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ABSTRACT Accurate estimation of lithium battery state of charge is very important for ensuring the
operation of battery management system, realizing the energy management strategy of electric vehicles,
reducing mileage anxiety and promoting the sustainable development of electric vehicles. In this paper,
several studies are carried out for state of charge estimation of lithium-ion battery: (1) Aiming at the problem
of parameter identification of battery model, an optimal identification method of model parameters based on
ant lion optimization algorithm is proposed. (2) An adaptive weighting Cubature particle filter (AWCPF)
method is proposed for SOC estimation. The proposed AWCPF method is based on particle filter (PF)
algorithm, while the Cubature Kalman filter (CKF) algorithm is utilized to generate the proposal distribution
for PF algorithm, which can retrain the particles degradation problem in PF algorithm. To solve the problem
that the CKF algorithm is sensitive to noise, comparing with fixed sigma point weights of the conventional
CKF, the weights of sigma points are adaptively adjusted based on state and measurement residual vectors.
Furthermore, the process noise and measurement noise are estimated iterative. In this paper, experimental
verification of different initial values of SOC under various working conditions is carried out. The results
show that the proposed AWCPF algorithm based SOC estimation method has high estimation accuracy,
strong robustness, fast convergence speed, with the maximum SOC estimation error is less than 1%.

INDEX TERMS Adaptive weighting factors, cubature particle filter, lithium battery, state of charge.

I. INTRODUCTION
With the rapid development of electric vehicles, and as the
core component of the energy storage system in electric vehi-
cles, power batteries have become a bottleneck that restricts
the development of electric vehicles [1], [2]. In recent years,
lithium-ion power batteries have been extensively employed
in various electric vehicles due to their high energy density,
long service life and lack of memory effect. To satisfy the
power demand of electric vehicles, a certain number of sin-
gle cells are usually packed in series and parallel to over-
come the disadvantages of single cells in terms of working
voltage, energy density and capacity [3]–[6]. In addition,
the instability and flammability of liquid electrolytes will
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cause potential safety hazards for power batteries in abuse
conditions, such as overcharge and overdischarge. Therefore,
a battery management system (BMS) has an important role in
improving the performance of power batteries and ensuring
the safety and reliability operation of batteries. As one of
the core functions of a BMS, accurate state of charge (SOC)
estimation is helpful not only for improving the efficiency
of energy management and the cycle life of power battery,
but also for reducing the utilization cost and facilitating the
development of electric vehicles [7]–[9]. However, the per-
formance of power batteries substantially depends on their
working environment and aging degree, which cannot be
accurately controlled.

The SOC cannot be directly measured and has to be
estimated based on several measured signals, such as voltage,
current and temperature. Many SOC estimation methods
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have been proposed by researchers. The coulomb count-
ing method is the most prevalent and simple method of
SOC estimation; however, it has some shortcomings. As an
open-loop calculation method, the coulomb counting method
lacks a self-correction link. The uncertainty disturbance in
practical application and the deviation of the initial SOC
value will generate errors that gradually accumulate with the
running time, which is adverse to the estimation accuracy
[10]–[12]. Another commonly employed method is the
data-driven method, which is an intelligent algorithm for
identifying the relationship between the input and the output,
including the neural network, support vector machine, and
fuzzy inference system [13]–[16]. However, shortages exist
in the data-driven method, such as the larger amount of data
scales that are required for the training period, and the high
computer cost due to the complicated structure of intelligent
algorithms, which are not suitable for practical application.
The third general SoC estimation method is based on the
filter and battery model. The most commonly employed filter
estimation algorithm is the Kalman filter algorithms, which
is based on the state space equation and integrates the Ah
counting method into the equations. The Extended Kalman
filter (EKF) is one kind of Kalman filter algorithm that
employs a nonlinear system and is based on the first-order
Taylor expansion of traditional nonlinear functions. The
EKF has a simple structure that is easily implemented.
However, the EKF has several distinct shortcomings: (1) If
the system has strong nonlinearity, the linearization process
will introduce large truncation error; (2) When the nonlin-
ear function is not differentiable, the EKF is not workable
[17]–[20]. To overcome the limitations of the EKF,
an unscented Kalman filter (UKF) is proposed. The UKF
uses a series of sample points to approximate the mean and
covariance of the posterior probability density function of the
state vector. The UKF does not approximate the nonlinear
function, nor does it need to approximate the Jacobianmatrix.
Compared with the EKF, the UKF has the advantages of
simple implementation, high filtering accuracy and excel-
lent convergence. However, the UKF requires precise prior
knowledge of system noise, which is difficult to obtain in
practice, since the application environment is always dynamic
and uncertain. When the statistical characteristics of mea-
surement noise are uncertain, the filtering accuracy will
decrease or even diverge [21]–[24]. In our previouswork [25],
the knowledge of system noise is obtained by an improved
ant lion algorithm, which demonstrate high accuracy and
efficiency.

