latency. We will
have an example to describe in details in section IX-B.

B. LIMITATION
In the following section, we discuss the limitation of the
system JSPro concerning DOM operation virtualization and
how they can be overcome using the browser’s kernel opti-
mization. As mentioned above,WebAssembly is designed for
accelerated computation, it is not friendly to support object
type. Considering the JavaScript framework, if it contains
many object types, with the protection of our method, per-
formance improvement will not be as expected. We take
DSP,b31 as an example, which is one of the JavaScript

VOLUME 7, 2019 182721



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

FIGURE 17. Performance of DSP with different protection methods under
different browsers.

FIGURE 18. Performance of DSP with different protection methods under
different mobile devices.

frameworks with the most population on GitHub. We choose
two functions named ‘‘dft’’ (Discrete Fourier Transform) and
‘‘fft’’ (Fast Fourier Transformation) from the DSP to eval-
uate the performance of our method. The functions ‘‘dft’’
and ‘‘fft’’ contain a large number of computational code,
which contributes to evaluate the performance of JSPro.
The combination of Figure 17 and 18 shows the performance
changes of DSP using different protection methods under
different browsers and mobile devices, as Figure 17 shows
traditional obfuscation can cause performance decline after
protection while our method can keep performance basically
unchanged or slight improved. In the best case, it can only
improve 4 %, as Figure 18 shows traditional obfuscation can
cause performance decline after protection but our method
has better performance improvement.

However, compared to code without DOM operations men-
tioned above in section VIII-B.1 and VIII-B.2, the perfor-
mance of DSP after JSPro protection does not meet the
requirement. The next step is to optimize further the kernel
of a browser to solve this problem.

X. RELATED WORK
JavaScript is widely used as an important browser lan-
guage. Since the JavaScript transmission is the source code,
the exposure of the source code in the front-end con-
frontation makes the security very fragile, so the protec-
tion of the JavaScript code has been widely concerned by
the academia and the industry. Multiple commercial protec-
tion systems and platforms provide an integrated JavaScript
code protection, for example, JScrambler [36] is a
mature commercial protection tool that provides a variety of

code protection options to compress JavaScript code, data,
string segmentation coding, structure, variable name obfus-
cation and other protection strategies. It also has simple
anti-debug measures to hinder malicious debugging analy-
sis. JavaScript Obfuscator [37] mainly encrypts and
obfuscate JavaScript code, and improves the protection of
JavaScript code by encoding, encrypting and transferring
strings, obfuscating variable names and inserting garbage
code. However, as described earlier, the powerful debugging
capabilities of the browser reduce the cost of anti obfuscation,
and the obfuscation method based on semantic analysis can
also reduce the cost of obfuscation. On the basis of flat control
flow obfuscation and code encryption [38], JShaman [39]
introduces the polymorphic mutation strategy of JavaScript
code. Each call will automatically mutate and prevent the
code from being dynamically debugged and analyzed. But in
our analysis process, the polymorphism is achieved through
the server returning different versions of the obfuscation
script. So the current front-end obfuscation is based on the
source code.

Recently, community has considered using the idea of
code virtualization to protect programs. VMGuards [40] is
a process-level VM-based code protection system. It designs
two new instruction sets to protect the critical code segments
and the host runtime environment where the VM runs in.
[41] presents a multi-stage code obfuscation method by using
improved code virtualization techniques. The key idea of
this method is to iteratively obfuscate a program many times
by using different interpretations, which increases the diffi-
culty of adversaries to analyze the structure of the original
program. DIVILAR [42] is a virtualization-based protec-
tion scheme to enable self-defense of Android apps against
app repackaging. This is achieved by first using a diversified
virtual instruction set to re-encode an Android app and then
using a specialized execution engine to schedule these virtual
instructions for running the protected app. Condroid [43]
proposes a light-weight Android virtualization solution based
on container technology. It can support multiple Android
containers in a single core environment based on multi-
ple dependent virtual machines. Unlike previous VM-based
approaches, we firstly introduce a code virtualization method
for JavaScript built on WebAssembly, and it can effectively
enhance the protection strength with a reasonable cost of
runtime overhead.

Meanwhile, there are several reverse analysis methods
against virtualization protection. Reference [44] put forward
a kind of statically analyzing the combination of interpreter
and bytecode, reducing virtualization protection intensity.
VMAttack [45] is a de-obfuscation tool for virtualization
packed binaries based on automated static and dynamic anal-
ysis. The complexity of the disassembly view is notably
reduced by analyzing the inner working principles of the
VM layer of protected binaries. Reference [46] proposes a
different approach to the problem that focuses on identifying
instructions that affect the observable behavior of the obfus-
cated code.

