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ABSTRACT This paper presents a new solution for inverse kinematics (IK) by using dual quaternions (DQ)
as operators and combining them with the Paden–Kahan subproblem to determine the analytical solution.
Kinematics under the structure of screw theory makes the process mathematically efficient and gives
geometric meaning. Both derived results and simulation outgrowths, when compared with the generally
used numerical solution and matrix-based analytical solution, show that our method is faster and does not
suffer from the numerical instability caused by being near to a singular configuration. The method has been
proven to have the advantages of reducing the computational load and promoting precision, and it can provide
multiple choices for IK.

INDEX TERMS Analytical solution, dual quaternions (DQ), inverse kinematics (IK), Paden–Kahan sub-
problems, screw theory.

I. INTRODUCTION
Robot kinematics, the fundamental element of robotics,
describes the relationship between joint displacements and
end-effector motion. Multiple methods are used to deal with
this discipline. Conventionally, the most famous method,
Denavit–Hartenberg (D–H) [1], is popular for its concise
description of the kinematic relationship of joint motion
and links state, and among the current methods, it requires
the fewest parameters for identification. On the other hand,
a method based on screw theory [2] is another important
approach. The screw-based method associates with physi-
cal meaning to a purely geometric entity by using a screw
motion to replace any rigid body motion in three-dimensional
(3D) space. Its flexibility in giving free choice of reference
frame and a global description of all elements make it suit-
able for multiple coordinate cooperating systems. However,
as technology has become advanced and machines are able to
catch up with mathematically descriptive robot commands,
more precise orders are eagerly demanded in the fields of
medical surgery and aerospace. As a result, we should fur-
ther develop a more accurate and faster methodologies. The
inverse kinematics (IK) is the procedure to get joint space
angles from Cartesian coordinates and is usually difficult to
solve analytically. To accomplish this goal, a mathematical
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operator called dual quaternions (DQ) is proposed instead of
the traditionally used matrix and is combined with an analyt-
ical solution using Paden–Kahan subproblems. Dual quater-
nions, as an extension of quaternions, takes into account the
translation its predecessor lacked by using dual numbers,
and it has several advantages. First, it is a compact and
geometrically meaningful method of representing all kinds
of motion that can be operated unanimously and simultane-
ously. Second, there are no singularity issues when repre-
senting 3D rotations, in contrast to local coordinates such as
Euler angles. Third, quaternion-based methods have shown
to have better computational efficiency than the other meth-
ods, including homogeneous coordinates [3], [4]. Moreover,
DQ can treat point and line transformations in the same
manner [5].

The study [6] did not use DQ as the basis of kinematics to
derive a new analytical Jacobian matrix. In addition, a large
number of computation resources were used while many
operations only took the real part and the next seven bases
were not used. It is a numerical method and cannot be used
for comparison. Although the use of DQ to describe the kine-
matics reduced the computation time compared to the matrix
approach, it still used the resultant principle [7], [8]. It may be
used on all configured robots, however, it is not suitable for
implementation. On the contrary, the proposed DQ approach
lies between the resultant principle and the geometric analyt-
ical solution for the robot. It neither completely re-analyzes
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the robot’s geometrical configuration nor requires a lot of
computation. In particular, it can be easily applied to many
robots.

The study conducted in [9] for solving redundant robots
used arm-angle to define additional degrees of freedom,
derived an augmented Jacobian matrix, and proposed a kine-
matic analysis. Finding the singularity of the robot itself and
the singularity of the algorithm in the so-called special case
actually has global significance. The study in [10] aimed to
improve the singularity of the algorithm used in [9], and a
double reference plane was proposed. Since the elbow cannot
be located on two reference planes at the same time, the
reference plane can be changed appropriately to avoid the
algorithm singularity. The pure geometric analytical kinemat-
ics used in that paper are included in our comparison.