Unfortunately, the EKF and UKF algorithms require
the system noise to be the Gaussian distribution. For
non-Gaussian system noise, the algorithms are infeasible.
Instead, the particle filter (PF), which is based on probabil-
ity distribution theory, can handle any nonlinear model and
arbitrary distribution of noise [26]–[28]. The application of
PF for SOC estimation has been verified with satisfactory
performance by many studies [29]–[31]. Reference [5] con-
ducted a comprehensive analysis of the application of PF for

SOC estimation, they recommend PF as a promising method
for SOC estimation.

However, the PF suffers several shortages, such as high
computation burden and particle impoverishment. Some
researchers applied an event-trigger strategy to reduce the
computation cost. This strategy only transmits the observa-
tions that contain innovational information to the estimation
center, which can substantially reduce the communication
and computation burden. Various event-trigger strategies for
KF or PF were proposed [32]–[37]. The event-trigger strat-
egy is suitable for a smart grid system, which has a large
amount of data to be transmitted. Another possible method of
reducing the computation cost is the parallel processing, since
each particle of PF can be separately processed. To overcome
the shortages of particle impoverishment and model param-
eters perturbation that exist in the PF algorithm, UKF and
PF are combined to form an unscented particle filter (UPF)
algorithm, which has shown higher accuracy for SOC esti-
mation [38], [39]. The cubature Kalman filter (CKF) has
attracted extensive attention in the field of nonlinear filtering
systems, which applies the third-order spherical-radial cuba-
ture criterion to approximate the probability density function.
The filtering accuracy is better than that of the UKF. All
weights of the sampling points are identical and positive;
thus, its numerical stability is also higher than that of the
UKF [40]–[42]. An inspired idea is to use the CKF to generate
the proposal distribution for the PF and construct the cubature
particle filter (CPF), which can prevent the impoverishment
of a particle and is more precise than the UPF [41].

This paper presents an adaptiveweighting cubature particle
filter (AWCPF). Considering that the CPF is sensitive to
noise, the statistics of system noise, prediction state, mea-
surement vector and covariance are estimated by an adap-
tive weighting method. The weights of cubature points are
adjusted based on the adaptively weighting estimation, which
can restrain the interference of system noise to state estima-
tion and improve the stability of algorithm.

The remainder of the paper is arranged as follows:
Section 2 presents the battery model and the model
parameters identification method. Section 3 describes the
proposed adaptive weighting cubature particle filter algo-
rithm. The experimental results are analyzed in section 4.
Section 5 providers the conclusion and future work.

II. BATTERY MODEL AND MODEL PARAMETERS
IDENTIFICATION
A. BATTERY MODEL
Establishing an accurate and concise model has an impor-
tant influence on the accuracy and calculation speed of the
SOC estimation. Based on the application characteristics of
lithium-ion batteries in EVs, an equivalent circuit model
with resistance and capacitance as the core components has
more advantages in structure and accuracy than other bat-
tery models. Xin Lai et al. investigated eleven ECMs which
include a different number of RC networks and the hysteresis
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phenomenon of open circuit voltage (OCV). In consideration
of the accuracy, stability, complexity and computation cost of
SOC estimation, their results demonstrate that the first-order
RC model is the best ECM for the LiNMC battery [43].
Therefore, this paper utilizes the first-order RC equivalent cir-
cuit model to perform follow-up research. Themodel consists
of three parts: the voltage source, which is the open-circuit
voltage of power battery, represented by the OCV; the ohmic
internal resistance, which represents the resistance of the
battery electrode material, electrolyte, separator and contact
resistance of the components, which is represented by Ri. The
RC network, which describes the dynamic characteristics of
a battery, including the polarization characteristics and diffu-
sion effects, can be described by the polarization resistance
Rd and the polarization capacitance Cd . The structure of the
ECM is shown in Fig. 1.