182722 VOLUME 7, 2019



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

XI. CONCLUSION
This paper has presented JSPro, a novel code virtualization
approach for JavaScript applications. The proposedmethod is
able to effectively protect JavaScript sensitive algorithms and
data against reverse engineering attacks by adversaries, based
on WebAssembly virtualized binary code. Furthermore, for
computation-intensive JavaScript applications, JSPro can
significantly reduce the running overhead than start-of-the
arts. JSPro was evaluated on three different mobile devices
and four different browsers, and the experimental results
show that the protected JavaScript applications can achieve
the same performance as the original program and better than
the versions which are protected by other commercial obfus-
cation tools. We also evaluate the security of the JavaScript
applications protected by JSPro through manual reverse
analysis. The analysis results present that JSPro provides
stronger protection than traditional JavaScript obfuscation
tools but without paying the cost of significant runtime over-
head. It is to note that like commercial tools, our method
would decrease the performance when a JavaScript code to
be protected has many DOM or interactive operations. This is
also our future work on how to address this problem based on
the browser engine mechanism.

ACKNOWLEDGMENT
(Shuai Wang and Guixin Ye are co-first authors.)

REFERENCES
[1] C. S. Collberg and C. Thomborson, ‘‘Watermarking, tamper-proofing, and

obfuscation—Tools for software protection,’’ IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 735–746, Aug. 2002.

[2] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, ‘‘A tough call:
Mitigating advanced code-reuse attacks at the binary level,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 934–953.

[3] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, ‘‘Dta++:
Dynamic taint analysis with targeted control-flow propagation,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., Jan. 2011, pp. 1–14.

[4] J. Bringer and H. Chabanne, ‘‘Code reverse engineering problem for iden-
tification codes,’’ IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2406–2412,
Apr. 2012.

[5] M. Wu, Y. Zhang, and X. Mi, ‘‘Binary protection using dynamic fine-
grained code hiding and obfuscation,’’ in Proc. 4th Int. Conf. Inf. Netw.
Secur., Dec. 2016, pp. 1–8.

[6] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman, and E. Y. Wang,
‘‘Bringing virtualization to the x86 architecture with the original VMware
workstation,’’ Acm Trans. Comput. Syst., vol. 30, no. 4, Nov. 2012,
Art. no. 12.

[7] A. Averbuch, M. Kiperberg, and N. Zaidenberg, ‘‘Truly-protect: An effi-
cient VM-based software protection,’’ IEEE Syst. J., vol. 7, no. 3,
pp. 455–466, Sep. 2011.

[8] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, and W. Zheng, ‘‘Enhance
virtual-machine-based code obfuscation security through dynamic byte-
code scheduling,’’ Comput. Secur., vol. 74, pp. 202–220, May 2018.

[9] X. Cheng et al., ‘‘DynOpVm: VM-based software obfuscation with
dynamic opcodemapping,’’ inProc. Int. Conf. Appl. Cryptogr. Netw. Secur.
Cham, Switzerland: Springer, 2019.

[10] Y. Dong, J. Mao, H. Guan, J. Li, and Y. Chen, ‘‘A virtualization solution
for BYODwith dynamic platform context switching,’’ IEEEMicro, vol. 35,
no. 1, pp. 34–43, Jan. 2015.

[11] S. Jansen and A. J. Mcgregor, ‘‘Static virtualization of C source code,’’
Softw.-Pract. Exper., vol. 38, no. 4, pp. 397–416, 2010.

[12] S. Vinco, V. Guarnieri, and F. Fummi, ‘‘Code manipulation for virtual
platform integration,’’ IEEE Trans. Comput., vol. 65, no. 9, pp. 2694–2708,
Sep. 2016.

[13] F. Tip, P. F. Sweeney, and C. Laffra, ‘‘Extracting library-based java appli-
cations,’’ Commun. ACM, vol. 46, no. 8, pp. 35–40, 2003.

[14] Z. Y. Wang and W. M. Wu, ‘‘Technique of javascript code obfuscation
based on control flow tansformations,’’ Appl. Mech. Mater., vols. 519–520,
pp. 391–394, Feb. 2014.

[15] M. Abdelkhalek and A. Shosha, ‘‘JSDES: An automated de-obfuscation
system for malicious JavaScript,’’ in Proc. 12th Int. Conf. Availability, Rel.
Secur., Aug./Sep. 2017, Art. no. 80.

