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ABSTRACT A novel driving behaviour oriented (DBO) trajectory planner and hierarchical analytic
hierarchy process (HAHP) decision maker are presented for intelligent vehicle. Since driving on structural
road should satisfy actuator constraints and improve comfortableness as soon as possible, which strictly
obeys traffic rules other than making traffic mess, it is rather than purely pursuing the shortest route/time.
By analysis traffic rules, theDBO framework is employed to produce trajectories. Tomake trajectory drivable,
cubic B-spline and clothoid curve are modeled to keep continuous curvature, and cubic polynomial curve is
to schedule velocity profile satisfying stability and comfort. To pick out the best trajectory, HAHP decision
maker is developed to evaluate the candidates. The first layer selects optimal paths considering smoothness
and economy, and the second layer selects best trajectory taking smoothness, comfortableness and economy
in account. Moreover,DBO rapidly exploring random tree (RRT) replanner is embedded to ensure algorithm
completeness. Finally, several typical scenarios are designed to verify the real-time and reliability of the
algorithm. The results illustrate that the algorithm has highly real-time and stability evaluated by Statistical
Process Control method as the probability for the peak time less than 0.1s is 100% except three obstacles
avoidance scenario is 59.31% in 1000 cycles. Since the planned trajectory is smooth enough and satisfy the
constraints of the actuator, the mean lateral tracking error is less than 0.2m with 0.5m peak error, and the
mean speed error less than 0.5km/h with 1.5km/h peak error for all scenarios.

INDEX TERMS Autonomous vehicle, trajectory planner, decision maker, urban environment, driving
behavior orient, hierarchical analytic hierarchy process, statistical process control.

NOMENCLATURE
DBO driving behaviour oriented
AHP analytic hierarchy process
HAHP hierarchical analytic hierarchy process
RRT rapidly exploring random tree
kmax maximum curvature of path
Lb length of cubic B-spline control segment
αb included angle of cubic B-spline control seg-

ments
Xc0 the first node for lane change segment
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Xc1 the second node for lane change segment
Xc2 the third node for lane change segment
Xc3 the fourth node for lane change segment
lc1 length of Xc0Xc1
lc2 length of Xc1Xc2
lc3 length of Xc2Xc3
αc included angle between Xc0Xc1 and Xc1Xc2
θc included angle between X2X3 and ox axis
Xt0 the first node for turn segment
Xt1 the second node for turn segment
Xt2 the third node for turn segment
Xt3 the fourth node for turn segment
Xt4 the fifth node for turn segment

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 165365

https://orcid.org/0000-0001-6456-9915
https://orcid.org/0000-0002-8775-0052
https://orcid.org/0000-0002-1673-2658
https://orcid.org/0000-0002-8104-689X
https://orcid.org/0000-0003-0068-226X
https://orcid.org/0000-0002-0609-4226
https://orcid.org/0000-0002-9451-3311


D. Zeng et al.: DBO Trajectory Planning and HAHP Decision-Making for Autonomous Vehicle Driving on Urban Environment

Xt5 the sixth node for turn segment
st1 length of Xt0Xt1
st2 length of Xt1Xt2
st3 length of Xt2Xt3
st4 length of Xt3Xt4
st5 length of Xt4Xt5
at1 quadratic coefficient for clothoid of

Xt1Xt2
bt1 primary coefficient for clothoid of

Xt1Xt2
ct1 constant coefficient for clothoid of

Xt1Xt2
at2 quadratic coefficient for clothoid of

Xt3Xt4
bt2 primary coefficient for clothoid of

Xt3Xt4
ct2 constant coefficient for clothoid of

Xt3Xt4
θt1 heading of X2 node
θt2 heading of X3 node
θt3 heading of X4 node
Rt radius for arc of Xt2Xt3
G target point
{gi}i=0,...,m target set sampled along the lateral of G
m number of sampled target points
dG lateral offset of G
l length of vehicle
w width of vehicle
d distance of two circle center for collision

check
r circle radius for collision check
Sx x pose for Gaussian sampling node
Sy y pose for Gaussian sampling node
xc0 x pose of reference node for Gaussian

sampling
yc0 y pose of reference node for Gaussian

sampling
rs Gaussian sampling radius
θs Gaussian sampling angle
rs0 Gaussian sampling radius offset
θs0 Gaussian sampling angle offset
σr Gaussian radius standard deviation
σθ Gaussian angle standard deviation
rrand Gaussian sampling random radius
θrand Gaussian sampling random angle
vcar0 vehicle start speed
acar0 vehicle start acceleration
vcarg vehicle target speed
acarg vehicle target acceleration
Sg path length
vmax maximum vehicle speed
vcar vehicle speed
aacc vehicle acceleration
amax vehicle maximum acceleration
amin vehicle minimum acceleration
ay vehicle lateral acceleration

aymax vehicle maximum lateral acceleration
vay vehicle speed limited by maximum lat-

eral acceleration
knode node curvature
µ road adhesion coefficient
g gravitational acceleration
vallow allowed speed
1v safety margin of vehicle speed
κB maximum curvature of path
κC minimum curvature of path
κg sum of squared curvature
dκg sum of squared deviation of curvature
loff lateral offset from reference path
ag sum of squared longitude acceleration
dag sum of squared derivation of longitude

acceleration
tg total of time consumption for trajectory

execution
N number of nodes for path
si distance from path node i to node i+1
ai acceleration of path node i
ki curvature of path node i
n offset interval of target point
ti time consumption from path node i to

node i+1
RI random index of Saaty’s fundamental

scale
nc criteria in the same level comparison

value
CR consistency ratio for judgment matrix
CI consistency index
λ eigenvalue
λmax the maximum eigenvalue
W normalized eigenvectors
wa eigenvectors
Astatic factor of optimal paths
B1static factor of path smoothness
B2static factor of path economy
C1static factor of path length
C2static factor of sum of squared path curvature
C3static factor of sum of squared deviation of

path curvature
C4static factor of lateral offset of path
Adynamic factor of optimal trajectory
B1dynamic factor of trajectory smoothness
B2dynamic factor of trajectory comfortableness
B3dynamic factor of trajectory economy
C1dynamic factor of trajectory length
C2dynamic factor of sum of squared trajectory cur-

vature
C3dynamic factor of sum of squared deviation of

trajectory curvature
C4dynamic factor of lateral offset of trajectory
C5dynamic factor of sum of squared longitude accel-

eration
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C6dynamic factor of sum of squared derivation of
longitude acceleration

C7dynamic factor of peak lateral acceleration
C8dynamic factor of total of time consumption
ωj comprehensive weight of index j
bi weight of index i
RIi random index of index i
CIi consistency index of index i
µt mean time for DBO and HAHP process
σt mean square error for DBO and HAHP

process
tmax maximum time forDBO andHAHP pro-

cess
P(t ≤0.1s) the probability for tmax less than 0.1s

I. INTRODUCTION
Lots of attentions have been payed to trajectory planning and
decision making as two key parts of the core technology for
autonomous vehicle [1], [2], which is white hope for alle-
viating the increasingly severe traffic pressure, significantly
improving road traffic safety and reducing emissions [3], [4]
in recently.