FIGURE 1. Structure of ECM.

where UOCV is the open-circuit voltage, Ut is the terminal
voltage, and Ud is the polarization voltage. IL is the load
current (which is set to positive for discharge and negative
for charge). The electrical characteristics of the model can be
expressed as U̇d = −

1
CdRd

Ud +
1
Cd

IL

Ut = Uocv − Ud − ILRi
(1)

where the terminal voltage Ut and the load current IL are
directly measured by high precision sensors. The polarization
voltage Ud is an intermediate variable. The open circuit volt-
age UOCV is the function of the SOC. In this paper, the low
current (C/20) method is employed to obtain the relationship
between OCV and SOC, and the OCV-SOC curve can be
fitted by the following equation

UOCV (z) = K0 + K1z+ K2z2 + K3z3 + K4/z

+K5 ln(z)+ K6 ln(1− z) (2)

where Ki(i = 0, 1, . . . , 6) are multinomial coefficients that
are fitted based on experimental data by least square method,
and z denotes the state of charge (SOC) of battery.

In (1), the ohmic internal resistance Ri, polarization resis-
tance Rd and polarization capacitance Cd are battery param-
eters that have to be identified by an optimization algorithm
based on measured data. Details of parameter optimization
algorithm are presented in the following section.

B. PARAMETER IDENTIFICATION METHOD
To apply the optimization algorithm for parameter identifica-
tion, the battery model is discretized and rewritten as{

Ud,k+1 = e−
1t
τ Ud,k + (1− e−

1t
τ )Rd IL,k

Ut,k = UOCV ,k − Ud,k − IL,kRi
(3)

where 1t is the sample interval and assumed be 1s in this
paper; τ is the time constant which equals τ = RdCd ; and k
is an integer variable that denotes the discrete index.

Themodel parameters, includingRi,Rd , andCd , are identi-
fied by the improved ant lion optimization (IALO) algorithm
which is a naturally inspired heuristic optimization algorithm
that imitates the predatory behavior of an ant lion. The initial
population of the IALO algorithm is X = [Ri,Rd ,Cd ]. The
objective function is defined as:

fpara =
N
6
h=0

(Ut,h − Uest,h)2 (4)

where N is the time length of the experiment data, Ut,h
denotes the measured terminal voltage at the hth sample time,
and Uest,h is the estimated terminal voltage at the hth sam-
ple time calculated by the corresponding individual (battery
model parameters). The maximum iteration of the IALO is
set to 500, and the iteration stops when the fitness of an
elite individual does not change in 10 continuous iterations.
By searching the solution space with random walk and com-
paring the fitness of individuals, the IALO algorithm can
determine the optimal value of the battery model parameters.
Readers can refer to [25] for details of the IALO algorithm.

III. PROPOSED SOC ESTIMATION METHODOLOGY
A. STATE OF CHARGE DEFINITION
State of charge is usually defined as the ratio of the remaining
available capacity to the rated capacity of a battery. The
discrete definition of SoC is expressed as:

zk = zk−1 − ηIL,k1t
/
Cn (5)

where zk is the SOC at the kth sampling time, Cn is the rated
capacity; and η is the coulomb efficiency, which is related
to the current rate, battery chemistry, and temperature. For
simplicity, the coulomb efficiency is set to η = 1.

B. ADAPTIVE WEIGHTING CUBATURE PARTICLE FILTER
The accuracy and convergence speed of the particle filter (PF)
algorithm is superior to other stochastic optimization algo-
rithms [30]. However, a particle degradation problem exists
in the PF algorithm, which can affect the performance of
the PF method. This problem is caused by the difficulty of
finding the optimal proposal distribution q (xk | x0:k−1, yk).
A substituted option is to generate the approximate optimum
proposal distribution from the latest information of xk−1 and
yk by some different methods. The high performance of the
cubature Kalman filter has been verified for generating the
proposal distribution for PF [41]. Therefore, this paper incor-
porates the CKF to generate approximate optimum proposal
distribution for the PF to avoid the degradation of particles.
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To apply the CKF algorithm, the nonlinear battery model
has to be rewritten in the form of state space and is described
as

xk=

[
Ud,k
zk

]
= f (xk , uk )+ ωk

yk=Ut,k = h(xk , uk )+ νk

f (xk , uk )=

[
e−1t

/
τUd,k−1 + (1− e−1t

/
τ )Rd IL,k

zk−1 − ηIL,k1t
/
Cn

]
h(xk , uk )=Uoc,k − Ud,k − RiIL,k
ωk ∼ N (0,Qk ), νk ∼ N (0,Rk )

