
Received October 21, 2019, accepted November 7, 2019, date of publication November 14, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953531

Hierarchical Search-Embedded Hybrid Heuristic
Algorithm for Two-Dimensional Strip
Packing Problem
MENGFAN CHEN 1, KAI LI 1, DEFU ZHANG 1, LING ZHENG 1, AND XIN FU 2
1School of Informatics, Xiamen University, Xiamen 361005, China
2School of Management, Xiamen University, Xiamen 361005, China

Corresponding authors: Defu Zhang (dfzhang@xmu.edu.cn) and Ling Zheng (liz5@xmu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672439.

ABSTRACT Two dimensional strip packing problem implies a sort of NP-hard combinational optimization,
where a set of rectangles are defined all for filling a strip with finite width and infinite height being
minimized. Optimization taking no account of rotation and guillotine constraints remains problematic in
solving the problem. This paper proposes a new variant of a hybrid heuristic algorithm for optimizing
solutions of the strip packing problem. This algorithm involves three key improvements: the building of
δ scoring rules for selecting rectangles, the use of the red-black trees that stores rectangle indices for quickly
locating the most suitable rectangles, and the embedding of a hierarchical method into a random local
search to implement an optimization solution. Comparative studies show that the proposed algorithm variant
outperforms state-of-the-art algorithms on almost all benchmark datasets.

INDEX TERMS Packing, heuristic, hierarchical search, red-black tree.

I. INTRODUCTION
The two-dimensional strip packing problem (2DSPP), simi-
lar to the bin packing problem, is a classical combinatorial
optimization problem, which attempts to arrange a given set
of rectangles on a strip of finite width and infinite height
without overlapping while minimizing the region waste of the
strip. It has many real-world applications, such as cutting teel
plates or paper rolls and cutting large boards of wood into
smaller rectangular panels in the furniture industry [1], [2].
These practical problems are defined in order to minimize
the material waste or maximize the use of material. Due
to constraint set differences, 2DSPP can be subdivided into
four classes [3] based on the yes/no requirement of rectangle
rotation and that of guillotine:

1) RF: rectangles may be rotated 90◦ (R) and no guillotine
cutting is required (F).

2) RG: rectangles may be rotated 90◦ (R) and guillotine
cutting is required (G).

3) OF: the orientation of rectangles is fixed (O) and no
guillotine cutting is required (F).

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

4) OG: the orientation of rectangles is fixed (O) and guil-
lotine cutting is required (G).

In the literature, 2DSPP has been well studied as an
NP-hard problem. Most research has been focused on
exact algorithms or heuristic methods. An exact algorithm
can guarantee the optimal solution to be found for the
problem. These variants were widely proposed by those
authors [4]–[9], which are either based on the branch-
and-bound strategies or mixed integer linear programming.
However, the curse of dimensionality inevitably leads to
the exponential growth of computation. Therefore, the exact
algorithm is only suitable for small-scale datasets. The heuris-
tic methods are therefore developed in bulk for the 2DSPP
in order to find a trade-off between the time complexity
and the best approximation of optimal solution. In attempts
to initialize a reasonable filling sequence, Baker et al. [10]
proposed bottom-left (BL) heuristic in 1980. Chazelle [11]
proposed a BL variant, bottom-left-fill (BLF) which first
determines all possible positions that the coming rectan-
gle can fit, and then selects the lowest one of them.
Hopper and Turton [12] combined BL with three kinds
of meta-heuristic algorithms, including genetics algorithms
(GA), simulated annealing (SA), and naive evolution (NE).

179086 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-0527-193X
https://orcid.org/0000-0002-5180-9278
https://orcid.org/0000-0002-2396-1205
https://orcid.org/0000-0003-0174-9972
https://orcid.org/0000-0001-7958-8684
https://orcid.org/0000-0002-1443-9458

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

Burke et al. [13] proposed a best-fit heuristic which can
dynamically search the list to get better candidate shapes
for placement. Zhang et al. [14] presented a simple and intu-
itive algorithm, the heuristic recursive (HR) algorithm. Soon,
Zhang et al. [15] improved HR with a genetic algorithm
integrated. Alvarez-Valdés et al. [16] presented a greedy ran-
domized adaptive search procedure (GRASP) for 2DSPP.
Belov et al. [17] proposed two iterative heuristics: SVC
and BS.

Considering the intrinsic local optimization trap of
greedy heuristics, manymeta-heuristics algorithms have been
adopted for solving the 2DSPP. The authors of [18]–[21]
proposed a diverse range of GA-based approaches for the
problem. These GA variants can mainly be partitioned into
two classes. One is the boxing algorithm-based GA, which
is employed to generate the filling sequence, and the other is
used to store the layout information through the tree struc-
ture. In [22]–[24], the authors applied a simulated annealing
algorithm in combination with other meta-heuristics to solve
the 2DSPP. Iori et al. [25] combined TS with GA in solving
the 2DSPP. Leung et al. [26] proposed a two-stage intelligent
search algorithm (ISA) with simple scoring rules, which has
been used for cooperatingwithminimumwaste limitation and
a simple random strategy in proposing the SRA algorithm
by [27]. Zhang et al. [28] combined a variable domain search
with modified scoring rules in order to generate a better
approximation of an optimal solution. In addition, machine
learning techniques have also been applied in solving 2DSPP.
Hu et al. [29] utilized intensive learning for a proposed
three-dimensional packing problem. Wei et al. [30] proposed
a skyline-based heuristic algorithm with a set of rules for
measuring rectangular priority. Wei et al. [31] then extended
the skyline heuristic. Zhang et al. [32] used a binary search
algorithm in order to ensure the smoothness of unused space.
Wang and Chen [33] used the strategy of maximizing the
remaining space. Chen and Chen [34] proposed an algorithm
framework CIBA. It created a novel concept of a corner incre-
ment that is used for the rectangle selection. In nature, meta
heuristic approaches may not converge to a fixed solution.
Therefore, the optimal solution can not be guaranteed.

Oliveira et al. [1] investigated the application of heuristic
algorithm in 2DSPP. The results show that 40% of heuristic
algorithms are fitness-based heuristics, which has become a
research trend in this field, especially heuristic algorithms
based on scoring rules. Leung et al. [26] used five scores in
the Intelligent Search Algorithm (ISA), ranging from 0 to 4,
as was the Hybrid Demon Algorithm (HDA) [35]. While
in the Simple Randomized Algorithm (SRA) [27] considers
8 ratings and introduces a minimum waste strategy. The
design of these different scoring rules are roughly intended to
achieve a flatter skyline. A simpler corner increment strategy
with only 4 values is proposed in CIBA. However, we can fur-
ther improve the heuristic hybrid algorithm based on scoring
rules to improve the quality of the solution. We noticed that
the rules in CIBA are very simple, but this may ignore the
relationship between the rectangle and the available space.