As a classical implementation, Dijkstra [5] algorithm,
based on breadth first search strategy, searches for best trajec-
tory by sorting length. In order to speed up algorithm, A∗ [6]
introduces the heuristic value, which estimates the cost from
the current node to target node, into Dijkstra cost function.
And anytime weight A∗ [7] set weight factor ε (≥ 1) to
increase the proportion of heuristic value in the evaluation
function, forcing the search of nodes to be more inclined to
the target node. Different from anytime weight A∗ with fixed
weight factor, anytime repairing A∗ [8] dynamically adjusts
the factor to search for the better path. Since environmental
information is not exactly known,D∗ algorithmwill make use
of the unaffected node information to replan [9]. Due to the
constraints of vehicle steering mechanism, the results of the
above algorithm are not suitable for direct execution. There-
fore, hybrid A∗ [10] and state lattice [11], which the former is
derived by improving node extension and the latter derived by
improving node connection, are the latest development direc-
tions of search algorithms. However, as the configuration is
the discrete grid, the results based on the search method need
further smoothing before the vehicle could track [12]. Dif-
fer from search methods, RRT (Rapidly-Exploring Random
Tree) [13] represents the sampling-based method [14] that is
extended to obtain nodes in continuous feature space. In order
to improve the real-time performance, Bi-RRT (Bidirectional
RRT) is derived as bidirectional expansion from the start node
and target node [15] and H-RRT (Heuristic RRT) employs
heuristic function to extend low cost nodes [16]. However,
the sample-based algorithm always contains a random seed
generator, so it inevitably contains zigzags [12] leading to the
planning results should be postprocessed for smoothing [17].

For generating path making vehicle directly track possible,
unremitting efforts have been made to the implementation of

B-spline [18], Bezier-spline [19], clothoid [20], polynomial
curve [21] and model predictive control (MPC) planner [22],
which could realize curvature continuity. However, since the
above methods are incompleteness [4], it is necessary to
generate lots of trajectories covering the configuration as far
as possible by sampling target set [23]. At the same time,
the optimal trajectory execution is picked out by combining
the requirements of multiple objectives, such as safety [24],
comfort [25], economy [26], etc. Literature [27] constructs
a linear optimal objective function by taking the offset from
path to road boundary, the path curvature and the path length
as indicators. Similarly, literature [28] constructs a linear
preferential function with the indexes of total time, accelera-
tion squared, acceleration increment squared, illegal velocity
and collision safety. Furthermore, literature [29] constructs
linear objective functions from static and dynamic aspects
respectively. However, the linear objective function con-
structed by the existing single weighting method has a large
deviation, and the index calculation covers the subjective and
objective parts, which is easy to generate weight preference
and poor robustness. Therefore, analytic hierarchy process
(AHP) is introduced to realize the quantitative expression of
subjective and objective indexes [30], since AHP is a multiple
criteria decision-making tool, which could be employed to
measure the relative dominance or preference of elements
related to a main objective [31]. As the main advantage of
AHP is that the importance of each element is determined by
using paired comparisons generating better results [32], it is
widely used in decision making for UAV optimal trajectory
[33]–[35] and site rational planning [36]–[38].

Aimed at improving performance of intelligent vehicle
driving on urban environment, DBO trajectory planner and
HAHP decision maker are proposed in this paper. Consid-
ering the vehicle’s non-holonomic constraints and the par-
ticularity of structural road, DBO trajectory planner, which
is embedded DBO RRT path replanner to ensure algorithm
completeness, generates human-like trajectory set with cur-
vature continuous. AndHAHP decision maker is prudentially
developed to pick out the best trajectory since taking smooth-
ness, comfortableness and economy into account. As shown
in Figure 1,DBO path plannermainly takes lane change, turn
left and turn right into account, according to the rules and the
daily behavior of drivers. After collision checking, the safety
paths are packed as candidates delivering to HAHP decision
making. If there are no viable safety path, the DBO RRT path
planner is triggered, as much as possible, to find a viable
trajectory of existence. After candidate path generated, cubic
polynomial curve is employed to schedule velocity profile
for meeting the vehicle stability requirements, actuator con-
straints and comfort conditions. Finally, to pick out the best
trajectory produced by DBO trajectory planner, hierarchical
analytic hierarchy process (HAHP) decisionmaker is pruden-
tially developed to evaluate the candidates. The first layer is
path decision maker, which selects optimal paths consider-
ing smoothness and economy by taking four static indexes
in account. And trajectory decision maker, as the second
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FIGURE 1. Strategy framework.

FIGURE 2. Lane changing control segments.

layer, selects best trajectory considering smoothness, com-
fortableness and economy by taking eight dynamic indexes
in account. The rest of this paper is organized as follows.
In the second section, each part of DBO Trajectory Planer
is discussed in detail. In the third section, it is detailed for-
mulation of HAHP Decision Maker. In the fourth section,
the experiments and results are discussed. In final section, it is
conclusion.

II. DBO TRAJECTORY PLANER
A. DBO PATH PLANER
1) LANE CHANGING
The cubic B-spline curve is employed to generate lane chang-
ing path for curvature continuous. Themaximum curvature of
the path is [39]–[41],

kmax ≥
1
6
sinαb
Lb

(
1− cosαb

8

)−1.5
(1)

where kmax is the maximum curvature of path generated by
cubic B-spline curve, Lb is length of cubic B-spline control
segment, and αb is included angle between the control seg-
ments.

Under the premise of curvature continuity and maximum
curvature controllable, the method of generating lane chang-
ing path with three control segments is simple in construction
and low in computational complexity in practically. As shown
in Fig.2, Xc0Xc1, Xc1Xc2 and Xc2Xc3 are the control segments.

