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ABSTRACT Due to the large number of organs and the similar grayscale in abdominal medical images,
accurately locating and identifying the liver in an abdominal image is a challenging problem. To improve
the accuracies of liver detection and localization, this paper proposes an improved deep network that is
combined with edge perception. The network improves the contour-detection accuracy of the liver via
an edge-perception fusion module and captures the high-level semantic features of the abdominal image
using a multiscale pyramid pooling layer. The complementary characteristics of the edge-related features
can effectively preserve the clear boundaries of the liver, while rich global context information can be
extracted from the combination of the auxiliary channel output and the pyramid pooling layer output. Many
qualitative and quantitative experimental results demonstrate that the proposedmodel can effectively improve
the performance of detection and localization networks, which can narrow the range of regions of interest,
and can enhance the accuracy of subsequent segmentation and recognition.

INDEX TERMS Liver detection, edge perception, contour prior, pyramid pooling, deep learning, semantic
features.

I. INTRODUCTION
The locations of anatomical structures in medical images
are highly important for various clinical image interpretation
applications. This information can improve the accuracies
of target segmentation, detection and recognition [1]. In the
diagnosis of liver lesions, to quantify the regional charac-
teristics of lesions and to evaluate the progress of or ther-
apeutic efficacy against tumors, using liver localization as
a pretreatment step will effectively improve the accuracy of
detection/segmentation of tumors [2].

Although CT images provide valuable information for
organ detection and segmentation, it is difficult to locate
target organs directly via traditional detection algorithms due
to the low contrast and similar gray levels between organs.
In recent years, experts and scholars at home and abroad have
proposed many target detection and location algorithms [4].
Available localization methods for abdominal imaging of sin-
gle ormultiple organs can be roughly divided into two groups:
(1) localization methods that are based on maps, which rely
on image registration technology that is based on massive
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voxel information [5]; and (2) localization methods that are
based on machine learning (ML), which rely on training
algorithms to learn the discriminating features [6] of organs.
Machine learning methods can be classified into classical
learning methods and deep learning methods. The former
extract artificially designed features and use them as input for
training subsequent classifications or regression models. The
latter do not manually design feature operators but typically
select or design deep structures and provide relatively large
training data sets.

After years of development, there remain urgent problems
with liver detection technology to be solved, which aremainly
due to the non-rigid characteristics of abdominal organs and
the influence of the complex background [7]. Most traditional
organ detection algorithms adopt semi-supervised learning
methods, which match by designing reference maps and
locate via feature classification. Since traditional methods
must design artificial features for each task, such as gray-level
features, contour features, and HOG features, these features
are easily affected by the imaging angle, and their general-
ization performance is poor [8]. Tran et al. [9] proposed a
multifeature target detection model that is based on saliency
segmentation. This method combines multiple feature space
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models and uses them to segment candidate regions from
a complex background, and it uses improved HU invariant
moments to describe the contours to obtain multifeature cas-
cade vectors of the segmentation region. Finally, SVM is used
to classify feature data. This method has high positioning
accuracy for high-contrast test data; however, its detection
accuracy for abdomen images that are captured under clinical
conditions is poor.

Object detection and location models that are based on
machine learning are the current research direction, which
improve the accuracy of recognition. Varol et al. [10] pro-
posed a liver detection method that is based on intelligent
learning, which intelligently analyzed complex abdominal
images via a machine learning algorithm, acquired the
temporal and spatial characteristics of abdominal images,
and conducted the corresponding high-precision classifica-
tion. Although the accuracy of model classification can be
improved by directly extracting features from the detec-
tion area and using an intelligent algorithm to classify and
judge, the feature representation performance directly affects
the recognition accuracy of the system. Traditional con-
tour recognition models, such as models that are based on
image processing and machine learning, are not susceptible
to noise or other disturbances but cannot effectively recognize
large-scale medical image data. Compared with SVM, deci-
sion tree, neural network and other shallow learning model
detection algorithms [11], CNN, which is the representa-
tive deep learning approach, emphasizes the depth of the
model structure, highlights the importance of learning behav-
ior characteristics, and more accurately characterizes data-
rich feature information by using big data to learn features.
Ng et al. [12] applied a convolutional neural network to
the field of abdominal organ recognition for the first time.
By designing a deeper network structure and using dropout
technology to enhance the generalization performance of the
model, its detection accuracy is higher than that of traditional
shallow learning models. A deep model is essentially a deep
nonlinear network structure, which possesses learning ability
with powerful essential features and can implement complex
function approximation by combining low-level features into
high-level features that are more abstract using multiple hid-
den nodes in the network.