FIGURE 1. A layout.

This article improved the corner increment strategy and pro-
posed new scoring rules. Given the complexity of the 2DSP
problem, precise algorithms are often applied to small-scale
datasets. The meta heuristic does not guarantee an optimal
solution, but it can provide solutions in a fairly small amount
of time. Combining the characteristics of the two algorithms,
this paper considers combining precision and heuristic algo-
rithms to develop a hybrid algorithm [36] to solve the 2DSPP
with the OF constraint.

We propose a new algorithmwith three core modifications:
1) a corner increment-based δ scoring rule is pre-defined
for selecting rectangles in an effective way, 2) a red-black
tree is used to memorize rectangle indices for the purpose
of quickly determining the most-fit rectangles, and 3) a
hierarchical strategy combined with a random-based local
search is customized to expand the diversification of prob-
lem solutions. The remainder of this paper is organized as
follows. Section II introduces some basic concepts of 2DSPP.
Proposed approaches are elaborated in Section III. The exper-
imental comparison and analysis are reported in Section IV.
The conclusion and future perspectives of this paper are given
in Section V.

II. BASIC CONCEPTS
Some concepts are systematically introduced in this section,
which will be used hereafter:

1) Rj: jth candidate rectangle (1 ≤ j ≤ n where n is the
number of rectangles).

2) Rj.h: the height of jth candidate rectangle.
3) Rj.w: the width of jth candidate rectangle.
4) Seq= {R1,R2, . . . ,Rn}: a sequence of rectangles.
5) Layout: a pattern of strip whose space is occupied

by a set of rectangles. A layout example is shown in
Figure 1.

6) Empty Layout: a pattern of strip containing none of a
single rectangle.

7) H: a height storing the current highest y-coordinate
of rectangles on the strip, which has been marked in
Figure 1.

8) Ci(1 ≤ i ≤ m where m is the total number of caves,
which will be assigned different values iteratively):
indicates a cave that has the area excluding the occu-
pied part of a segment, e.g., every white area numbered

VOLUME 7, 2019 179087

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 1. Value choice of corner increment and its corresponding conditions.

by 1-4 in Figure 1 means a cave having the following
properties,
a) Ci.w: the width of Ci.
b) Ci.cood : the coordinate (x, y) determines the left

bottom corner of Ci.
c) Ci.lh: the height of the left border of Ci, which

can be positively infinite. Ci.lh = Ci−1.y − Ci.y,
where Ci−1.y > Ci.y and Ci−1 represents the
previous adjacent cave of Ci.

d) Ci.rh: the height of the right border of Ci, which
can be positively infinite. Ci.rh = Ci−1.y− Ci.y,
where Ci+1.y > Ci.y and Ci+1 represents the next
adjacent cave of Ci.

e) Ci.maxH : the higher height in the left and right
borders of the Ci.

f) Ci.minH : the lower height in the left and right
borders of the Ci.

9) Corner: each orthogonal white space in Layout is called
a corner. The degree of a corner can be either 90◦

or 270◦. a and b tagged in Figure 1 are two example
corners, whose corresponding angle degrees are 90◦

and 270◦.
10) Corner increment: the increment of the corner after a

rectangle is placed into the strip.
11) Cave smooth: the merger operation of two adjacent

caves. There are two cases where cave smooth is
revoked. The first is where y-coordinates of the two
adjacent caves are equal; in that case, the two caves
will be merged. The other is where no single rectangle
can be placed on either of those two adjoining caves,
in which case they will be merged together.

III. HYBRID HEURISTIC-BASED ALGORITHM FOR 2DSPP
A new algorithm based on a hybrid heuristic for solving the
2DSPP will be described in detail. Section III-A gives the
introduction of scoring rule building. Section III-B describes
the process of rectangle selection using δ scoring rules and
the red-black tree. Section III-C introduces a constructive
heuristic based on δ scoring rules. Section III-D elaborates
the hierarchical search. Section III-E gives an overview of the
hybrid heuristic-based algorithm.

A. SCORING RULES
The construction of scoring rules is described in this section.
Firstly, the definition of corner increment is explained in
Section III-A1, from which δ scoring rules are derived.

Secondly, the building process of δ scoring rules is detailed
in Section III-A2.

1) CORNER INCREMENT
The corner increment was first proposed by [34]. Corner
increment is the number of corners increased after a single
packing move while corner indicates an orthogonal unoccu-
pied area. The degree of corners is either 90◦ or 270◦. The
value of the corner increment simply has four choices: −4,
−2, 0, or 2. The -4 value indicates that the four corners are
flattened after a best-fit rectangle is inserted, and the remain-
ing numbers respectively imply the flattening of two corners
by the rectangle insertion move, no influence after a single
packing move, and the larger vertical gap between every
pair of rectangle top lines when an improper rectangle was
arranged into a cave. Figure 2 enumerates five cases being
considered for building δ scoring rules. The case in III-A1
is the most desirable in minimizing the waste of strip space.
Table 1 is built for a clearer explanation of every value choice
of corner increment taken under specified conditions. Note
that there are two sets of conditions going into the same
value of zero. For the sake of discriminating these two sets
of conditions, the number ‘0’ will be tagged with different
subscripts. They are 0w and 0h as detailed in Table 1. The
value 0w indicates that candidate cave and a given rectangle
are the same in width and different in height. The number
0h signifies that the height of a given rectangle is equal to
that of the border of a candidate cave and they are easily
distinguished in width.

2) δ SCORING RULES
The proposed scoring strategy is a branch rule system of
the corner increment, which is named as δ scoring rules and
will be used as such throughout the rest of this paper. The
original scoring rule of the corner increment only takes five
cases into account. In particular, many other matching cases
between caves and rectangles are omitted. However, when the
corner increment scores the value of −4 or −2, the matching
situation is reserved and no other cases can be achieved. Each
δ scoring rule is therefore established when the values of
the corner increment take either 0 or 2, and twelve new δ

scoring rules are generated as listed in Table 2. Moreover,
this is easily observed in Table 1 and Figure 2. The new
rule system includes an additional imported parameter of δ
imported, which is the reason for the name ‘‘δ scoring rules’’.

179088 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

FIGURE 2. Corner increment cases.

FIGURE 3. An example of δ scoring rules indicating (1)-(4) Table 2 in for rectangle selection.

FIGURE 4. An example of δ scoring rules indicating (1)-(4) Table 2 in for rectangle selection.

The specific taken value of δ will be illustrated in Section IV,
where the description of experimentation is given.