For given start point Xc0 and target point Xc3, the lane chang-
ing path planning problem is,

min Jc =
3∑
i=1

lci

s.t. (xc0, yc0) = (Xc0.x,Xc0.y) ,

(xc3, yc3) = (Xc3.x,Xc3.y) ,

(xc1, yc1) = (xc0 + lc1, y0)
xc2 = xc1 − lc2 cosαc = xc3 − lc3 cos θc,
yc2 = yc1 + lc2 sinαc = yc3 − lc3 sin θc,
lci > 0,

kmax ≥
1
6

sinαc
min (lc1, lc2)

(
1− cosαc

8

)−1.5
kmax ≥

1
6
sin (αc + θc)
min (lc2, lc3)

(
1− cos (αc + θc)

8

)−1.5

(2)

where lc1, lc2, lc3 is the length of Xc0Xc1, Xc1Xc2, Xc2Xc3, αc is
included angle between Xc0Xc1 and Xc1Xc2, and θc is included
angle between Xc2Xc3 and ox axis.

The generated lane changing path is shown in Fig.3(a) and
the curvature in Fig.3(b) (the green spline). As the experimen-
tal vehicle with the maximum turning curvature 0.25/m (the
red lines in Fig.3(b)), the result illustrated the generated path
is smooth enough and continuous to vehicle track.

FIGURE 3. Lane changing path.

2) TURN
In practical, the turn paths should avoid crossing lanes when
leaving and entering lanes for safety reasons. Considering
the inevitable errors when vehicle tracks a path, as shown
in Fig.4, two straight segments (Xt0Xt1 and Xt4Xt5) are added
at the beginning and end of the path to reduce the lateral
error of tracking for ensuring that the vehicle is always in a
lane. Then, two clothoids (Xt1Xt2 and Xt3Xt4) are employed
to smooth the path for curvature continuity. In addition, an arc
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FIGURE 4. Turn control segments.

segment (Xt2Xt3) is constructed to reduces curvature jitter and
space required for turning. For given start point Xt0 and target
point Xt5, the turning path planning problem is,

min Jt =
5∑
i=1

sti

s.t. (xt0, yt0) = (Xt0.x,Xt0.y) ,

(xt5, yt5) = (Xt5.x,Xt5.y) ,
sti > 0, i = 1, . . . , 5
1
Rt
= kt ≤ kmax

(3)

As shown in Fig.4, the supplementary constraints from
start segments to target segments are as follows [40], [41]:

(1) the first segment is a straight line st1,{
xt1 = xt0 + st1
yt1 = yt0

(4)

where st1 is the length of a straight line.
(2) the second segment is a clothoid st2,

at1s2t2 + bt1st2 =
1
R

1
3
at1s3t2 +

1
2
bt1s2t2 = θt1

xt1 +
st2∫
0
cos

(
1
3
at1s3 +

1
2
bt1s2

)
ds = xt2

yt1 +
st2∫
0
sin
(
1
3
at1s3 +

1
2
bt1s2

)
ds = yt2

(5)

where st2 is the length of clothoid, at1, bt1, ct1 is coefficient
of clothoid, Rt is radius of arc and θt1 is heading of Xt2 node.
(3) the third segment is a arc st3,

xt2 = Rtx − Rt sin θt1
yt2 = Rty + Rt cos θt1
xt3 = Rtx − Rt sin θt2
yt3 = Rty + Rt cos θt2
st3 = (θt2 − θt1) · Rt

(6)

where st3 is the length of arc and θt2 is heading of Xt3 node.

(4) the fourth segment is a clothoid st4,

ct2 =
1
R

at2s2t4 + bt2st4 + ct2 = 0
1
3
at2s3t4 +

1
2
bt2s2t4 + ct2st4 + θt2 = θt3

xt3 +
st4∫
0
cos

(
1
3
at2s3 +

1
2
bt2s2 + ct2s+ θt2

)
ds = xt4

yt3 +
st4∫
0
sin
(
1
3
at2s3 +

1
2
bt2s2 + ct2s+ θt2

)
ds = yt4

(7)

where st4 is the length of clothoid, at2, bt2, ct2 is coefficient
of clothoid, Rt is radius of arc, θt3 is heading of Xt4 node.

(5) the fifth segment is a straight line st5,{
xt5 = xt4 + st5 · cos θt3
yt5 = yt4 + st5 · sin θt3

(8)

where st5 is the length of a straight line.
The generated turning path is shown in Fig.5(a) and the

curvature, in Fig.5(b) (the green spline), is smooth enough
and continuous with less continuous direction change which
means tracking the path will make passengers comfortable as
steering wheel’s smooth change.

FIGURE 5. Turning path.

3) PATH SET
After the target point given by decision making, such as G
point shown in Fig.6, the target set {gi}i=0,...,m sampled along
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FIGURE 6. Target set sampling.

the lateral of target point with offset dG, of which prevent
vehicle from crossing solid lanes. All the sampling points
have the same heading and curvature with target point.

In general, the sample for lane changing is limited in
[−5.25m, 5.25m] due to the lane changing behavior is
restricted to an adjacent lane and the standard urban road
width is 3.5m. As shown in Fig.7(a), there are 31 lane chang-
ing paths and the path’s curvature is satisfied the requirements
of continuity and peak constraints as shown in Fig.7(b) (the
rad lines are the peak constraints according to minimum
turning radius of vehicle). Similarly, there are 322 turning
paths as shown in Fig.8(a) and the path’s curvature is satisfied
the requirements of continuity and peak constraints as shown
in Fig.8(b).

FIGURE 7. Lane changing path set.

B. COLLISION CHECKER
After generating paths, it is essential to check the collision
of the set and picking out the safe ones as candidates for

FIGURE 8. Turning path set.

FIGURE 9. Vehicle configuration for collision checking.

planning velocity to form candidate trajectories. To achieve
rapid collision detection, three circles with same radius r are
employed to cover the vehicle, which are along the longitu-
dinal direction as shown in Fig.9. The radius of circle is,(

l − 2d
2

)2

+

(w
2

)2
= r2 (9)

where l is length of vehicle, d is distance of two circle’s
center, r is circle’s radius, w is width of vehicle.
As the environment around the smart vehicle being

described by occupying a grid, in which static obstacles are
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labeled as 1, dynamic obstacles as 2 and no obstacles as 0,
the planned path set, the path is collision-free when the grids
occupied by the circles of vehicle are all 0. As depicted
in Fig.10, there are lots of grid in circles of vehicle are 1,
which means the path is unsafe.

FIGURE 10. Collision checking in grid map.

C. DBO-RRT PATH REPLANNER
Due to DBO path planner is not completeness, an DBO-RRT
path replanner is designed to find the existed path after all
the path set generated by DBO path planer being checked as
unsafe or, even, there is no path generated at all. Consider-
ing the search efficiency to reduce the time consumption of
the algorithm, the DBO-RRT path replanner employs driver
behavior as guide. As shown in Fig.11, the sampling node
locates in the shaded area of a fan, which formed by Gaussian
sampling distribution.