[16] S. Wessel, M. Huber, F. Stumpf, and C. Eckert, ‘‘Improving mobile device
security with operating system-level virtualization,’’ Comput. Secur.,
vol. 52, pp. 207–220, Jul. 2015.

[17] TheWeb. (2016). WebAssembly. [Online]. Available: https://webassembly.
org

[18] S. Hong, J.-C. Kim, S.-M. Moon, J. W. Shin, J. Lee, H.-S. Oh, and
H.-K. Choi, ‘‘Client ahead-of-time compiler for embedded Java plat-
forms,’’ Softw., Pract. Exper., vol. 39, no. 3, pp. 259–278, 2010.

[19] P. Louridas, ‘‘Static code analysis,’’ IEEE Softw., vol. 23, no. 4, pp. 58–61,
Jul. 2006.

[20] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, ‘‘Guided mutation test-
ing for JavaScript Web applications,’’ IEEE Trans. Softw. Eng., vol. 41,
no. 5, pp. 429–444, May 2015.

[21] A. Barua, M. Zulkernine, and K. Weldemariam, ‘‘Protecting Web browser
extensions from JavaScript injection attacks,’’ in Proc. 18th Int. Conf. Eng.
Complex Comput. Syst., Jul. 2013, pp. 188–197.

[22] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, ‘‘ZOZZLE: Fast and
precise in-browser JavaScript malware detection,’’ in Proc. 20th USENIX
Conf. Secur., 2011, p. 3.

[23] H. Liu, C. Sun, Z. Su, Y. Jiang,M. Gu, and J. Sun, ‘‘Stochastic optimization
of program obfuscation,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), May 2017, pp. 221–231.

[24] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, T. Xing, G. Ye,
J. Zhang, and Z. Wang, ‘‘Exploiting dynamic scheduling for VM-based
code obfuscation,’’ in Proc. IEEE Trustcom/BigDataSE/ISPA, Aug. 2016,
pp. 489–496.

[25] Kraken. (2017). Kraken Benchmark Suite. [Online]. Available:
http://krakenbenchmark.mozilla.org/

[26] NWU-IRDETO IoT & Info-Sec Joint Lab. (2017). Js-online. [Online].
Available: http://118.89.236.89:60002/login.jsp

[27] BLACKMIAOOL. (2017). Decent Mess Up. [Online]. Available:
http://blackmiaool.com/decent-messup/playground/

[28] Tiago Serafim source code. (2017). Javascript Obfuscator Tool. [Online].
Available: https://javascriptobfuscator.com/

[29] Typecho. (2017). Obfuscator. [Online]. Available: https://obfuscator.io/
[30] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, ‘‘A generic

approach to automatic deobfuscation of executable code,’’ in Proc. IEEE
Symp. Secur. Privacy, May 2015, pp. 674–691.

[31] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, ‘‘SOK: (State
of) the art of war: Offensive techniques in binary analysis,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 138–157.

[32] B. Yadegari and S. Debray, ‘‘Symbolic execution of obfuscated code,’’
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 732–744.

[33] R. Rolles, ‘‘Unpacking virtualization obfuscators,’’ in Proc. 3rd USENIX
Conf. Offensive Technol., 2009, p. 1.

[34] W. Xu, F. Zhang, and S. Zhu, ‘‘The power of obfuscation techniques in
malicious JavaScript code: A measurement study,’’ in Proc. 7th Int. Conf.
Malicious Unwanted Softw., Oct. 2012, pp. 9–16.

[35] Corbanbrook. (2010). Dsp.js. [Online]. Available: https://github.
com/corbanbrook/dsp.js

[36] P. Fortuna and R. Ribeiro. (2018). Jscrambler, Javascript Application
Security. [Online]. Available: https://jscrambler.com/

[37] CuteSoft Components Inc. (2017). Javascript Obfuscator, Protects
Javascript Code From Reverse Engineering. [Online]. Available:
http://www.javascriptobfuscator.com/

[38] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, ‘‘Control-flow integrity: Precision, security, and performance,’’
Acm Comput. Surv., vol. 50, no. 1, p. 16, 2017.

[39] Shaman Science and Technology. (2013). Jshaman. [Online]. Available:
http://www.jshaman.com/index.html

[40] Z. Tang, M. Li, G. Ye, S. Cao, M. Chen, X. Gong, D. Fang, and Z. Wang,
‘‘VMGuards: A novel virtual machine based code protection system with
VM security as the first class design concern,’’ Appl. Sci., vol. 8, no. 5,
p. 771, 2018.