With the rapid development and extensive application
of deep learning, the available deep learning algorithms,
such as AlexNet [13], GoogleNet [14], and residual network
(ResNet) [15], have yielded satisfactory results in image
classification and have high application prospects. However,
there are also shortcomings, such as large network compu-
tations, complex models, and poor real-time performance.
At the same time, the available deep learning network struc-
ture only uses high-level features for image classification
and detection, which renders it difficult to distinguish targets
that require the detection of fine features, such as thyroid
nodules and small tumors. Jiang et al. [16] designed a hip-
pocampal localization method for brain CT images that is
based on the LeNet-5 network. This method does not extract

features manually. Therefore, the available deep learning
model cannot be used directly for medical image detection
and localization.

Due to the complex backgrounds of abdominal images,
based on the multiscale deep model, an improved multiscale
deep learning network is proposed, which improves the accu-
racy of liver contour detection through the edge perception
fusion module and uses a multiscale pyramid pooling layer
to capture the high-level sub-semantic features of abdominal
images. The complementary features of edge-related features
can effectively preserve the clear boundary of the liver, while
the combination of the auxiliary side output and the pyramid
pooling layer output can be used to extract abundant global
context information.

II. DENSENET DEEP MODEL
The gradient on the front layer in a multilayer deep network
comes from the product of the gradient on the back layer.With
the deepening of the network depth, the learning rate of the
front hidden layer may be lower than that of the back hidden
layer, which causes the classification accuracy of the back
layer to decline, thereby resulting in the disappearance of the
gradient or gradient explosion [3]–[5]. Most available net-
works adopt cross-connections, which are similar to identical
mappings, such as ResNet [6] and FractalNets [7], whose
unit structure output is expressed in equation (1).

xl = Hl(xl−1)+ xl−1 (1)

where xl is the output data of layer l and Hl is the nonlinear
transformation of the network. The output of layer l is the
output of layer l − 1 plus the nonlinear transformation of
the output of the opposite layer, namely, layer l − 1. The
features that are extracted from each layer of a traditional
deep network are equivalent to a nonlinear transformation of
the input data. With the increase of the depth, the complex-
ity of nonlinear functions increases gradually [8], [9]. The
DenseNet network also connects all layers, but the input of
each layer comes from the outputs of all the previous layers,
which is equivalent to each layer directly connecting to the
input layer and the loss layer, to alleviate the gradient dis-
appearance phenomenon, and the network structure becomes
increasingly compact. Its output is expressed in Equation (2).

xl = Hl([x0, x1, · · · , xl−1]) (2)

where [x0, x1, · · · , xl−1] is a cascade of feature graphs from
the outputs of layers 0 to l − 1, which is similar to the
Inception operation [10]. To avoid the feature dimension of
the latter layer growing too fast with the increase of the
network layers, DenseNet pools and balances after each cell
module, as illustrated in Figure 1.

III. PROPOSED LIVER LOCATION ALGORITHM
The key strategy of liver localization is to obtain the contour
information of liver and accurately localize the liver region
via feature modeling. However, due to the lack of constraints
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FIGURE 1. 5 Layer DenseNet network.

on the boundary area of the existing liver contour segmen-
tation algorithm, it cannot effectively improve the accuracy
of the target boundary contour [17]. In addition, although
the method that is based on multichannel fusion integrates
a variety of feature information, it lacks a representation of
global structure information, and the network is still unable to
separate the liver from the complex background. When using
the semantic features of the liver for supervised recognition,
the available methods mainly roughly estimate the location
of the liver from the reference position, which cannot blur the
edge of the liver, thereby resulting in low detection efficiency.
Therefore, this paper improves the prediction accuracy by
using a liver contour detection network that is based on edge
perception. Moreover, the available liver location detection
methods only utilize bypass output features (feature addition
or feature stitching) that are based on channel operation,
while ignoring the importance of global structural features.
Therefore, this paper combines ASPP [18] and auxiliary
supervision [19] to overcome the deficiencies of the previous
models. The network structure of the proposed method is
illustrated in Figure 2, which consists of two modules: the
edge perception fusion module is based on the VGG-16
network [20], and the multi-scale ASPP is based on the
DenseNet network.

FIGURE 2. Model frameworks.