FIGURE 11. Gaussian sampling distribution.

The Gaussian sampling distribution satisfies that,{
Sx = xs0 + rs cos θs
Sy = ys0 + rs sin θs

(10)

where (Sx , Sy) is the sampled node, (xs0, ys0) is reference
node and (rs, θs) is Gaussian parameters, which is defined
as follow, {

rs = σrrrand + rs0
θs = σθθrand + θs0

(11)

where (rs0, θs0) is offset parameter and (σr , σθ ) is Gaussian
standard deviation, and (rrand , θrand ) is random parameters.
Considering the driving behaviour, the Gaussian sampling

zones are design as follows: 1) For lane changing behaviour,
a fixed one is employed to Gaussian sampling. 2) For turning
behaviour, two joint smaller fans are used for Gaussian sam-
pling in first. If there are no effect node, an almost quadrant
is applied.

For lane changing, as shown in Fig.12(a), a fixed fan is the
Gaussian sampling area, with the start point ninit as center and
the distance from start to goal point ngoal as radius. AndGaus-
sian sampling nodes are the red circles shown in Fig.12(b).
Similarly, there are two situations of the Gaussian sampling
for turning: the first one is two joint smaller fans (as the
fan A and fan B shown in Fig.13(a)), and the other is almost
a quadrant (as fan C shown in Fig.13(a)). If the goal point
is not extended within the two joint fans, switch to sample
fan C. The sampling nodes are shown in Fig.13(b).

FIGURE 12. Gaussian sampling for lane changing.

Fig.14(a) shows a scenario that lane changing path gen-
erated by DBO-RRT path replanner as two obstacles too
close to produce path by DBO path planer. As illustrated
in Fig.14(b), the generated path has continuous smooth cur-
vature (the green curve) and meets the constraints of peak
curvature (the red lines).

Similarly, Fig.15(a) shows a scenario that turning path
generated by DBO-RRT path replanner as a circular barrier
formed by accidents at intersections too close to generate path
byDBO path planer. As illustrated in Fig.15(b), the generated
path has continuous smooth curvature (the green curve) and
meets the constraints of peak curvature (the red lines).

D. VELOCITY PLANER
As candidate paths picking out, the velocity planner schedule
speed profile for combining paths to form candidate tra-
jectories, which should take some boundary conditions and
dynamic constraints into account. In general, the boundary
conditions are start speed and acceleration (vcar0, acar0),
target speed and acceleration (vcarg, acarg) and path length Sg.
To satisfy the requirements of actuator stability and passenger
comfort, the dynamic constraints mainly are maximum lon-
gitudinal speed vmax , maximum and minimum lateral accel-
eration (amin, amax) and maximum lateral acceleration aymax
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FIGURE 13. Gaussian sampling for turning.

FIGURE 14. Lane changing path generated by DBO-RRT path replanner.

as defined as follows,
vcar ≤ vmax

amin ≤ v̇car = aacc ≤ amax∣∣ay∣∣ = v2ay |knode| ≤ aymax = 0.4µg

(12)

FIGURE 15. Turning path generated by DBO-RRT path replanner.

FIGURE 16. Curvature profile of a typical path.

where vcar is vehicle speed, aacc is vehicle acceleration, ay is
lateral acceleration, vay is vehicle speed limited by maximum
lateral acceleration, knode is curvature of node, µ is road
adhesion coefficient, g is gravitational acceleration.
Taking the uncertainty of actuators into account, a certain

safety margin 1v is involved in the speed allowed vallow as,

vallow = min
{
vmax, vay

}
−1v (13)
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FIGURE 17. Velocity profile.

Due to the curvature of path being a critic constraint
for velocity planning, it is necessary and convenient to
use extreme curvature to guide speed planning. As shown
in Fig.16, both typical lane changing and turning path have
same trend of maximum andminimum curvature (κB and κC ).
For reducing time consumption and improving comfort, it is
fruitful to keep the vehicle running at a constant speed
as far as possible. Finally, the velocity profile consists of
three segments, as depicted in Fig.17, that start segment
(AB curve) takes path’s maximum curvature and initial speed
into account, constant segment (BC line) keeps constant
allowable velocity and terminal segment (CD curve) adjusts
velocity according to target speed.

III. HAHP DECISION MAKER
A. EVALUATION INDEXES

TABLE 1. Compute formulas for evaluation indexes.

where N is number of nodes for path, si is distance from path
node i to node i+1, ai is acceleration for path node i, κi is
curvature for path node i, n is offset interval for target point,
ti is time consumption from path node i to node i+1.
Since the path expresses the state change in space without

state in time, the indexes extracted from the path performance
are only four static criteria listed below:
(1) Path length Sg;
(2) Sum of curvature squared κg;
(3) Sum of squared derivation of curvature dκg;
(4) Lateral offset from reference path loff .

For a complete trajectory, which contains spatial-temporal
state changes, the indexes extracted are four more dynamic
criteria as follows:

(5) Sum of longitude acceleration squared ag;

FIGURE 18. Hierarchical AHP decision maker.

(6) Sum of squared derivation of longitude accelera-
tion dag;

(7) Peak lateral acceleration aymax ;
(8) Total of time consumed for trajectory execution tg.
All the compute formulas for evaluation criteria are listed

in Table 1.

B. HIERARCHICAL AHP MODEL
1) MODEL DESIGN
Although collision detection removes some unsafe paths,
the rest paths are still substantial as path DBO path plan-
ning generating lots of path. It is extremely time consuming
and pointless to make decision for best trajectory from all
candidate trajectories, which generated by planning velocity
profiles for all rest paths. Therefore, a hierarchical AHP
model for decision making is designed as shown in Figure.18.
In the first step is path decision maker, which selects optimal
paths in moderation from lots of candidate paths generated
by DBO path planer, considering the criterion of smoothness
and economy by taking the static indexes in account, mainly
including path length Sg, sum of curvature squared κg, sum
of squared derivation of curvature dκg and lateral offset
from reference path loff . After processing by velocity planer,
the selected optimal paths combining with velocity profiles
form candidate trajectories. Since candidate trajectories are