Figure 3 and Figure 4 give two examples in order to demon-
strate the way to apply δ scoring rules in matching caves
with rectangles. In Figure 3 (a) and Figure 4 (a), the region
separated by red lines indicates a candidate cave which will
be loaded with rectangles in Figure 3 (2) and Figure 4 (2),
respectively. The purpose of rules (1)-(4) in Table 2 is to min-
imize the sum of differences between the currently-inserted
rectangle and its adjacent existing rectangles. To find a can-
didate rectangle that decrease this difference, given a cave Ci
and rectangle Rj, the equation in Equation 1 is then defined
as follows:

1h = min(1lh,1rh) (1)

where 1lh = |Ci.lh − Rj.h| and 1rh = |Ci.rh − Rj.h|. The
notation ofCi.rh,Ci.lh and Rj.hwas given in Section II.1h is
a difference taking the minimum value between1lh and1rh.
In the example shown in Figure 3, the 1h of Figure 3 (c)

is observed to be less than that of Figure 3 (d). This means
rectangle top lines become more even after the insertion of
rectangle 1 rather than rectangle 2. The rules (5)-(7) built in
Table 2 do not concern themselves with the height difference
at all. These rules are focused on minimizing the width dif-
ference between a cave Ci and a rectangle Ri. The calculation
of width difference is given in Equation 2.

1w = |Ci.w− Rj.w| (2)

where Ci.w and Rj.w were defined in Section II. The reason
for taking into account the width difference 1w is that the
width of Rj may exceed that of Ci. For instance, 1w of
Figure 4 (c) is larger than that of Figure 4 (d). The rectangle 3
is then voted to be placed in the cave.

B. RECTANGLE SELECTION USING δ SCORING RULES AND
RED-BLACK TREE
In [34], an AVL tree was used for storing a sequence of
unpacked rectangles in the rectangle selection process, where

VOLUME 7, 2019 179089

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 2. δ scoring rules.

a single rectangle will be selected at each iteration from
this AVL tree and then the node storing the rectangle is
deleted. Such high frequency of the deleting operation leads
to massive rotation moves for rebalancing AVL tree struc-
tures. Therefore, the red-black tree is introduced in order to
avoid time cost in the tree structure rebalancing, although the
average time complexity of the AVL tree and red-black tree
are the same, with both taking O(log(n)). More importantly,
our approaches used two red-black trees for the rectangle stor-
age. They are built in different retrieval orders. A red-black
tree Thwi is constructed by recursively inserting rectangles
into nodes in obedience to the criteria listing below:

1) Ri.h > Rj.h,
2) Ri.h = Rj.h and Ri.w > Rj.w,
3) Ri.h = Rj.h and Ri.w = Rj.w and i > j.

Supposing Rj is any rectangle being in parent node, any
given rectangle Ri of higher height than the rectangles being
stored in parent nodes will be inserted into the left nodes and
otherwise to the right nodes. When the height of Ri and Rj
came to be equal, Ri of larger width than Rj is then stored in
the left nodes and to the right nodes if smaller. When both the
height and width of Ri and Rj are equal, Ri initially indexed
by a number bigger than Rj will be put into the left nodes and
to the right nodes, otherwise. The other red-black tree Twhi
is created in the same manner of building Thwi, following the
rules below:

1) Ri.w > Rj.w,
2) Ri.w = Rj.w and Ri.h > Rj.h,
3) Ri.w = Rj.w and Ri.h = Rj.h and i > j.

The only difference in creating these two red-black trees is
that Twhi compares the width of Ri being inserted with that
of Rj already saved in the parent nodes at first order, then
the height and finally the index number, while Thwi firstly
compares the height between Rj and Ri, then width and the
index number at last.

The rectangle selection strategies, mainly based on the
combination of δ scoring rules and red-black trees, include
five schemes. They are not independent and are used as
ordered in the list below. The selection process stops when
the first scheme is satisfied. Given a set of input rectangles

R = {R1,R2, · · · ,Rn}, a cave Ci, and a single fictional
assistant rectangle R that is to be created according to the
properties of cave Ci or directly assigned with a candidate
rectangle, the five schemes are described as follows in the
recalled order:

1) For the first scheme, the assistant rectangle R is created
by assigningR.wwithCi.w and equatingR.hwithCi.lh.
When the caveCi is placed with the resultingR, the cor-
ner increment of the target strip will be decreased by
four. Ideally, a rectangle with the same height and
width as R is desired to be in the red-black tree Thwi
which is used for searchingR-like rectangles. If no such
rectangle is found before the process of tree traversal is
completed, the next schemewill be invoked. Otherwise,
the rectangle selection process stops and returns R.

2) This scheme is useful when the first one is disabled.
In the scheme, R is built in two possible ways. One is
that R.w is given by Ci.w and R.h is equal to Ci.maxH .
The other is that R.w is given by Ci.w and R.h is
equal to Ci.minH . Although the obtained R is imper-
fect when compared to the rectangle construction of
the scheme (1), two corner increments will be elim-
inated after the insertion of this R into the candidate
cave Ci. If a rectangle was matched with R by travers-
ing the Thwi, R returns; otherwise, move to the next
scheme.

3) When the previous two schemes (1) and (2) are invalid,
this scheme will be activated where the number of cor-
ner increments is not decreased or increased at all after
the auxiliary rectangle R being inserted into the Ci and
δ scoring rules is used. The current scheme will create a
auxiliary set of rectanglesR′ = {Rj | j ∈ N+} ⊆ R. The
R′ is established obeying the conditions Rj.w ≡ Ci.w
and 0 ≤ Rj.h ≤ ∞ and then R′ = {Rj | Rj.w ≡
Ci.w, 0 ≤ Rj.h ≤ ∞, j ∈ N+}. The intersection
set of rectangles R∩ = R′ ∩ Twhi is the sequence of
candidate rectangles, which will be scored by the rules
(1)-(4) in Table 2. The complete Twhi will be traversed
in order to search for such an R∩. Traversing the Twhi
until an Rj with Rj.w > Ci.w is found or the tree

179090 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

Algorithm 1 Rectangle Selection

Input:
Ci is the cave to be placed
Twhi and Thwi store the rectangle sequence
Output:
R is the selected rectangle

1 Rtemp = null
// case -4

2 R.w = Ci.w, R.h = Ci.lh, traversing Thwi finds a rectangle Rtemp equals R
3 if Rtemp 6= null then
4 R = Rtemp, delete Rtemp from Twhi and Thwi
5 return R
6 end
// case -2

7 R.w = Ci.w, R.h = Ci.maxH , traversing Thwi finds a rectangle Rtemp equals R
8 if Rtemp 6= null then
9 R = Rtemp, delete Rtemp from Twhi and Thwi
10 return R
11 else if Rtemp == null then
12 R.w = Ci.w, R.h = Ci.minH , traversing Thwi finds a rectangle Rtemp equals R
13 if Rtemp 6= null then
14 R = Rtemp, delete Rtemp from Twhi and Thwi
15 return R
16 end
// case 0w