For preserving the edges, the proposed edge perception
fusionmodule can learn additional fine liver contour informa-
tion. Inspired by the HED model, this model trains an edge
detection stream (EDS) that is based on the VGG network
on the IRCAD liver data set, and the parameters of EDS are
fixed when training the loss function. Then, for each input

FIGURE 3. Decoder block.

image, we extract edge maps from the trained EDS and fuse
them with DenseBlocks bypass output features to help train
the detection stream (SDS) to locate the liver. In conclusion,
EFM aims at providing additional edge-related information
for liver detection tasks.

From a global perspective, this paper adopts a multiscale
pyramid monitoring module, which is based on the pyramid
pooling model (PPM). PPM implements a series of pooling
operations to collect global structural information, and mul-
tiple bypass output monitoring of the monitoring module can
generate liver location predictions hierarchically. Combining
these two parts, the module can effectively improve the final
prediction results.

A. DENSELY CONNECTED AUTO-CODER NETWORK
Due to the excellent performance of the densely connected
model in classification tasks and the efficient implementa-
tion of memory, this paper chooses densely connected net-
work 121 (Dense Net121) as the deep coding model [21].
Compared with VGG16 and ResNet-50, the DenseNet-based
training process can converge faster through dense resid-
ual connections. Our encoder structure consists of the first
convolution layer and the pooling layer (DenseBlock 0),
together with the first three DenseBlocks (DenseBlock 1,
DenseBlock 2, and DenseBlock 3), from the pretrained
DenseNet 121. The resolution of the output feature map
is 1/32 the size of the input image [22]. As illustrated in
Figure 3, each decoder module is designed as a residual
conversion module, in which 1∗1 convolution is responsible
for increasing and reducing the dimensions, and the last layer
is designed to double the resolution of the feature map via
bilinear interpolation. The input of each decoder module
is composed of two parts with the same spatial resolution.
The first part is the feature map from each corresponding
DenseBlock. For simplicity, the batch normalization layer
and the Relu layer after each convolution layer in the decoder
module are omitted.

B. EDGE-AWARE FUSION MODULE
The coding and decoding module feedforward network that
is described above can roughly localize the liver; how-
ever, because the upsampling operation cannot recover spa-
tial information and finer details, it cannot retain the edge
structure well. Therefore, we propose a novel edge per-
ception fusion module for preserving more edge structure
information and integrate the edge perception feature map
into the liver detection task. The edge detection task is to
detect the liver edge and the object edge in an abdominal
image. Edge detection is a basic computer vision task, and
it is an important step in segmentation and target detection
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tasks [23]–[25]. Here, we use complementary information
with edge-related information to facilitate liver contour detec-
tion. First, the monitoring flowmodule, which is based on the
VGGnetwork, is trained separately on the benchmark data set
for liver detection. The module is constructed from the HED
module, which splices multiple side outputs together. Then,
the spliced outputs are fed into the fusion layer to obtain a
unified output, in which the fusion layer is a convolution with
a core size of 51. The structure of the liver contour monitoring
module, which is based on the VGG network, is illustrated in
the red box of Figure 1.

We connect each input image to the monitoring module
and the detection module. The model parameters of the mon-
itoring module are fixed, and the multilevel edge perception
featuremap is fused into the detectionmodule to help train the
liver detection task on the abdominal liver data set. The four
levels of the monitoring module, namely, conv2-2 (128 chan-
nels), conv3-3 (256 channels), conv4-3 (512 channels) and
conv5-3 (512 channels), are used for feature mapping. Then,
they are fused with the outputs of Decoder4, Decoder3,
Decoder2 and Decoder1 via splicing operations. The fusion
mechanism of the edge perception fusion module can be
expressed as follows:

Fi = Cat(Xi,Ej) (3)

where Fi denotes the output characteristic diagram of the
module, Xi is the intermediate feature of the correspond-
ing block in the SDS module, and Ej is the intermediate
feature of the corresponding block in the detection module.
The values of (i, j) are {(5, 1), (4, 2), (3, 3), (2, 4)}. Cat
is a channel-by-channel splicing operation. In addition, for
Decoder 5, which has the same spatial resolution as the input
image, we fuse the final edge detection result (1 channel)
with the original gray image to form the most complementary
detail [26].

A denotes the output characteristic diagram of the module,
B is the intermediate feature of the corresponding block in
the SDS module, and B is the intermediate feature of the
corresponding block in the detection module. The values of i
and j are (i, j) {(5, 1), (4, 2), (3, 3), (2, 4)}. Cat is a channel-
by-channel splicing operation. In addition, for Decoder 5with
the same spatial resolution as the input image, we fuse the
final edge detection result (1 channel) with the original gray
image to form the most complementary detail [26].