VOLUME 7, 2019 165373



D. Zeng et al.: DBO Trajectory Planning and HAHP Decision-Making for Autonomous Vehicle Driving on Urban Environment

generated by scheduling velocity for path, there are four
new dynamic indicators employed to the trajectory decision
maker, compared with path decision maker with only four
static indicators. Therefore, the smoothness and economy
should be recalculated as more indicators involved. Finally,
trajectory decision maker selects optimal trajectory from lots
of candidate trajectories, considering the criterion of smooth-
ness, comfortableness and economy by taking the dynamic
indexes in account, mainly including path length Sg, sum of
curvature squared κg, sum of squared derivation of curvature
dκg, lateral offset from reference path loff , sum of longitude
acceleration squared ag, sum of squared derivation of lon-
gitude acceleration dag, peak lateral acceleration aymax and
total of time consumed for trajectory execution tg. Where
Astatic is factor of optimal paths, B1static is factor of path
smoothness, B2static is factor of path economy, C1static is
factor of path length, C2static is factor of sum of squared path
curvature,C3static is factor of sum of squared deviation of path
curvature, C4static is factor of lateral offset of path, Adynamic
is factor of optimal trajectory, B1dynamic is factor of trajectory
smoothness, B2dynamic is factor of trajectory comfortableness,
B3dynamic is factor of trajectory economy, C1dynamic is factor
of trajectory length, C2dynamic is factor of sum of squared
trajectory curvature, C3dynamic is factor of sum of squared
deviation of trajectory curvature, C4dynamic is factor of lateral
offset of trajectory, C5dynamic is factor of sum of squared
longitude acceleration, C6dynamic is factor of sum of squared
derivation of longitude acceleration, C7dynamic is factor of
peak lateral acceleration, C8dynamic is factor of total of time
consumption.

2) JUDGMENTS MATRIX AND CONSISTENCY CHECK
For each level, a pairwise comparison matrix is obtained
based on the decisionmaker’s judgments. As listed in Table 2,
B1,.., BN is current layer factors, N is number of criterion of
current layer, Ai is factor of criterion for the previous layer,
bjk is the Saaty’s fundamental scale of Bj over Bk to Ai. The
nc criteria in the same level are compared using Saaty’s 1-to-
9 scale as listed in Table 3. The larger the ratio of two factors,
the more important the former factor is relative to the latter
factor. In addition, the ratio of importance between the two
factors is reciprocal to each other, where bjk = 1/bkj, bjj = 1,
j, k = 1,. . . , N . The RI (Random Index) is an experimental
value which depends on nc.

TABLE 2. Judgments matrix B.

The CR (Consistency Ratio) of matrix B is used to check
judgment inconsistencies. CR = CI/RI, where CI = (λmax −
N ) / (N − 1) and λmax is the maximal eigenvalue of judg-
ments matrix B. Given the matrix B and eigenvalue λ, the

TABLE 3. Saaty’s fundamental scale.

TABLE 4. Judgments matrix Cstatic for path smoothness B1static .

eigenvectors wa satisfy the relationship that B · wa = λ · wa.
The normalized eigenvectors W , according to the maximum
eigenvalue λmax , is the weight vector for AHP criteria or
indexes.

As an acceptable consistency of the judgment matrix,
CR < 0.10, which means the weights of decision maker are
reasonable.

3) SINGLE LAYER EVALUATION
For path decision maker, the criteria are smoothness B1static
and economy B2static. Since the smoothness of the path
directly affects the ride smoothness of vehicles, the smoother
the path is, the more the actual tracked path conforms to the
desired path. Therefore, the smoothness of the path is more
important than the economy. The ratio of the criteria is set as:

B1static : B2static = 3 : 1 = 0.75 : 0.25 (14)

Down to the indexes layer as shown in Fig.18(a), a judg-
ment matrix Cstatic is firstly established to evaluate the
smoothness B1static of the path, as the smaller the change
in curvature, the smoother the path. The sum of curvature
squared κg represents the total of steering angle, the sum
of squared derivation of curvature dκg illustrates the total
amount of change in steering, and the lateral offset from ref-
erence path loff affects the lateral offset of the reference path.
The above three factors have obvious effects on smoothness
relative to path length Sg, and the importance relationship
of the four factors is: sum of curvature squared C2static >

sum of squared derivation of curvature C3static > lateral
offset from reference path C4static > path length C1static. The
judgment matrix and corresponding calculation results are
listed in Table 4. TheCR (Consistency Ratio) of matrixCstatic
for path smoothness B1static is 0.0433 < 0.10, which means
the sorting is reasonable.
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TABLE 5. Judgments matrix Cstatic for path smoothness B2static .

TABLE 6. Judgments matrix Bdynamic for optimal trajectory Adynamic .

As shown in Fig.18(a), a judgment matrix Cstatic is sec-
ondly established to evaluate the economy B2static of the path,
whichmeans the shorter the path length, the more economical
it is. The path length loff is directly related to the mileage
traveled by the vehicle, so it has the greatest impact force.
Secondly, if the sum of curvature squared κg is larger, the path
is more curved, whichmeans the path to be executed is longer.
It can be considered that grounding between them reduces
economy. And it is considered that the sum of squared deriva-
tion of curvature dκg and the lateral offset from reference
path loff have minimal influence on the economy. Finally,
ranging the importance of the four factors is: path length
C1static > sum of curvature squared C2static > lateral offset
from reference path C4static > sum of squared derivation of
curvature C3static. The judgment matrix and corresponding
calculation results are listed in Table 5. The CR of matrix
Cstatic for path smoothness B2static is 0.0189 < 0.10, which
means the sorting is reasonable.

For trajectory decision maker, the criteria are smoothness
B1dynamic, comfortableness B2dynamic and economy B3dynamic.
The smoothness of the trajectory is mainly related to the
curvature factor, which means it is directly related to the
steering radius of the vehicle when vehicle tracks trajectory,
and then it will affect the lateral force on the wheel and the
smoothness of the steering wheel, further on, it challenges
safety of vehicle. Therefore, smoothness is the most impor-
tant over the other factors. Secondly, it is considered that the
comfort of passengers should be given priority to by people,
and be ranked before the cost. Therefore, the importance of
the three performances is as follows: smoothness B1dynamic >
comfortableness B2dynamic > economy B3dynamic. And the
judgment matrix is listed in Table 6. The CR = 0.0189 <
0.10 means the rank is reasonable.

Then, the importance of each indexes in the indexes layer
is analyzed around the three criteria of the trajectory. The
first is smoothness B1dynamic, which is like the B1static in
path decision maker. The sum of curvature squared κg, sum
of squared derivation of curvature dκg and lateral offset
from reference path loff are the main factors affecting the
smoothness of the path, and the second is the peak lat-
eral acceleration aymax mainly caused by steering the front
wheel of the vehicle. In addition, for the same lateral offset

from reference path loff , the longer the path length Sg is,
the smoother the path is. For total of time consumed for
trajectory execution tg, sum of longitude acceleration squared
ag and sum of squared derivation of longitude acceleration
dag, it is considered that these three factors have little influ-
ence on the smoothness. Finally, the importance rank of eight
indexes is: sum of curvature squared C2dynamic > sum of
squared derivation of curvature C3dynamic > lateral offset
from reference path C4dynamic > peak lateral acceleration
C8dynamic > path length C1dynamic > total of time consumed
for trajectory execution C5dynamic = sum of longitude accel-
eration squared C6dynamic = sum of squared derivation of
longitude acceleration C7dynamic. And the judgment matrix is
listed in Table 7. The CR = 0.0313 < 0.10 means the rank is
sound.