17 traversing Twhi finds all rectangles that satisfy the condition Ri.w = Ci.w and 0 < Ri.h <∞
18 using (1) - (4) rules score all rectangles, the highest score and the smallest index number is stored in Rtemp
19 if Rtemp 6= null then
20 R = Rtemp, delete Rtemp from Twhi and Thwi
21 return R
22 end

// case 0h
23 traversing Thwi finds all rectangles that satisfy the condition Ri.h = Ci.lh and 0 < Ri.w < Ci.w
24 using (5) -(7) rules score all rectangles, the highest score and the smallest index number is stored in Rtemp
25 if Ci.lh 6= Ci.rh then
26 traversing Thwi finds all rectangles that satisfy the condition Ri.h = Ci.rh and 0 < Ri.w < Ci.w
27 using (5) - (7) rules score all rectangles, the highest score and the smallest index number is stored in Rtemp
28 end
29 if Rtemp 6= null then
30 R = Rtemp, delete Rtemp from Twhi and Thwi
31 return R
32 end

// case 2
33 traversing Twhi finds all rectangles that satisfy the condition 0 < Ri.w < Ci.w
34 using (8) - (12) rules score all rectangles, the highest score and the smallest index number is stored in Rtemp
35 if Rtemp 6= null then
36 R = Rtemp, delete Rtemp from Twhi and Thwi
37 return R
38 end

traversal terminates. If R∩ is empty, it will proceed
to next scheme, otherwise R will be assigned with a
rectangle that had the highest score and the smallest
index in the R∩ and returned.

4) As in scheme (3), the insertion of the assistant R into
the Ci did not change the total number of corner incre-
ment in the strip for this scheme. An auxiliary set
R′ = {Rj | j ∈ N+} ⊆ R is built by using the

VOLUME 7, 2019 179091

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

following conditions: 0 < Rj.w ≤ Ci.w and Rj.h ∈
{Ci.lh,Ci.rh}. The resulting R′ is {Rj | 0 < Rj.w ≤
Ci.w, Rj.h ∈ {Ci.lh,Ci.rh}, j ∈ N+}. A candidate set
of rectangles R∩ is constructed by intersecting R′ and
Thwi. Each of rectangles in R∩ will be given a score
using rules (5)-(7). R takes the rectangle that achieved
the best score being indexed by the minimum number
in R∩, and is then returned. When R∩ is always none
until Thwi is completely traversed or an Rj is found that
Rj.h > max(Ci.lh,Ci.rh) in Thwi, the coming scheme
will be recalled.

5) In this scheme, the placement of R in the cave Ci will
cause an increase of corner increment by 2 in the strip.
As a result of this placement, the Ci may be separated
into two sub-caves. The cardinality of R′ = {Rj | j ∈
N+} ⊆ R is simply ranged following a single condi-
tion: 0 < Rj.w ≤ Ci.w. Then, the R′ = {Rj | 0 <
Rj.w ≤ Ci.w, j ∈ N+} is created as the candidate set
of rectangles. The intersection set R∩ = R′ ∩ Twhi is
never none. This means there is always a best candidate
rectangle that can be returned from the Twhi until the
tree is empty due to the iteratively deleting of a single
node. These candidate rectangles will be scored by
rules (8)-(12). When the scores of candidate rectangles
are the same, the candidate rectangle being tagged with
the minimum index is returned as the best one.

Note that δ scoring rules are not employed for the schemes (1)
and (2) due to the simplicity of rectangle construction,
in which only one assistant rectangle is generated. In order
to make the rectangle selection process more understandable,
Algorithm 1 is given to stepwisely describe the process of
selecting rectangles.

C. CONSTRUCTIVE HEURISTIC USING PROPOSED
RECTANGLE SELECTION METHOD
The method of rectangle selection is a key compo-
nent in a constructive heuristic. There have been many
rectangle selection strategies proposed in literature such
as [26]–[28], [30], [34], and [35]. The positioned-based con-
structive heuristics, such as the bottom-left, skyline, corner
increment, which historically it was the most widely used
strategy for solving 2DSPP, and it is still an important basis
for creating new constructive heuristics. Rectilinear skyline
approaches attempt tominimize the space waste, while corner
increment methods are focused on locally minimizing the
number of corner increments for a strip pattern. As described
in Section III-B, our rectangle selection method is proposed
upon red-black trees and δ scoring rules that are an extension
of corner increment. The process of the constructive heuristic
based on δ scoring rules and red-black trees is detailed in
Algorithm 2. Cautiously, the Cave smooth operation is very
interesting, in that it focuses on merging adjoining caves that
have less difference in the y-coordinate of bottom cave lines
together for the rectangle insertion.

The time complexity of Algorithm 2 is analyzed as follows.
In line 4 of the algorithm, it takesO(1) time to get a candidate

Algorithm 2 Constructive Heuristic

Input:
Layout.caveList represents all caves in the layout
Seq indicates unpacked sequence of rectangles
Output:
H is a packing solution, which indicates the current
highest y-coordinate of packed rectangles

1 W is the current smallest width of the unpacked
rectangles

2 create two red-black trees based on Seq, Twhi and Thwi
3 while Seq.length > 0 do
4 get the lowest and most left cave C from

Layout.caveList
5 if C.w is smaller than W
6 then
7 Cave smooth
8 continue
9 end
10 R = RectangleSelection(C, Twhi, Thwi)
11 pack rectangle R into the cave C
12 Cave smooth if necessary
13 update H when satifying the triger criteria
14 end
15 returnH

cave due to the use of priority queue for the storage of
caves. In line 5-9,O(log(n)) time is taken for the deletion and
adjustment of the priority queue of a Cave smooth operation.
Line 10, using red-black tree to find the candidate rectangle,
takes O(log(n)) time. The time complexity of line 11 is O(1).
Line 13 takes O(log(n)) time. The operation on lines 13 sim-
ply requires O(1) time. Therefore, the time complexity of the
whole Algorithm 2 is O(nlog(n)).

D. HIERARCHICAL SEARCH
Traditional greedy searchmethods are very easy to be trapped
into the local optima. Therefore, a hierarchical search method
is proposed, which was inspired by the multi-layer heuris-
tic search algorithm proposed in [37]. The purpose of this
hierarchical search method is to diversify the search space.
The larger diversification of the search space may result in
a higher possibility of escaping the local optima. The root
parent will be initialized with an empty strip. A new child
node is generated by placing a single unpacked rectangle
into the strip pattern of its parent. There are two parameters
for this hierarchical search method: childNum and k . The
parameter childNum indicates the number of child nodes that
can be generated from the same parent, and k is the number of
best patterns in a generation. An example of the hierarchical
search structure is given in Figure 5, where childNum is set
to 2 and k is set to 3. Algorithm 3 details the process of
hierarchical search. Due to the impossibility of enumerating
all possible patterns of the strip, we only select the top k nodes
for making the problem solution diverse in each generation.