Therefore, this paper also uses the VGG-16 network struc-
ture to extract contour features. To detect edges, modifica-
tions aremade to the contour detection network: First, remove
all fully connected layers. Then, remove the last maximum
pooling layer. Finally, connect the output to the refinement
module. The largest pooled conv1, conv2, conv3, conv4 and
conv5 in the VGG-16 network are used as the front-end
to extract target features. Then, the back-end is modified
to enable the network to extract contour information. This
strategy originates from the fivemultiscale aggregation layers
in holistically nested edge detection (HED): the lower layer
captures more spatial details but lacks sufficient semantic

information, whereas the deeper layer encodesmore semantic
information but lacks spatial details. In this task, useless
background information and abstract target contour inter-
ference must be reduced. Therefore, this study uses deeper
features to build templates. However, especially at a deeper
level, edge output in HED networks is more susceptible to
severe edge problems. Therefore, it is necessary to refine
the output boundary to generate a clear and accurate target
contour. In addition, the final output must be adjusted to the
original size via upsampling maximum pooling and deconvo-
lution. To realize the optimal performance in the convolution
process, this paper chooses the smallest convolution filter
(3 ∗3), whose stride is one pixel, which can capture left/right,
up/down and central motions; the largest pooling operates
with a step of 2 on a 2 ∗2-pixel window. The parameters of
each convolution layer and the maximum pooling layer in
the contour detection network that are used in this paper are
listed in Table 1, where RF, C and P denote receptive field,
convolution and pooling, respectively.

TABLE 1. Parameter settings for each layer in the contour detection
network.

C. MULTISCALE PYRAMID SUPERVISION MODULE
Although the coding and decoding network can combine
feature maps from various levels through splicing operations,
due to the lack of a global context structure, it cannot capture
multiscale liver objects in input images. To overcome this
problem, this paper uses the pyramid pooling module (PPM),
which has realized high performance in classification and
segmentation tasks. First, four-level average pooling opera-
tions are performed in cascaded networks. Then, the pooling
characteristics are sampled to the same size as the original
input. Finally, the multistage pooling feature is combined
with the original feature. Based on the basic pyramid pooling
operation, a new multiscale pyramid monitoring module is
proposed for more effectively utilizing the multiscale global
context structure. Instead of only applying one PPM network
to the final prediction part, it combines multiple auxiliary
side outputs with the PPM network to realize multiscale
monitoring. Therefore, we add a PPM network module after
each edge perception fusion module to accelerate the learning
process. The equation is presented in (4):

Si = σ (W ∗i Cat(W
∗

i,1PP1(Xi), · · · ,W
∗
i,nPPn(Xi)) (4)

where Xi(i ∈ {2, 3, 4, 5}) is the output of the ith decoding
block, PPn is the pyramidal pooling operation n ∈ {1, 2, 3, 4}
at level n, Wi,n is the weight of the 1∗1 convolution, σ is the
sigmoid function that is used to scale parameters, and Si() is
the last ith bypass predictive output.
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IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL DATA AND PARAMETER SETTINGS
To evaluate the performance of the improved deep network
liver detection algorithm, in this paper, a liver database that
is published by IRCAD International Medical Center in
France [16] and an abdominal image database are used as
training image data sets. Among them, 8,500 CT images of
the liver have been accurately labeled bymedical experts with
clinical experience. Except for the target area, the remaining
area is marked as background. Hence, the labeled data sets
can be used to train and test the liver localization model.
These data contain many abdominal images with complex
backgrounds. There are distorted images in the data set,
but they do not affect the medical experts’ labeling and
positioning.

This paper proposes a network module that is com-
pleted under the framework of TensorFlow in-depth learn-
ing [27], [28]. To increase the efficiency of optimization,
the ADAM optimization algorithm is used. The parameters
are as follows: alpha= 0.001, beta 1= 0.9, beta 2= 0.999 and
epsilon = 10-8. The batch size of each stream is 1. For the
liver contour detection module, the learning rate is set to
10−6, and the training iteration is set to 200 k/time; and for the
monitoring flow module that is based on the VGG network,
the learning rate is set to 300 k/time for iteration. The training
sample size was adjusted to 384×384 and served as the input
of the network. Graphic processing unit GTX 1080TI is used
for training and prediction. It takes approximately 8 hours to
train the edge detection network and 7 hours to train the liver
location detection network. At the detection end, the proposed
model can process 5 frames per second.