The comfortableness of riding is mainly determined by the
human body’s response to the vibration of the vehicle. The
amplitude, frequency, position, direction and time of vehicle
vibration will affect the subjective perception of human body.
In general, the influence of vibration on human comfort and
health can be directly evaluated by the mean root value of
total weighted acceleration. Therefore, in the above eight
evaluation indexes, acceleration-related indexes will play a
major role in influencing comfort. Secondly, curvature corre-
lation index and lateral offset from reference path loff will
have an impact on the lateral motion of vehicles. In this
paper, the influence of these three indexes is secondary to
that of acceleration correlation indexes. In lane changing
and steering conditions, the travel time and path length are
usually not in the same order of magnitude as the uncom-
fortable time and path length. Therefore, it considers that
these two indexes have little influence. Finally, the impor-
tance sort of the eight indicators is: the importance rank
of eight indexes is: sum of longitude acceleration squared
C6dynamic > peak lateral acceleration C8dynamic > sum of
squared derivation of longitude acceleration C7dynamic > sum
of curvature squared C2dynamic > sum of squared derivation
of curvature C3dynamic > lateral offset from reference path
C4dynamic > total of time consumed for trajectory execution
C5dynamic > path length C1dynamic. And the judgment matrix
is listed in Table 8. TheCR= 0.0361< 0.10means the rank is
sound.

For evaluating the economy of the trajectory, driving
distance and total time are the most important factors affect-
ing energy consumption. Since vehicle acceleration, decel-
eration, braking and other working conditions will also
affect energy consumption, the influence degree of indica-
tors related to acceleration is only second to distance and
time. In general, the shorter the distance between the target
point and the reference target point, the shorter the calculated
path length is, so the influence is greater than the curvature
related factors. The importance of eight indexes is: path
length C1dynamic > total of time consumed for trajectory
execution C5dynamic > sum of longitude acceleration squared
C6dynamic > sum of squared derivation of longitude accelera-
tion C7dynamic > peak lateral acceleration C8dynamic > lateral
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TABLE 7. Judgments matrix Cdynamic for trajectory smoothness B1dynamic .

TABLE 8. Judgments matrix Cdynamic for trajectory comfortableness B2dynamic .

TABLE 9. Judgments matrix Cdynamic for Trajectory Economy B3dynamic .

offset from reference path C4dynamic > sum of curvature
squared C2dynamic = sum of squared derivation of curvature
C3dynamic. And the judgment matrix is listed in Table 9. The
CR = 0.0375 < 0.10 means the rank is valid.

4) COMPREHENSIVE EVALUATION
The weights of all elements in the criterion layer and each
element in the indexes layer can be calculated according to
the results of single layer evaluation.

It is assumption that for the criteria layer B1, . . . , Bm,
the calculated weight is b1, . . . , bm. And the corresponding
indexes layer of the element Bi is C1, . . . , Cn, the calculated
weight is ci1, . . . , c

i
n, so the comprehensive weight of index Cj

can be obtained as follows:

ωj =

m∑
i=1

bicij (15)

For path decision maker, the comprehensive weight of
indexes is listed in Table 10 and the comprehensive weight
of indexes is listed in Table 11 for trajectory decision maker.

The CR (Consistency Ratio) for comprehensive weight of
indexes is:

CR =
CI
RI
=

m∑
i=1
(bi · CIi)

m∑
i=1
(bi · RIi)

(16)
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TABLE 10. Comprehensive weight of indexes for path.

TABLE 11. Comprehensive weight of indexes for trajectory.

TABLE 12. Consistency of the judgment matrix for path.

TABLE 13. Comprehensive weight of indexes for trajectory.

where, CIi and RIi are the consistency index and random
consistency index of the indexes layer corresponding to the
element coefficient bi of the criteria layer respectively.

The results of path decision maker and trajectory decision
maker are listed in Table 12 and Table 13, respectively. The
CR of path decision maker and trajectory decision maker are
less than 0.1, which indicates that the HAHP decision maker
conforms to the design requirements.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To make the simulation test closer to the real situation,
a joint simulation system based on visual studio 2013, Mat-
lab/Simulink, Carsim and Prescan in windows10 is designed,
as shown in Fig.19, of which the processor is 1.80 GHz
Intel R© CoreTMi5-8250U with 7.86GB of memory.

The real vehicle platform is developed based on E50 elec-
tric vehicle with drive-by-wire, brake-by-wire and steer-
by-wire, which embedded RT3003/PDL system as high
accuracy positioning navigator and ARK-3500 as code
runner. As shown in Fig.20, a hierarchical motion con-
troller [42], [43] is developed to track reference trajectory

FIGURE 19. Joint simulation system.

FIGURE 20. Real vehicle platform.

TABLE 14. Key parameters for testing.

generated by HAHP decision maker and DBO trajectory
planner. The key parameters for testing are listed in Table 14.

A. SIMULATION TESTS
To verify the real-time performance and safety of the algo-
rithm, seven typical scenarios (Scenario A to Scenario G) of
lane changing for obstacle avoidance and turn are designed,
and the mean time consumption of 1000 cycles in each sce-
nario are employed as evaluation index.
Scenario A is a left lane changing in double drive lane

as avoiding a static obstacle shown in Fig.21. The vehicle
goes straight with 32 km/h and a static obstacle (the black
box in Fig.21(a)) is located 16 m in the front of the vehicle
direction lane, which compels the vehicle changing left to
avoid collision. The blue stars in Fig.21(a) are safety nodes
of 25 candidate path set after collision checking. After elim-
inating the 19 unsafe paths by collision detection, candidate
trajectory set could be obtained by velocity planning for the

VOLUME 7, 2019 165377



D. Zeng et al.: DBO Trajectory Planning and HAHP Decision-Making for Autonomous Vehicle Driving on Urban Environment

FIGURE 21. Scenario A: single obstacle avoidance in double lane.

remaining paths as the 6 blue curves shown in Fig.21(b). Then
the green curve in Fig.21(b) is best trajectory proceeding
out of HAHP decision maker. Finally, the time consumption
of 1000 circles test is depicted in Fig.21(c), where the mean-
time is 0.064s (≤0.1s) and the maximum time is 0.0907s
(≤0.1s).