179092 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

Algorithm 3 Hierachical search

Input:
Layout.caveList represents all caves in the layout
Seq indicates unpacked sequence of rectangles
Output:
H is a packing solution

1 nodeQueue = null
2 for i = 0→ k − 1 do
3 new a node, node.unpackedSeq is equal to Seq

minus Ri, node.layout is equal to the layout after Ri
is put in

4 nodeQueue.add(node)
5 end
6 while the stop criterion is not satisfied do
7 currentNodeQueue represents the top k nodes in the

next layer
8 while nodeQueue.size > 0 do
9 tempNode = nodeQueue.poll()

10 get the lowest and most left cave Ci form
tempNode.layout.caveList

11 canPutSeq is all the rectangles form
node.unpackedSeq that fit into cave Ci

12 while j = 0→ canPutSeq.size and j <
childNum do

13 new a childNode, childNode.unpackedSeq
is equal to node.unpackedSeq minus Rj,
childNode.layout is equal to the layout after
Ri is put in

14 childNode.fitness =
ConstructiveHeuristic(childNode.layout,
childNode.unpackedSeq)

15 if childNode is in the top k in terms of
fitness then

16 currentNodeQueue.add(childNode)
17 end
18 end
19 end
20 nodeQueue = currentNodeQueue
21 end
22 minNode is the best fitness node from nodeQueue
23 H = minNode.fitness
24 returnH

E. OVERALL HYBRID HEURISTIC ALGORITHM
Although the hierarchical search could escape from the local
optima, it may take massive computational effort. To ease
this issue, we therefore integrated local random search into
hierarchical search. Local random search accepts a current
optimal solution, adds disturbances, and then searches to
increase the chances of finding a better solution. The initial-
ization of input sequences is very significant, which may lead
to the best initial search point that can possibly achieve the
optimal solution. Algorithm 4 describes the overall algorithm
framework. At the beginning of hybrid heuristic algorithm

Algorithm 4 Overall hybrid heuristic algorithm

Input:
W is the width of the strip
Seq indicates unpacked sequence of rectangles
Output:
H is a packing solution

1 EmptyLayout.caveList is an initial sequence of caves,
an Empty Layout with only one cave, which consists of
the whole strip, with a width equal toW

2 bSeq = null, H = infinite
3 for each sortig rule do
4 sortSeq = using the sortig rule sort Seq
5 tempH =

ConstructiveHeuristic(EmptyLayout.caveList,
sortSeq)

6 if tempH < H then
7 bSeq = sortSeq
8 H = tempH
9 end
10 end
11 while the stop criterion is not satisfied do
12 tempH = hierachicalSearch(EmptyLayout.caveList,

bSeq)
13 if tempH < H then
14 bSeq = SwapRandom(bSeq)
15 H = tempH
16 end
17 end
18 returnH

(HHA), several initial sequences are generated in a certain
order which will be passed to the constructive heuristic in
turn for the purpose of obtaining several initial solutions.
This move is described in lines 3-10. The sequence of the
optimal solution is selected as the input sequence of the
hierarchical search. The packing sequence corresponding to
the solution returned by the hierarchical search is perturbed
at line 14. We will randomly swap the positions of the two
rectangles and pass the rearrangement sequence to the hierar-
chical search algorithm for the next search. Lines 11-17 are
the process of random local search, and the search returns the
optimal solution until the stop condition is met.

We use the following six rules [34] to generate the initial
sequence: (1)

1) Sort the rectangles in descending order of area and sort
in descending order of width if the areas are equal;

2) Sort the rectangles in descending order of area and sort
in descending order of width if the areas are equal;

3) Sort the rectangles in descending order of circumfer-
ence and sort in descending order of height if the areas
are equal;

4) Sort the rectangles in descending order of circumfer-
ence and sort in descending order of height if the areas
are equal.

VOLUME 7, 2019 179093

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

FIGURE 5. An example of hierarchical search.

FIGURE 6. δ sensitivity analysis.

TABLE 3. Benchmark datasets.

5) Sort the rectangles in descending order of height and
sort in descending order of width if the heights are
equal.

6) Sort the rectangles in descending order of width and
sort in descending order of height if the widths are
equal.

The time complexity analysis of the entire algorithm is
conducted as follows. In Algorithm 4, in line 4, sorting
the rectangular sequences takes O(nlog(n)) time. In line 5,
The time complexity of constructive heuristic is O(nlog(n)),
line 6-9, takes O(1) time, so lines 3-10 takesO(nlog(n)) time.
In line 12, we set k = 100 and childNum = 20, so the
hierarchical search takes O(nlog(n)) time. The time cost of
lines 13-16 isO(1). The total time complexity of Algorithm 4
is therefore O(nlog(n)).

IV. EXPERIMENTAL RESULTS
In this section, a series of experiments are conducted for ana-
lyzing the proposed methods. Section IV-B illustrates some

FIGURE 7. Test constructive heuristics on datasets.

settings concerning the configuration of the machine that is
used to run the experiments. Section IV-C gives information
on relevant benchmark datasets. Section IV-D discusses the
experimental results. Section IV-A analyzes the key parame-
ters as they are set to different values.

179094 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

FIGURE 8. Analysis parameters k and childNum.

TABLE 4. Experimental results on instance C [12].

TABLE 5. Experimental results on instance N [13].

A. PARAMETER ANALYSIS
The value of delta affects the results of constructive heuristics,
so we analyzed the sensitivity of it on 6 datasets, running

constructive heuristics at different delta values and normal-
izing the results. As shown in Figure 6 (the abscissa is the
dataset and the ordinate is the gap rate), Figure 6 (a) is the

VOLUME 7, 2019 179095

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 6. Experimental results on instance NT [38].

test result with a delta value of 0.01− 0.1 (step size is 0.01),
and Figure 6 (b) is the test result with a delta value of 0.1−0.9
(step size is 0.1). From the results we can conclude that most
of the datasets have poor solutions when the delta value is
greater than 0.1. When the delta value is set to 0.02 or 0.03,
the algorithm performs satisfactorily on most datasets.

In order to illustrate the effectiveness of the δ scoring
rules, the δ scoring rules based constructive heuristics and the
architectural heuristics without scoring rules are compared
on 8 datasets. As shown in Figure 7 (the abscissa is the dataset
and the ordinate is the gap rate), the δ scoring rules based con-
structive heuristics are significantly better than the original

179096 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 7. Experimental results on instance CX [39].

TABLE 8. Experimental results on instance 2SP [40]–[43].

constructive heuristics in all the tested datasets, which indi-
cates that the δ scoring rules can significantly improve the
quality of the solution.