VOLUME 7, 2019 182723



S. Wang et al.: Leveraging WebAssembly for Numerical JavaScript Code Virtualization

[41] F. Hui, Y. Wu, S. Wang, and H. Yin, ‘‘Multi-stage binary code obfuscation
using improved virtual machine,’’ in Proc. Int. Conf. Inf. Secur., 2011,
pp. 168–181.

[42] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang, ‘‘DIVILAR: Diversifying
intermediate language for anti-repackaging on Android platform,’’ in Proc.
4th ACM Conf. Data Appl. Secur. Privacy, Mar. 2014, pp. 199–210.

[43] W. Chen, L. Xu, G. Li, and Y. Xiang, ‘‘A lightweight virtualization
solution for Android devices,’’ IEEE Trans. Comput., vol. 64, no. 10,
pp. 2741–2751, Oct. 2015.

[44] J. Kinder, ‘‘Towards static analysis of virtualization-obfuscated binaries,’’
in Proc. 19th Work. Conf. Reverse Eng., Oct. 2012, pp. 61–70.

[45] A. Kalysch, J. Götzfried, and T. Müller, ‘‘VMAttack: Deobfuscating
virtualization-based packed binaries,’’ in Proc. 12th Int. Conf. Availability,
Rel. Secur., Aug./Sep. 2017, Art. no. 2.

[46] K. Coogan, G. Lu, and S. Debray, ‘‘Deobfuscation of virtualization-
obfuscated software: A semantics-based approach,’’ in Proc. 18th ACM
Conf. Comput. Commun. Secur., Oct. 2011, pp. 275–284.

SHUAI WANG received the B.E. degree in com-
puter science and technology from the Taiyuan
University of Technology, China, in 2017. He is
currently pursuing the M.S. degree in computer
application technology. His current research inter-
ests include javascript security and deep learning.

GUIXIN YE was born in Tai’an, Shandong, China,
in 1990. He is currently pursuing the Ph.D. degree
in software engineering with Northwest Univer-
sity. His current research interest includes privacy
and software security. He has extensive experience
in authentication and software bug detection.

MENG LI received the B.E. degree in computer
science and Technology from Northwest Univer-
sity, China, in 2017, where she is currently pur-
suing the M.S. degree in computer application
technology. Her current research interests include
wireless sensing and information security.

LU YUAN was born in 1995. She received the
B.S. degree in computer science from Northwest
University, China, in 2017, where she is currently
pursuing the master’s degree in computer science.
Her current research interests include mobile com-
puting and mobile energy efficiency.

ZHANYONG TANG received the Ph.D. degree
in computer software and theory from Northwest
University. He is currently an Associate Professor
with the School of Information Science and Tech-
nology, Northwest University. His current research
interests include network and information security,
software security and protection, localization, and
wireless sensor networks.

HUANTING WANG received the B.E. degree in
computer science and technology from Northwest
University, China, in 2018. He is currently pur-
suing the M.S. degree in computer application
technology. His current research interests include
wireless sensing and information security.

WEI WANG received the B.S. andM.S. degrees in
communication engineering from Xidian Univer-
sity, Xi’an, China, in 2000 and 2004, respectively,
and the Ph.D. degree in information and communi-
cation engineering from Northwestern Polytechni-
cal University, Xi’an, in 2017. Her current research
interests include localization algorithm, the tour
planning of mobile node, and cross technology
communication.

FUWEI WANG was born in Xi’an, Shaanxi,
China, in 1987. He received the Ph.D. degree from
Xidian University, Xi’an, in 2014. He is currently
with Northwest University. His current research
interests include antenna scattering, software secu-
rity, RCS reduction, and metamaterials.

JIE REN was born in 1988. He received the Ph.D.
degree in computer architecture from Northwest
University, China, in 2017. He is currently an
Assistant Professor with the Computer Science
Department, Shaanxi Normal University. His cur-
rent research interests include mobile computing
and performance optimization.

DINGYI FANG received the Ph.D. degree in com-
puter application technology from Northwestern
Polytechnical University, Xi’an, China, in 1983.
His current research interests include mobile com-
puting and distributed computing systems, net-
work and information security, and wireless sensor
networks.

ZHENG WANG received the Ph.D. degree in
computer science from The University of Edin-
burgh, in 2011, under the supervision of Prof.
M. O’Boyle. His current research interests include
parallel compilers, runtime systems, and the appli-
cation of machine learning to tackle the challeng-
ing optimization problems within these areas.

182724 VOLUME 7, 2019