Expand to more general, Scenario B is a left lane changing
in double drive lane causes as avoiding two static obstacles
shown in Fig.22. The vehicle goes straight with 37 km/h and
two static obstacles (the black box in Fig.22(a)) is located
10 m and 25m in the front of the vehicle, which compels the
vehicle changing left lane to avoid obstacles. The blue stars
in Fig.22(a) are safety nodes of 25 path set after collision
checking. After deleting the 20 unsafe paths, the blue curves
shown in Fig.22(b) are 5 candidate trajectories and the green
one is best trajectory, which is derived from HAHP decision
maker. As shown in Fig.22(c), the meantime of 1000 circles
is 0.071s and the maximum is 0.0937s, which has 0.009s
and 0.003s rising up compared with Scenario A since the
Scenario B is more complicated. However, both meantime
and maximum are under 0.1s level.

As depicted in Fig.23, Scenario C is a scenario of a lane
changing in three drive lane. The vehicle goes straight with
15 km/h in middle line and three static obstacles (the black
box in Fig.23(a)) is located 6 m 15m and 25m in the front
of the vehicle, which compels the vehicle changing right lane
to avoid obstacles. After collision checking for 25 candidate

FIGURE 22. Scenario B: double obstacle avoidance in double lane.

path set, the safety nodes are the blue stars in Fig.23(a). Then,
there are 4 safety paths for planning velocity to generate
candidate trajectories as the blue splines shown in Fig.23(b).
Finally, the green trajectory in Fig.23(b) is the best trajectory,
which is produced by HAHP decision maker. As depicted
in Fig.23(c), the mean time for 1000 circles is 0.098s and
the max time is 0.1297s, which has 0.027s and 0.036s rising
compared with Scenario B since the Scenario C is more
complex. However, the meantime is under 0.1s level.

As depicted in Fig.23, Scenario D is a scenario of turn
left for two-lane intersection in both directions. At a speed
of 15km/h, the vehicle prepares to turn left in the right lane.
The target position is the left-turn lane with a longitudinal
position of 18m and a transverse position of −15m, and
the target speed is 13km/h. Although there are no obstacles,
the planned path should avoid overlap with the lane lines,
therefore the lane lines are virtual obstacles. After collision
checking for 20 candidate path set, the safety nodes are the
blue stars in Fig.24(a). Then, there are 3 safety paths for
planning velocity to generate candidate trajectories as the
blue splines shown in Fig.24(b). Finally, the green trajectory
in Fig.24(b) is the best trajectory, which is selected out by
HAHP decision maker. As depicted in Fig.24(c), the mean
time for 1000 circles is 0.087s and the max time is 0.0974s,
where both meantime and max time are under 0.1s level.
Scenario E is a scenario of turn left for two-lane inter-

section in both directions with a static obstacle. Except for
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FIGURE 23. Scenario C: three obstacle avoidance in three lanes.

adding an obstacle, other conditions are set to the same
as Scenario D. Like Fig.24(a), after collision checking for
20 candidate path set, the safety nodes are the blue stars
in Fig.25(a). Then, there are and only are one safety path
for planning velocity to generate candidate trajectories as the
green spline shown in Fig.25(b). Finally, the green trajectory
is the best trajectory, which is picked out by HAHP decision
maker. As depicted in Fig.25(c), the mean time for 1000 cir-
cles is 0.076s and the max time is 0.0918s, which has 0.011s
and 0.0056s reducing compared with Scenario D, since the
Scenario E has and only has one path for planning velocity.
However, both meantime and max time are under 0.1s level.

As shown in Fig.26, Scenario F is a scenario of turn right
for two-lane intersection in both directions. At a speed of
15km/h, the vehicle prepares to turn right in the right lane.
The target position is the right-turn lane with a longitudinal
position of 11m and a transverse position of 10m, and the
target speed is 15km/h. Similar with Scenario D, the planned
path should avoid overlap with the lane lines, therefore the
lane lines are virtual obstacles. After collision checking for
20 candidate path set, the safety nodes are the blue stars
in Fig.26(a). Then, there are 3 safety paths for planning veloc-
ity to generate candidate trajectories as the blue splines shown
in Fig.26(b). Finally, the green trajectory in Fig.26(b) is the
best trajectory, which is sorted out by HAHP decision maker.
As depicted in Fig.26(c), the mean time for 1000 circles is

FIGURE 24. Scenario D: no obstacle avoidance for turning left.

0.065s and the max time is 0.0928s, where both meantime
and max time are under 0.1s level.
Scenario G is a scenario of turn right for two-lane inter-

section in both directions with a static obstacle. Except for
adding an obstacle, other conditions are set to the same as
Scenario F. Similar with Fig.26(a), after collision checking
for 20 candidate path set, the safety nodes are the blue stars
in Fig.27(a). Then, there are and only are one safety path
for planning velocity to generate candidate trajectories as the
green spline shown in Fig.27(b). Finally, the green trajectory
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FIGURE 25. Scenario E: single obstacle avoidance for turning left.

is the best trajectory, which is stemmed from HAHP decision
maker. As depicted in Fig.27(c), the mean time for 1000 cir-
cles is 0.063s and the max time is 0.0958s, which has 0.002s
reducing of mean time and 0.0039s rising up of max time
compared with Scenario F, since the Scenario G has and only
has one path for planning velocity. However, both meantime
and max time are under 0.1s level.

To further evaluate the stability of the design algorithm, it is
employed three sigma(3σ ) criterion and six sigma(6σ ) cri-
terion, which are prevalent criteria for process improvement

FIGURE 26. Scenario F: no obstacle avoidance for turning right.

in Statistical Process Control (SPC) [44]–[46]. In business
applications, three sigma(3σ )/six sigma(6σ ) refer to pro-
cesses that operate efficiently and stably and produce items
of the highest quality. In SPC, there is anUpper Control Limit
(UCL) and a Lower Control Limit (LCL) set. The UCL is set
three sigma/six sigma levels above the mean and the LCL is
set at three sigma/six sigma levels below mean. As shown
in Fig.28, If the mass characteristic x is normally distributed,
99.73% of the mass characteristic is included in the 3σ range
and 99.9999998% in the 6σ range.
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FIGURE 27. Scenario G: single obstacle avoidance for turning right.