To select a reasonable value of k (the number of nodes
per layer) and childNum (the number of child nodes),
we performed parameter sensitivity analysis on 8 datasets.

Since the running time of the algorithm is limited, the val-
ues of k and childNum cannot be set too large. In the
test experiment, we set the value of k to a number in
{40, 50, 60, 70, 80, 90, 100} when setting childNum value
to 20 and 30. First the different parameters are arranged
and combined, then the HHA performs under the different

VOLUME 7, 2019 179097

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 9. Experimental results on instance BWMV [44], [45].

parameters, and finally we normalize the running results of
the algorithm. The experimental results are shown in Figure 8.
When the value of parameters is set too small (such as 40−20,
40 − 30), the algorithm obtains a poor solution. When the
value of parameters is set too large (such as 70 − 30,
80 − 30, 90 − 30, etc.), the result is not satisfactory. When
the parameters are set to 80−20, 90−20, 100−20, 50−30,

and 60 − 30, the results are better. When k = 100 and
childNum = 20, the algorithm performs best.

B. EXPERIMENTATION SETTING
The machine configurations for experimentation are listed
as follows, Ubuntu version 16.04 OS, Intel(R) Core(TM)
i5 CPU with 8 cores (which individually have the clock time

179098 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 10. Experimental results on instance Nice [46].

of 1.60GHz), and 8GB RAM. Three parameters: δ, k, and
childNum involved in experimentation are respectively set as
0.03, 100, and 20.

C. BENCHMARK DATA
The effectiveness of the proposed algorithm HHA was
tested on 8 widely-used benchmark datasets, including
737 instances of 2DSP problems. This data is composed of
two types of problems: zero-waste and nonzero-waste. The
details of this data are shown in Table 3, where Dataset
denotes the specific benchmark dataset, Instances denotes the
number of problem instances, n denotes the problem size,
zero-waste denotes whether dataset is of type zero-waste,
and Data Source denotes the source of dataset. Notably,
it contains large datasets with n > 10, 000, such as CX and
ZDF.

D. RESULTS FOR 2DSP
The well-known algorithms, GRASP [16], SVC [17],
ISA [26], SRA [27], HDA [35], HA [28], and CIBA [34], are
selected for the performance comparison with EHA, because

these algorithms perform well on most benchmark datasets.
All of these algorithms were run 50 times on each instance,
and each running time is limited to 1 minute. The running
results are shown in Table 4 - Table 12. Instance represents
the benchmark dataset. bestH represents the height found in
each instance in a run, LB represents the lower bound of the
height of the instance. gap is defined as: gap = (bestH−LB)/
LB∗100, then average_gap_rate denotes the average value of
gap over 50 runs. The best results obtained by all algorithms
for each instance are shown in bold letters.

Table 4 - Table 7 is the experimental results of dataset C,
N, NT, and CX. In the C dataset, the average gap rate of HHA
was reduced by 32.76% compared to the previous optimal
result. In the N dataset, the HHA obtains the optimal solution
on 10 data. HHA achieves 49 best results onNT dataset, while
GRASP, SVC, ISA, SRA, HDA, HA, and CIBA received 5, 5,
7, 17, 22, 31 and 26 best results, respectively. The HHA aver-
age gap is lower than other algorithms. From the performance
results of these datasets, our algorithm performs well on the
dataset of zero-waste, which also proves the effectiveness of
the algorithm.

VOLUME 7, 2019 179099

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 11. Experimental results on instance Path [46].

Table 8 is the experimental results of the 2SP dataset, which
contains 38 instances consisting of ngcut, gcut, cgcut, and
beng. HHA is better at gcut and beng. CIBA performs best in
cgcut. CRASP performs best in ngcut and beng. The average
gap of HHA is slightly larger than CRASP by 0.02. The
reason for this may be that the selection strategy adopted by
our algorithm does not perform well in small-scale instances.
Some instances of 2SP have few rectangles, and the finer
strategy performs better on this dataset.

Table 9 is the experimental results of the BWVM dataset.
The dataset contains 500 examples, and the instance contains
a number of rectangles ranging from 20 to 200. BWVM is
a nonzero-waste dataset, which is divided into 10 classes.
Each class contains 5 groups, each group with 10 instances,
and each instance containing the same number of rectangles.
HHA achieves the best results of the 25 groups, and the
average gap is also optimal. HHA performed better on the
dataset BWVM than other algorithms.

Table 10 and 11 are experimental results of the Nice&path
dataset. HHA obtains 17 best results on the Nice dataset. The
average gap HHA is superior to other algorithms with the

exception of SRA. HHA’s performance on this data is slightly
inferior to SRA, probably because the shape and size of the
rectangles in the Nice dataset are similar, andHHA’s selection
strategy may be slightly worse on this type of dataset. HHA
gets 24 best results on the Path dataset, and its average gap
is the best. Overall, HHA’s performance on the Nice&path
dataset is in line with the optimal algorithm.

Table 12 is the experimental results of the ZDF dataset.
HHA achieves the best results on nine instances. The average
gap is better than other algorithms except CIBA. The ZDF
dataset contains many large instances, and CIBA performs
better for instances of this type. On large datasets, the compu-
tation time of HHA’s hierarchical search algorithm increases,
so the search ability is slightly inferior to CIBA, which is
where we need to improve in the future.

Table 13 compares the average gaps of the eight algo-
rithms. From Table 13, we can see that HHA performs best in
the datasets of C, NT, CX, BWVM, and Nice&Path. GRASP
performs best in the 2SP dataset and CIBA performs best in
the Nice&Path and ZDF datasets. Although HHA performs
slightly worse in 2SP and ZDF datasets, from the average

179100 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

TABLE 12. Experimental results on instance ZDF [47].

TABLE 13. Comparison of average gap of 8 algorithms.

gap, the HHA algorithm performs better on most benchmark
datasets, which indicates that the HHA algorithm is effective.

V. CONCLUSION
In this paper, a hybrid heuristic algorithm has been proposed
for solving the 2DSPP that is based on the OF constraint.
This algorithm includes three main improvements. Primarily,
the scoring rule is built upon corner increments in order
to increase the capability of selecting suitable rectangles.
Secondly, two red-black trees have been created for the stor-
age of rectangles in different orders, which aims to improve
the unpacked rectangles retrieval. At the end, a hierarchical
search has been embedded into the random local search with
the goal of finding a desirable solution. Although experimen-
tal results have proved that the proposed algorithm outper-
formed the existing ones regarding strip wasting space, this
algorithm is only for the 2DSPPwith the OF constraint. In the
future, constraints such as rectangle rotation, object shape
guillotine, and many practical others will be considered into
the 2DSPP.More interestingly, this approach can be modified
to solve the variants of the 2DSPP.