(6)

where xk =
[
Ud,k zk

]T is the state vector, and the system
input vector uk is the load current IL,k . The output vector yk
is the terminal voltageU t,k , andωk and νk represent the mean
of the process noise and the mean of the measurement noise,
respectively, and their covariance matrixes are Qk and Rk ,
respectively.

The basic steps of the CKF are expressed as follows:
1. Initialization of state and covariance

x̂0 = E[x0]

P0 = cov(x0, xT0 ) = E[(x0 − x̂0)(x0 − x̂0)T ] (7)

2. Calculate the current state cubature points

Pk−1|k−1= Sk−1|k−1STk−1|k−1
x̂i,k−1|k−1= Sk−1|k−1ξi + x̂k−1|k−1, i=1, . . . , 2n (8)

where ξi represents the cubature points and the corresponding
weights are ωi, which are defined as:

ξi =

√
m/

2 [1]i ωi
= 1/

m, i = 1, . . . ,m.m = 2n (9)

where m is the number of cubature points, which is usually
set to twice the dimension of the state vector n. [1] ∈ Rn×m is
predefined constant matrix:

[1] =



1
0
...

0

 ,

0
1
...

0

 , · · · ,

0
0
...

1

 ,

−1
0
...

0

 ,


0
−1
...

0

 , · · · ,


0
0
...

−1



n×m

3. State prediction
Propagate the cubature points

x̂ i,k|k−1 = f (x̂ i,k−1|k−1, uk−1), i = 1, . . . , 2n (10)

State and error covariance prediction

x̄ k|k−1 = (1
/
m)

m∑
i=1

x̂ i,k|k−1

P k|k−1 = (1
/
m)

m∑
i=1

(
x̂ i,k|k−1−x̄ k|k−1

) (
x̂ i,k|k−1−x̄ k|k−1

)T
+Qk−1 (11)

4. Recalculate the cubature points

P k|k−1= S k|k−1STk|k−1
X̂i, k|k−1= S k|k−1ξi+x̄ k|k−1, i=1, . . . , 2n (12)

5. Propagate the cubature points and predict the
measurement

ŷ i,k|k−1= h(X̂ i,k|k−1, uk ), i=1, . . . , 2n

ȳ k|k−1= (1/m)
m∑
i=1

ŷ i,k|k−1 (13)

6. Estimate the innovations covariance matrix and the
cross-covariance matrix

P yy,k|k−1

= (1
/
m)

m∑
i=1

(
ŷ i,k|k−1−ȳ k|k−1

) (
ŷ i,k|k−1−ȳ k|k−1

)T
+Rk

P xy,k|k−1

= (1
/
m)

m∑
i=1

(
ŷ i,k|k−1−ȳ k|k−1

) (
X̂ i,k|k−1−x̄ k|k−1

)T
(14)

7. Calculate the Kalman gain and update the state and
error covariance

Kk = Pxy,k|k−1(Pyy,k|k−1)−1

x̂k|k = xk|k−1 + Kk (yk − yk|k−1)

Pk|k = Pk|k−1 − KkPyy,k|k−1KT
k (15)

In the process of practical application, the statistical char-
acteristics of the process noise and measurement noise of the
system are highly random and vulnerable to external environ-
mental factors. Therefore, to further improve the estimation
accuracy, a weighting factor method for the adaptive adjust-
ment of system noise and measurement noise is proposed.