The key statistical data and criteria for Scenario A-G are
listed in Table 15. All themean time (µt ) are less than 0.1s and
mean square error (σt ) are less than 0.01s. The max time tmax
is less than 0.1s except Scenario C is 0.1249s by employed
three sigma(3σ ) criterion. Similarly, the max time tmax is
less than 0.1s except Scenario C is 0.1518s by employed six
sigma(6σ ) criterion. Finally, the probability P(t ≤0.1s) for
the max time tmax less than 0.1s criterion is 100% except
Scenario C is 59.31%, which the calculation of P(t ≤0.1s)
is P(t ≤0.1s) = 8((0.1−µt )/σt ). The result illustrates that

FIGURE 28. 3σ and 6σ for normal distribution.

TABLE 15. Key Data and Criteria for Scenario A-G.

FIGURE 29. Real test zone.

TABLE 16. Key Errors of Scenario H-L.

the strategy of HAHP decision maker and DBO trajectory
planner has high stability, although the performance of three
obstacle avoidance in three lanes should be further improved.

B. REAL TESTS
All the real tests are completed in south of the Proving
Ground for ICVs of Tongji University as depicted in Fig.29.
According to joint simulation scenarios, 5 kinds of real vehi-
cle test environments have been designed including 3 lane
changing scenarios (Scenario H to Scenario J), 1 turn left
scenario (Scenario K) and 1 turn right scenario (Scenario L).

As shown in Fig.30(a), the vehicle in Scenario H is forced
to change to the left lane since the current lane has been
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FIGURE 30. Scenario H: single obstacles avoidance in double lane.

occupied by a static obstacle located in position of 16m with
1.6 width. In Fig.30(b), the red part is the real-time position-
ing information read from RTK3003, the solid blue line and

FIGURE 31. Scenario I: double obstacles avoidance in double lane.

blue box are the planning module respectively to obtain the
planning result and vehicle shape according to the real-time
position, which the best trajectory is derived from HAHP
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FIGURE 32. Scenario J: three obstacles avoidance in three lane.

decision maker. Both planned and real positions illustrated
the vehicle could avoid obstacle. As the starting and target
speeds given by the decision maker are both 25km/h, which

FIGURE 33. Scenario K: no obstacle avoidance for turning left.

is higher than the allowable speed of curvature in lane change,
the planned velocity will be reduced to 23.47km/h, then kept
the speed until closely changed to lift line, and accelerated
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FIGURE 34. Scenario L: no obstacle avoidance for turning right.

to 25km/h as the blue curve shown in Fig.30(c). The lateral
error is in [−0.0302, 0.2054]m and speed error in [−1.074,
1.488]km/h in Fig.30(d) and Fig.30(e), which means that the

planned trajectory is smooth enough and satisfy the con-
straints of the actuator for keeping the performance of vehicle
tracker.

Avoiding two obstacles in two drive lane scenario is shown
in Fig.31(a). There is an obstacle with 1.6m width located in
22m in the front of vehicle at the current lane, and an obstacle
with 1.8m width at the longitudinal distance 3m from the left
lane. Fig.31(b) means the vehicle could avoid the two obsta-
cles, which tracks the best trajectory stemmed from HAHP
decision maker. The initial vehicle speed is 22km/h and the
target vehicle speed is 20km/h. Since the planner has taken
the constraints of the actuator into account, the lateral error is
[−0.164, 0.079]m and speed error is [−0.43, 1.493]km/h.
Scenario J is designed for testing avoiding three obstacles

in three drive lane as shown in Fig.32(a). There is a 4.8m
length and 1.2m width obstacle at 20m longitudinal distance
from the starting point of the current lane, an obstacle 4m
length and 1.6m width at 5m longitudinal distance from the
starting point of the right lane, and an obstacle 4.5m length
and 1.6mwidth at 10m longitudinal distance from the starting
point of the left lane (similar to the failed vehicle parked
on the lane). Both planned and real pose are no intersection
with obstructions and solid lane lines depicted in Fig.32(c),
whichmeans the best trajectory picked out byHAHP decision
maker could successfully avoid obstacles. Meanwhile, the
lateral error is [−0.142, 0.186]m and speed error is [−1.01,
0.85]km/h since the planned trajectory is smooth enough and
satisfy the constraints of the actuator for vehicle tracking.
Scenario K in Fig.33 and Scenario L in Fig.34 are respec-

tively no obstacle avoidance for turning left and right.
As shown in Fig.33(b) and Fig.34(b), the solid blue line and
blue box are the planning module respectively to obtain the
planning result and vehicle shape according to the real-time
position. Both planned and real positions are in one lane
space, which illustrates the best trajectory selected out by
HAHP decision maker could successfully turn left and right
without collision. The lateral error of turning left is [−0.1745,
0.4481]m and the lateral error of turning right is [−0.272,
0.1335]m, and, respectively, speed error is [−0.33, 0.35]km/h
and [−0.24, 0.38]km/h, which means that the planned tra-
jectory is smooth enough and satisfy the constraints of the
actuator for vehicle tracking.

V. CONCLUSION
For improving performance of intelligent vehicle driving
on urban environment, a novel driving behaviour oriented
(DBO) trajectory planner and hierarchical analytic hierarchy
process (HAHP) decision maker are proposed in this paper.

Firstly, sparking in the traffic rules, the DBO framework is
designed to plan safety lane changing and turning trajectory
set. In order to make trajectory drivable, cubic B-spline and
clothoid curve are parameterized to generate smooth path
with continuous curvature, and cubic polynomial curve is
employed to schedule velocity profile taking vehicle stability
requirements, actuator constraints and comfort conditions
into account.
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Secondly, in order to pick out the best trajectory, HAHP
decisionmaker is developed to evaluate the candidates. As the
top layer, path decisionmaker selects optimal paths according
to smoothness and economy by taking four static indexes in
account. Then, trajectory decision maker, as the second layer,
picks out best trajectory considering smoothness, comfort-
ableness and economy by taking eight dynamic indexes in
account.

Thirdly, it is embedded DBO RRT path replanner to make
algorithm completeness. As guiding by the driving behavior,
normal random, goal-bias and Gaussian sampling strategies
are fused to reduce the randomness of node’s extension to
save the computation time.

Finally, both seven simulation and five real typical scenar-
ios are designed to verify the performance of the algorithm.

Evaluated by three sigma(3σ ) criterion and six sigma(6σ )
criterion, the planner and maker have highly real-time per-
formance and stability. Meanwhile, the final trajectory could
address avoiding obstacles and actuator constraints as practi-
cal lateral and speed error for all scenarios.

Future work will focus on improving real time perfor-
mance. And, the other research topic is to explore and build
dynamic validation scenarios for matching the actual situ-
ation. Moreover, considering the driver’s driving behavior
is closely associated with the driving style, it is fruitful
to develop multiple driving style DBO path planner. Fur-
thermore, it would be worth considering the uncertainty of
perception and actuators.
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