REFERENCES

[1] J. F. Oliveira, A. Neuenfeldt, Jr., E. Silva, and M. Carravilla, ‘‘A survey
on heuristics for the two-dimensional rectangular strip packing problem,’’
Pesquisa Operacional, vol. 36, no. 2, pp. 197–226, Aug. 2016.

[2] R. Alvarez-Valdes, M. A. Carravilla, and J. F. Oliveira, Cutting and Pack-
ing. Cham, Switzerland: Springer, 2018, pp. 1–46.

[3] A. Lodi, S. Martello, and M. Monaci, ‘‘Two-dimensional packing prob-
lems: A survey,’’Eur. J. Oper. Res., vol. 141, no. 2, pp. 241–252, Sep. 2002.

[4] M. Hifi, ‘‘Exact algorithms for the guillotine strip cutting/packing prob-
lem,’’ Comput. Oper. Res., vol. 25, no. 11, pp. 925–940, 1998.

[5] S. Martello, M. Monaci, and D. Vigo, ‘‘An exact approach to the strip-
packing problem,’’ Informs J. Comput., vol. 15, no. 3, pp. 310–319, 2003.

[6] M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura, and H. Nagamochi,
‘‘Exact algorithms for the two-dimensional strip packing problemwith and
without rotations,’’ Eur. J. Oper. Res., vol. 198, no. 1, pp. 73–83, 2009.

[7] M. A. Boschetti and L. Montaletti, ‘‘An exact algorithm for the
two-dimensional strip-packing problem,’’ Oper. Res., vol. 58, no. 6,
pp. 1774–1791, 2010.

[8] G. Belov and H. Rohling, ‘‘LP bounds in an interval-graph algorithm for
orthogonal-packing feasibility,’’ Oper. Res., vol. 61, no. 2, pp. 483–497,
2013.

[9] J.-F. Côté, M. Dell’Amico, and M. Iori, ‘‘Combinatorial benders’ cuts for
the strip packing problem,’’ Oper. Res., vol. 62, no. 3, pp. 643–661, 2014.

[10] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest, ‘‘Orthogonal packings in
two dimensions,’’ SIAM J. Comput., vol. 9, no. 4, pp. 846–855, 1980.

[11] B. Chazelle, ‘‘The bottomn-left bin-packing heuristic: An efficient imple-
mentation,’’ IEEE Trans. Comput., vol. C-32, no. 8, pp. 697–707,
Aug. 1983.

[12] E. Hopper and B. C. H. Turton, ‘‘An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem,’’ Eur. J. Oper.
Res., vol. 128, no. 1, pp. 34–57, 2001.

[13] E. K. Burke, G. Kendall, and G. Whitwell, ‘‘A new placement heuristic
for the orthogonal stock-cutting problem,’’ Oper. Res., vol. 52, no. 4,
pp. 655–671, 2004.

[14] D. Zhang, Y. Kang, and A. Deng, ‘‘A new heuristic recursive algorithm for
the strip rectangular packing problem,’’ Comput. Oper. Res., vol. 33, no. 8,
pp. 2209–2217, 2006.

[15] D.-F. Zhang, C. Sheng-Da, and L. Yan-Juan, ‘‘An improved heuristic
recursive strategy based on genetic algorithm for the strip rectangular
packing problem,’’ Acta Automatica Sinica, vol. 33, no. 9, pp. 911–916,
2007.

VOLUME 7, 2019 179101

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

[16] R. Alvarez-Valdés, F. Parren̄o, and J.M. Tamarit, ‘‘Reactive GRASP for the
strip-packing problem,’’Comput. Oper. Res., vol. 35, no. 4, pp. 1065–1083,
2008.

[17] G. Belov, G. Scheithauer, and E. A. Mukhacheva, ‘‘One-dimensional
heuristics adapted for two-dimensional rectangular strip packing,’’ J. Oper.
Res. Soc., vol. 59, no. 6, pp. 823–832, 2008.

[18] S. Jakobs, ‘‘On genetic algorithms for the packing of polygons,’’ Eur. J.
Oper. Res., vol. 88, no. 1, pp. 165–181, 1996.

[19] D. Liu and H. Teng, ‘‘An improved BL-algorithm for genetic algorithm of
the orthogonal packing of rectangles,’’ Eur. J. Oper. Res., vol. 112, no. 2,
pp. 413–420, 1999.

[20] A. Bortfeldt, ‘‘A genetic algorithm for the two-dimensional strip packing
problem with rectangular pieces,’’ Eur. J. Oper. Res., vol. 172, no. 3,
pp. 814–837, 2006.

[21] J. A. Bennell, L. S. Lee, and C. N. Potts, ‘‘A genetic algorithm for two-
dimensional bin packing with due dates,’’ Int. J. Prod. Econ., vol. 145,
no. 2, pp. 547–560, 2013.

[22] K. A. Dowsland, ‘‘Some experiments with simulated annealing techniques
for packing problems,’’Eur. J. Oper. Res., vol. 68, no. 3, pp. 389–399, 1993.

[23] E. K. Burke, G. Kendall, and G. Whitwell, ‘‘A simulated annealing
enhancement of the best-fit heuristic for the orthogonal stock-cutting
problem,’’ Informs J. Comput., vol. 21, no. 3, pp. 505–516, 2009.

[24] S. Hong, D. Zhang, H. C. Lau, X. Zeng, and Y.-W. Si, ‘‘A hybrid heuristic
algorithm for the 2D variable-sized bin packing problem,’’ Eur. J. Oper.
Res., vol. 238, no. 1, pp. 95–103, 2014.

[25] M. Iori, S.Martello, andM.Monaci,Metaheuristic Algorithms for the Strip
Packing Problem. New York, NY, USA: Springer, 2003, pp. 159–179.

[26] S. C. H. Leung, D. Zhang, and K. M. Sim, ‘‘A two-stage intelligent search
algorithm for the two-dimensional strip packing problem,’’ Eur. J. Oper.
Res., vol. 215, no. 1, pp. 57–69, 2011.

[27] S. Yang, S. Han, and W. Ye, ‘‘A simple randomized algorithm for two-
dimensional strip packing,’’ Comput. Oper. Res., vol. 40, no. 1, pp. 1–8,
2013.

[28] D. Zhang, Y. Che, F. Ye, Y.-W. Si, and S. C. H. Leung, ‘‘A hybrid
algorithm based on variable neighbourhood for the strip packing problem,’’
J. Combinat. Optim., vol. 32, no. 2, pp. 513–530, 2016.

[29] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, ‘‘Solving a new 3D
bin packing problem with deep reinforcement learning method,’’ 2017,
arXiv:1708.05930. [Online]. Available: https://arxiv.org/abs/1708.05930

[30] L. Wei, W.-C. Oon, W. Zhu, and A. Lim, ‘‘A skyline heuristic for the
2D rectangular packing and strip packing problems,’’ Eur. J. Oper. Res.,
vol. 215, no. 2, pp. 337–346, 2011.