B. EVALUATION INDEX AND ITS CONTRAST ALGORITHMS
The medical image intelligent analysis system has been able
to identify various organs, tumors and other salient areas.
However, there are substantial errors in the available algo-
rithms, which occur mainly because the grayscale of the liver
is similar among sections and the liver shape differs substan-
tially among sections. In this paper, the detection rate (DR)
and the number of false-positive detections per image (FPPI)
are used as evaluation criteria. The relationship between DR
and FPPI is as follows:

DR = TP/(TP+ FN) (5)

FPPI = FP/(FP+ TN ) (6)

where TP represents the number of positive examples that are
correctly detected; TP + FN represents the total number of
positive examples in the image; andFP represents the number
of false-positive cases. To facilitate the analysis, we divide the
test data into 5 categories; the identifications and characteris-
tics are listed in Table 2.

In addition, to evaluate the accuracy of liver detec-
tion and location results, the pixel accuracy (PA) and
the mean intersection over union (MIoU) are used as
evaluation criteria [30]. The calculation formulas are as

TABLE 2. Characteristics of the test subsets.

follows:

PA =
∑

i
nii/

∑
i
ti (7)

IoU = (1/ncl)
∑

i
nii/(ti +

∑
j
nji − nii) (8)

where nij is the number of pixels in class i that have been
correctly classified as class j, and ti is the number of samples
in class i. According to the definition of IOU, this is equiva-
lent to dividing the overlap of two regions by the set of two
regions. A score of greater than 0.5 corresponds to an accurate
detection and segmentation result.

Experts at home and abroad have proposed many target
detection algorithms for abdominal images. However, few
models are available for liver detection in abdominal CT
images, and most of the algorithms are for tumor detection.
The objectives of this paper are to conduct target detection
as the pretreatment step of the subsequent cancer detection,
segmentation and recognition algorithm, to narrow the scope
of subsequent processing and to reduce the impact of back-
ground interference. The approach that was proposed by
Dr. Debin Lei, Institute of Automation, Chinese Academy
of Sciences, is to optimize the energy function through
edge constraints to identify the suspected liver region in CT
images. However, since open-source code is not provided for
this method, it is difficult to conduct a quantitative analysis.
Although open-source code is available for the model that
was proposed by Azizi et al. [26], this method is mainly
aimed at PET images and is not suitable for the data that are
processed in this paper. In addition, most evaluation indica-
tors of available liver detection algorithms are based on the
positioning accuracy, which directly depends on the size of
the data voxels and cannot be used directly. Although there
are few algorithms that can be directly compared qualitatively
and quantitatively, comparative experiments are conducted in
this paper.

Detection algorithms that are based on deep learning have
yielded highly satisfactory results in the field of natural image
processing. To qualitatively and quantitatively analyze the
accuracy of liver detection in the field of medical imaging,
in this paper, we consider ConvNet [31], YOLO-v2 [32],
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SSD [33], DenseNet [34], and ResNet [35]. For all com-
parison algorithms, the source codes or executable files that
were provided by the authors are used. Because the compared
algorithm detects natural images, to facilitate fair qualitative
and quantitative comparison, all deep algorithm models are
trained with the same training set.

C. QUANTITATIVE COMPARISON AND ANALYSIS
1) COMPARISON IN TERMS OF DETECTION ACCURACY
Table 3 presents the test results of the evaluation algorithms
for several test subsets, where the best and the second-best
results are shown in bold and italics, respectively.

TABLE 3. Detection rates under various data sets.

According to the test results in Table 3, the improved
DenseNet deep network that is proposed in this paper outper-
forms the original DenseNet. The main reason is that the edge
perception fusion module improves the accuracy of liver con-
tour detection and captures the high-level semantic features
of abdominal images using a multiscale pyramid pooling
layer. Complementary features of edge-related features can
effectively preserve the clear boundary of the liver, and the
combination of auxiliary side output and the pyramidal pool-
ing layer output can extract rich global context information to
adapt to the binary classification problem of liver detection.
Data set E contains the most complex images in the whole
test data set. There are many interference targets in the image,
the noise level is high, and there are tumors in the liver, which
cause an uneven internal gray level. This directly affects
the detection performance of the network. According to the
accuracy comparison results in Table 3, the detection rate on
data set E is the lowest, but it is higher compared to the other
deep networks.