The residual vectors 1x and 1y are defined as

1xj = x̂k|k − x̂i,k|k−1
1yj = yk − ŷ i,k|k−1

(j = 1, 2, . . . , 2n) (16)

When the statistical characteristics of the process noise
change, the contribution of x̂ i,k|k−1 to the state estimation
decreases, which cause a deviation of the state estimation and
increase of the residual vector of the state estimation. Simi-
larly, the variation in the measurement noise will affect the
residual vector of the measurement estimation, which cause
a deviation of the predicted values. Let

ωj =
∥∥1xj∥∥ · ∥∥1yj∥∥ (j = 1, 2, . . . , 2n) (17)

where
∥∥1xj∥∥ = √1xTj 1xj, ∥∥1yj∥∥ = √1yTj 1yj. Normaliz-

ing ωj, the adaptive weight factors are calculated by

λj =
ωj

/
2n∑
j=1
ωj
, (j = 1, 2, . . . , 2n) (18)
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The weighted estimation of the noise statistical charac-
teristics enables adaptive adjustment of the weights of the
cubature points to improve the performance of the state and
measurement prediction, which can also restrain the influ-
ence of system noise on state estimation [44], [45]. Based
on this analysis, the adaptive weighting cubature Kalman
filter (AWCKF) is developed, which is described as follows:

1. Initialization of state and covariance

x̂0 = E[x0]

P0 = cov(x0, xT0 ) = E[(x0 − x̂0)(x0 − x̂0)T ] (19)

2. Calculate the current state cubature points

P k−1|k−1 = S k−1|k−1STk−1|k−1
x̂i, k−1|k−1 = S k−1|k−1ξi + x̂ k−1|k−1, i = 1, . . . , 2n

(20)

3. State prediction
Propagate the cubature points

x̂ i,k|k−1 = f (x̂ i,k−1|k−1, uk−1), i = 1, . . . , 2n (21)

State and error covariance prediction

x̄ k|k−1 =
m∑
i=1

λix̂ i,k|k−1 + q̂k−1

P k|k−1 =
m∑
i=1

λi
(
x̂ i,k|k−1 − x̄ k|k−1

) (
x̂ i,k|k−1 − x̄ k|k−1

)T
+ Q̂k−1 (22)

4. Recalculate the cubature points

P k|k−1 = S k|k−1STk|k−1
X̂i, k|k−1 = S k|k−1ξi + x̄ k|k−1, i = 1, . . . , 2n (23)

5. Propagate the cubature points and predict measurement

ŷ i,k|k−1 = h(X̂ i,k|k−1, uk ), i = 1, . . . , 2n

ȳ k|k−1 =
m∑
i=1

λiŷ i,k|k−1 + r̂k−1 (24)

6. Estimate the innovations covariance matrix and the
cross-covariance matrix

P yy,k|k−1

=

m∑
i=1

λi
(
ŷ i,k|k−1 − ȳ k|k−1

) (
ŷ i,k|k−1 − ȳ k|k−1

)T
+ R̂k−1

P xy,k|k−1

=

m∑
i=1

λi
(
ŷ i,k|k−1 − ȳ k|k−1

) (
X̂ i,k|k−1 − x̄ k|k−1

)T
(25)

7. Calculate the Kalman gain and update the state and
error covariance

Kk = P xy,k|k−1(P yy,k|k−1)−1

FIGURE 2. Flowchart of the proposed method for SOC estimation.

FIGURE 3. Results of OCV-SOC mapping test.

x̂k|k = x̄ k|k−1 + Kk (yk − ȳ k|k−1)

Pk|k = P k|k−1 − KkP yy,k|k−1KT
k (26)

8. Estimate the statistics of noise

q̂k =
1
k

[
(k − 1)̂qk−1 + x̂ k|k −

2n∑
i=1

λix̂ i,k|k−1

]

Q̂k =
1
k


(k − 1)Q̂k−1 + diag[x̂ k|k x̂Tk|k + P k|k − q̂k q̂

T
k

−

m∑
i=
λix̂ i,k|k−1x̂Ti,k|k −

m∑
i=
λix̂ i,k|k x̂Ti,k|k−1

+

m∑
i=
λix̂ i,k|k−1x̂Ti,k|k−1


r̂k =

1
k

[
(k − 1)r̂k−1 + yk −

2n∑
i=1

λiŷ i,k|k−1

]

R̂k =
1
k

(k − 1)R̂k+diag[ykyTk − r̂k r̂
T
k −

m∑
i=
λih(x̂i,k|k )yTk

−yTk
m∑
i=
λih(x̂i,k|k )T+

m∑
i=
λih(x̂i,k|k )h(x̂i,k|k )T


(27)

The proposed SOC estimation method is based on PF,
which utilizes the information estimated by the AWCKF to
approximate the proposal distribution q (xk | x0:k−1, yk). The
steps of the proposed adaptive weighting cubature particle
filter (AWCPF) based SOC estimation method are expressed
as follow:

1. Parameter initialization of x0, P 0|0, Q0, R0, and ξ . Set
the particle size toN , and the sample particles to x i0, i =

VOLUME 7, 2019 166661
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FIGURE 4. The current and voltage profiles under DST test condition.