[31] L. Wei, Q. Hu, S. C. H. Leung, and N. Zhang, ‘‘An improved skyline based
heuristic for the 2D strip packing problem and its efficient implementa-
tion,’’ Comput. Oper. Res., vol. 80, pp. 113–127, Apr. 2017.

[32] D. Zhang, L. Wei, S. C. H. Leung, and Q. Chen, ‘‘A binary search heuristic
algorithm based on randomized local search for the rectangular strip-
packing problem,’’ Informs J. Comput., vol. 25, no. 2, pp. 332–345, 2013.

[33] Y.Wang and L. Chen, ‘‘Two-dimensional residual-space-maximized pack-
ing,’’ Expert Syst. Appl., vol. 42, no. 7, pp. 3297–3305, 2015.

[34] Z. Chen and J. Chen, ‘‘An effective corner increment-based algorithm
for the two-dimensional strip packing problem,’’ IEEE Access, vol. 6,
pp. 72906–72924, 2018.

[35] B. Chen, Y. Wang, and S. Yang, ‘‘A hybrid demon algorithm for the two-
dimensional orthogonal strip packing problem,’’ Math. Problems Eng.,
vol. 2015, Dec. 2014, Art. no. 541931.

[36] A. M. Gomes and J. F. Oliveira, ‘‘Solving irregular strip packing problems
by hybridising simulated annealing and linear programming,’’ Eur. J. Oper.
Res., vol. 171, no. 3, pp. 811–829, 2006.

[37] D. Zhang, Y. Peng, and S. C. H. Leung, ‘‘A heuristic block-loading
algorithm based on multi-layer search for the container loading problem,’’
Comput. Oper. Res., vol. 39, no. 10, pp. 2267–2276, 2012.

[38] E. Hopper, ‘‘Two-dimensional packing utilising evolutionary algorithms
and other meta-heuristic methods,’’ Ph.D. dissertation, School Eng., Univ.
Wales, Cardiff, NS, USA, 2000.

[39] E. Pinto and J. F. Oliveira, ‘‘Algorithm based on graphs for the non-
guillotinable two-dimensional packing problem,’’ in Proc. 2nd ESICUP
Meeting, Southampton, U.K., 2005.

[40] N. Christofides and C. Whitlock, ‘‘An algorithm for two-dimensional
cutting problems,’’ Oper. Res. vol. 25, no. 1, pp. 30–44, Jan./Feb. 1977.

[41] J. E. Beasley, ‘‘Algorithms for unconstrained two-dimensional guillotine
cutting,’’ J. Oper. Res. Soc., vol. 36, no. 4, pp. 297–306, Apr. 1985.

[42] B.-E. Bengtsson, ‘‘Packing rectangular pieces—A heuristic approach,’’
Comput. J., vol. 25, no. 3, pp. 353–357, 1982.

[43] J. E. Beasley, ‘‘An exact two-dimensional non-guillotine cutting tree search
procedure,’’ Oper. Res., vol. 33, no. 1, pp. 49–64, 1985.

[44] J. O. Berkey and P. Y. Wang, ‘‘Two-dimensional finite bin-packing algo-
rithms,’’ J. Oper. Res. Soc., vol. 38, no. 5, pp. 423–429, May 1987.

[45] S. Martello and D. Vigo, ‘‘Exact solution of the two-dimensional finite bin
packing problem,’’Manage. Sci., vol. 44, no. 3, pp. 388–399, 1998.

[46] C. L. Mumford-Valenzuela, J. Vick, and P. Y. Wang, ‘‘Heuristics for large
strip packing problems with guillotine patterns: An empirical study,’’ in
Metaheuristics: Computer Decision-Making. Boston, MA, USA: Springer,
2004, pp. 501–522.

[47] S. C. H. Leung and D. Zhang, ‘‘A fast layer-based heuristic for
non-guillotine strip packing,’’ Expert Syst. Appl., vol. 38, no. 10,
pp. 13032–13042, 2011.

MENGFAN CHEN received the B.E. degree in
computer science and technology from Fujian
Normal University, in 2017. She is currently pur-
suing the master’s degree with the School of
Information and Computer Science, Xiamen Uni-
versity. Her current research interests include com-
putational intelligence, data mining, big data, and
combinatorial optimization.

KAI LI received the B.E. degree in computer
science and technology from the Southwest Uni-
versity of Science and Technology, in 2017. He is
currently pursuing the master’s degree with the
School of Information and Computer Science,
Xiamen University. His current research interests
include artificial intelligence, computational intel-
ligence, and data mining.

DEFU ZHANG received the bachelor’s and
master’s degrees in computational mathematics
from Xiangtan University, in 1996 and 1999,
respectively, and the Ph.D. degree in computer
software and theory from the School of Com-
puter Science, Huazhong University of Science
and Technology. He was a Senior Researcher with
Shanghai Jinxin Financial Engineering Academy,
from 2002 to 2003. He was a Postdoctoral
Researcher with the Longtop for Financial Data

Mining Group, from 2006 to 2008. From 2008 to 2016, he visited
Hong Kong City University, the University of Wisconsin_Madison, and
Macau University. Besides, he developed an Internet Plus Big Data Platform
(http://www.pzcnet.com). He is currently a Professor with the Department
of Computer Science, Xiamen University. He supervised the ACM/ICPC
Team, Xiamen University. He has authored over 40 journal articles. His
research interests include computational intelligence, data mining, big data,
cloud computing, online decision optimization, and food security. He was a
recipient of three gold medals and eight silver medals, from 2004 to 2009,
and he took part in the World Final Contest, in 2007.

179102 VOLUME 7, 2019

M. Chen et al.: Hierarchical Search-Embedded Hybrid Heuristic Algorithm for 2DSPP

LING ZHENG received the M.Sc. and Ph.D.
degrees from the University of Aberystwyth, U.K.
He is currently a Research Fellow with the School
of Information Science and Engineering, Xiamen
University, China. His research interests include
innovative technologies for data processing and
analysis, computer vision, and pattern recognition.

XIN FU received the Ph.D. degree in com-
puter science from Aberystwyth University, U.K.,
in 2010. She is currently an Associate Professor
with the School of Management, Xiamen Univer-
sity, China. Her research interests include decision
support systems, fuzzy and qualitative modeling,
business intelligence, and sharing economy. Her
research has been published in journals, includ-
ing Information and Management, Decision Sup-
port Systems, the IEEE TRANSACTIONS ON FUZZY

SYSTEMS, Pattern Recognition, the Journal of Cheminformatics, and so on.

VOLUME 7, 2019 179103