2) COMPARISON OF FPPI
FPPI represents the statistical results of various detection
rates of liver detection algorithms, as shown in Figure 4.
To facilitate the comparison of the liver detection per-
formances in abdominal CT images among various deep
networks, the detection results of each algorithm with
FPPI = 1 are considered for visual analysis. In the same

FIGURE 4. Relationship curves between the detection rate and FPPI.

image database, when FPPI = 1, the detection rate of the
proposed algorithm is 97.21%, while the best results of the
comparison algorithms are 95.44% for the YOLO-v2 algo-
rithm, 89.1% for the ConvNet algorithm, 91.88% for the
ResNet algorithm, 92.15% for the SSD algorithm, and 87.1%
for the DenseNet algorithm. The main reason is that most of
the deep detection methods only use bypass output features
(feature addition or feature splicing) that are based on the
channel operation for the liver but ignore the importance of
global structural features [36]. The improved network model
that is proposed in this paper is based on edge perception by
the liver contour detection network to improve the prediction
accuracy. Therefore, the deep network that is proposed in
this paper can more accurately extract the liver features of
abdominal images, and the training is strengthened via the
improved predictive rectangular box method, thereby further
reducing the false detection rate on each image.

3) COMPARISON OF PERFORMANCE INDICATORS
OF TEST BOXES
Figure 5 plots the accuracy and success curves of target
detection.

According to Fig. 5, the proposed detection method real-
izes the best detection performance among the six com-
pared detection algorithms. The distance accuracy and the
overlap accuracy are plotted in Fig. 5 (a) and (b), respec-
tively. In the medical image analysis system, the accuracy
of the center position determines whether the test results sat-
isfy the requirements. To facilitate quantitative analysis, this
paper compares the percentage center position error within a
10-pixel threshold. The center error accuracy of the proposed
detection algorithm within a 10-pixel threshold is 0.91, and
the optimal detection performance is realized. The detection
success rate of the proposed algorithm is 0.872 at the overlap
rate threshold of 0.5, which is 4.7% higher than that of subop-
timalmodel Yolo v2. The quantitative analysis results demon-
strate that the proposed contour perception deep network has
high performance and improves the accuracy of detection
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FIGURE 5. Performance comparison of six detection algorithms in terms
of (a) accuracy and (b) success rate.

through contour detection and recognition. Especially for
liver images from various perspectives, this algorithm can
accurately mark the location of the liver, reduce the con-
sumption of artificial markers, and improve the efficiency of
marking.

D. QUALITATIVE COMPARISON AND ANALYSIS
Fig. 6 presents the results of liver detection for three abdom-
inal images by various algorithms, in which the red bor-
der corresponds to the results of the proposed model. Due
to space limitations, only three representative images are
presented in this paper. Between Fig. 6 (a) and Fig. 6 (b),
the morphology of the liver differs substantially, especially
when the liver is adjacent to the adjacent organs, and the
grayscale is similar. According to the maximum analysis
of the response graph, due to these appearance changes,
it is not possible to identify the exact boundary; hence,
the loss function cannot converge and the detection differ-
ence is large. Therefore, the ConvNet, SSD, DenseNet and
ResNet networks inaccurately locate the targets. The results
of the proposed model demonstrate that deformation, low
contrast and other disturbances can be overcome by contour

FIGURE 6. Results of comparison algorithms on three abdominal liver
images. The red bounding boxes correspond to the results of our
proposed model; the yellow bounding boxes correspond to the results of
SDD; the orange bounding boxes correspond to the results of DenseNet;
the green bounding boxes correspond to the results of ResNet; the purple
bounding boxes correspond to the results of ConvNet; and the blue
bounding boxes correspond to the results of YOLO-v2.

sensing networks. Yolo V2 is a lightweight network structure
that is based on an improved VGG network. Although it can
balance the robustness and speed, it remains vulnerable to
background drying, thereby resulting in deviation of detec-
tion center. In Figure 6 (c), the boundary of the target is not
readily identifiable. According to the test results, the ConvNet
detection box has deviated from the target center. The model
that is proposed in this paper combines the advantages of a
contour detection network and a target detection network so
that the algorithm can better adapt to shape changes of the
target in abdominal image detection.

V. CONCLUSION
This paper proposes an improved deep network that is based
on edge perception, which improves the accuracy of liver
contour detection via an edge perception fusion module and
captures high-level semantic features of abdominal images
using a multiscale pyramid pooling layer. Complementary
features of edge-related features can effectively preserve the
clear boundary of the liver, and from the combination of the
auxiliary side output and the pyramidal pooling layer output,
rich global context information can be extracted. Extensive
qualitative and quantitative experimental results demonstrate
that the proposed model can effectively improve the per-
formance of the available liver detection and localization
network.
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