1, · · ·N from x0 and P 0|0. The initial weight of each
particle is wi0 = 1/N .

2. Calculate the state estimation x̂ ik|k and the covariance
P̂ik|k of every particle via AWCKF.

3. Update particles by sampling from the proposal distri-
bution

x̂ ik ∼ q
(
x ik
∣∣∣ x i0:k−1, yk) = N(x̂ ik|k , P̂

i
k|k ) (28)

4. Calculate the weights of particles

wik

∝
p(yk

∣∣x ik )p(x ik ∣∣x ik−1)
q(x ik

∣∣x i0:k−1, yk ) (29)

p(yk
∣∣∣x ik )

=
1

√
2πRk

exp(−
(yk−h(x̂ ik|k , uk ))(yk−h(x̂

i
k|k , uk ))

T

2Rk
)

p(x ik
∣∣∣x ik−1 )

=
1

√
2πQk−1

× exp(−
(x̂ ik−f (x

i
k−1, uk−1))(x̂

i
k−f (x

i
k−1, uk−1))

T

2Qk−1
)

q(x ik
∣∣∣x i0:k−1, yk )

=
1√

2π P̂ik|k

exp(−
(x̂ ik−x̂

i
k|k )(x̂

i
k−x̂

i
k|k )

T

2P̂ik|k
) (30)

5. Normalize the weights and resample the particle sets
x̂ ik and P̂ik|k based on the weight values via a residual
resampling method and obtain the new particle sets x ik
and the responding covariance Pik|k .

6. The state estimation is calculated by

xk = E(x ik ) (31)

where xk is the state estimation at the kth sampling time
via the adaptive weighting cubature particle filter (AWCPF)
algorithm.

TABLE 1. Basic information of test cells.

TABLE 2. The fitted parameters of the OCV-SOC function.

Based on the method presented above, the flowchart of the
proposed method for SOC estimation is shown in Fig. 2.

IV. EXPERIMENTS AND RESULTS DISCUSSION
In this study, 18,650 LiNiMnCoO2/Graphite (LiNMC)
lithium-ion cells are utilized for experimental verification.
The whole testing process consists of an open circuit volt-
age OCV-SOC mapping test, dynamic stress test (DST) and
federal urban driving schedule (FUDS) test. Before the DST
and FUDS tests, the cells are charged with constant current
and constant voltage (CCCV) with a standard current proto-
col and discharged to SoC=80% with 0.5C after complete
equalization. The experimental temperature is fixed at room
temperature (25 ◦C), and the effect of the change in battery
capacity on the experimental results in a single cycle is disre-
garded. Basic information of the cell is shown in Table 1.

During the OCV-SOCmapping test, the low current (C/20)
is utilized in the charge and discharge cycles and the mea-
sured terminal voltage is approximated as open circuit voltage
with small current (C/20) excitation. The OCV test results are
shown in Fig. 3. The nonlinear least-squares (LS) method is
applied to identify the parameters of the OCV-SOC function,
which is described by (2). The results are provided in Table 2.
The root means square error (RMSE) of the parameter identi-
fication is 0.0098, which indicates that the formula in (2) can
accurately track the relationship between OCV and SOC.
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FIGURE 5. SOC estimation results under DST test condition by three methods.

FIGURE 6. The current and voltage profiles under FUDS test condition.

FIGURE 7. SOC estimation results under FUDS test condition by three methods.

The voltage and current data are measured by the
NEWARE BTS battery test system for SOC estimation and
algorithm verification. For comparison, the PF and CKF algo-
rithms are also applied for SOC estimation.

The particle size of the AWCPF and PF methods is set
to 50. The initial SOC value is set to the accurate value
0.8 to verify the accuracy of SOC estimation. The current
and voltage profiles of the DST and FUDS tests are shown
in Fig. 4 and Fig. 6.

As shown in Fig. 5, in the DST test condition, the pro-
posed method AWCPF can accurately estimate the SOC with
a small estimation error, while the estimation error of the
CKF and PF are larger and the PF algorithm exhibits more
fluctuations which may be caused by the randomness of
particle distribution and the resampling period. The DST
test is a simple and predictable cycle condition, while the
FUDS test is a more complicated and fluctuated condition,
as shown in Fig. 6, which may be more challenging for SOC
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FIGURE 8. SOC estimation results with incorrect initial SOC value 0.9: (a) DST; (b) FUDS.

FIGURE 9. SOC estimation results with incorrect initial SOC value 0.7: (a) DST; (b) FUDS.

FIGURE 10. SOC estimation results with incorrect initial SOC value 0.5: (a) DST; (b) FUDS.

estimation. The SOC estimation results in the FUDS test
condition are shown in Fig. 7. The proposed method can
obtain accurate SOC estimation, while the SOC estimation
error of the CKF and PF increased, which demonstrates the
excellent adaptivity of the proposed method for complicated
conditions.

To validate the convergence and robustness of the devel-
oped method, the initial value of the SOC is set to an incorrect
value of 0.9, 0.7, and 0.5. The SOC estimation results with
an incorrect initial SOC value are shown in Fig. 8-10. The
results indicate that the proposed algorithm can converge to
the true SOC value in a short time and is faster and more
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TABLE 3. Performance of algorithms.

stable than the CKF and PF with a slight deviation in the
initial SOC value by a ±0.1 offset. For a large deviation,
the initial SOC value is 0.5, and the proposedAWCPFmethod
can rapidly converge to true value and exhibit a performance
that is superior to CKF and PF.

To evaluate the computational efficiency of the proposed
algorithm, a simulation was conducted on a laptop equipped
with an Intel Core i7-7700 HQ processor (6 MB cache, up
to 3.5 GHz) using MATLAB R2017a software. The com-
parison results with the PF and CKF algorithms are listed
in Table 3. TheSOC estimation RMSE is the root mean square
error of the SOC estimation with an incorrect initial SOC
value of 0.5 in the DST cycle condition. The Single iteration
time denotes the time of one-step state estimation when single
measured data are available, which is sampled by 1 Hz. The
Convergence time represents the time of the estimation of
the SOC converging to the real SOC value with an incorrect
initial SOC value of 0.5 in the DST cycle condition, as shown
in Fig. 10. As shown in the table, the proposed algorithm
AWCPF has superior performance at the cost of higher com-
putation compared with the CKF algorithm. However, if the
initial value of SOC is offset, such as to 0.5, the AWCPF
algorithm can rapidly converge to the real value with the min-
imum convergence time. Compared with the PF algorithm,
the AWCPF can converge to the real value two times faster
with only a small increase in the Single iteration time.

V. CONCLUSION
This paper proposed a novel SOC estimation method that
is based on a particle filter algorithm. The dynamic char-
acteristic of the battery is described by the first-order RC
equivalent circuit model and the model parameters of the
model are identified by a heuristic nature inspired improved
ant lion optimization (IALO) algorithm. The SOC of the
battery is estimated by the PF algorithm. To overcome the
particle impoverishment shortage that exists in the PF algo-
rithm, the Cubature Kalman filter algorithm has been used
to generate the approximate optimum proposal distribution
for the PF algorithm by integrating the last state estimation
and latest measurement information. The system noise, pre-
diction state measurement vector and covariance of the CKF
are adaptively estimated. To restrain the influence of system
noise to state estimation, the weights of the cubature points,
which are generally constant, are adaptively adjusted based
on the residual vector of state and measurement.

The proposed SOC estimation method AWCPF is tested
and verified by experimental results. The results show that the
AWCPF algorithm can obtain superior SOC estimation with

a small estimation error. The high performance robustness of
the proposedmethod has been verified by estimating the SOC
with high accuracy in the large initial SOC value deviation.
With the rapid development of machine learning and data
mining technology, the machine learning based SOC estima-
tion methods will be investigated in subsequent research.
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