Finally, since DQ allow the elegant representation of a
screwingmotion, they are themost suitable operators to apply
screw theory. There have already been some researches con-
ducted into combining DQwith screw theory in robotics [11].
However, the analytical solution of using Paden–Kahan sub-
problems also based on the screw theory. Inverse kinematics
can have global geometric meaning only when the kinematic
system is described under the structure of a screw. Then this
technique can be implemented to decompose the coupled
joint displacements into independent geometric problems,
giving an intuitive and stable solution. Therefore, DQ are
suitable for an analytical method based on Paden–Kahan sub-
problems. The following section shows the basic knowledge
and formulations of DQ and the Paden–Kahan subproblems.
In Section III, the kinematics structured by DQ are shown
step by step. Section IV presents the main idea of this paper,
the analytical solution based on DQ. Section V compares the
computation complexities and simulation results, and finally,
the conclusion is presented in Section VI.

II. PRELIMINARY KNOWLEDGE
A. DUAL QUATERNIONS (DQ)
Dual quaternions can be represented in the following form:

q̂ = (q̂S , q̂V) or q̂ = q+ εqO. (1)

In the left expression, q̂S = qS + εqOS is a dual scalar
and q̂V = qV + εqOV is a dual vector, while in the right
expression, q and qO are both quaternions, and ε is the dual
factor [12], [13] with a property of ε2 = 0. The sum and the
multiplication of two DQ are shown as follows:

q̂a + q̂b = (qa + qb)+ ε(qoa + q
o
b),

q̂aq̂b = (qaqb)+ ε(qaqob + q
o
aqb). (2)

There are numerous conjugate forms that exist for DQ,
and which form to use is determined by the operation needed
[14], [15]. The first type of conjugate is formulated by taking
a conjugate to all the quaternions terms that exist in the DQ,
resulting in the following:

q̂∗ = q∗ + εqo∗. (3)

The second kind of conjugate is formulated by making the
coefficients in the dual part change their sign as shown in (4),

¯̂q = q− εqo, (4)

while the third kind of conjugate is the combination of the
previous two conjugates:

¯̂q∗ = q∗ − εqo∗. (5)

The norm of a DQ is also a dual number [16] and is
computed using the following, (6):∥∥q̂∥∥ = ‖q‖ + ε(q∗qo + qo∗q

2 ‖q‖
). (6)

In addition, there exists one kind of DQ defined as a unit
DQ [17], [18]. The condition for a unit DQ is that their norm
should be with length 1. Thus, based on the above definition,
the conditions can be separated into two parts:

Real part: ‖q‖ = 1, (7)

Dual part: q∗qO + qO
∗

q = 0. (8)

The next section introducesDQ that represent the operation
of movements, as well as points and lines, and are all unitary.
Therefore, they have two additional constraints that reduce
their dimensions from 8 to 6.

The matrix operation is only used to calculate the relative
pose in terms of two lines and only acts as a linear algebraic
tool to solve the equations generated by the comparison coef-
ficients, rather than an algorithm of the DQ kinematics. As a
complex number with multiplication equal to zero, the dual
number can be used to retain the real part and the dual
part with the spiral theorem. The special operation principle
performs both the rotation and translation simultaneously.
Further, it uses a small amount of memory and consumes less
computational power.

B. PADEN–KAHAN SUBPROBLEMS
Paden–Kahan subproblems, originally presented by
Paden [19], using geometric algorithms to simplify the
encountered problems. The three Paden–Kahan subproblems
used in this study will be described later. In the structure
of screw-based kinematics, it can be imagined that the
end-effector is being spirally moved along each joint axis
sequentially and finally reaches the current position and
orientation. Therefore, it is necessary to make the screw
motions independent of each other. The IK can be solved
via the following steps based on the three Paden–Kahan
subproblems:
1) Find the points that are the intersections of two or more

axes.
2) Apply motions to these points and ignore the influence

of axes that go through the selected points (motion has
no effect on the point that is on the axis.) If subproblems
1 and 2 can be formulated here, proceed to step 4;
otherwise, go to step 3.

3) Subtract another point on the rest of the axes’ intersec-
tions to form subproblem 3.
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4) Use the solution described in the following three sub-
problems to find the joint angles, substitute the known
angles back into the original equation, and rearrange it.
Then, restart from step 1 and repeat until there are no
unknowns.

The three Paden–Kahan subproblems used here are the
following.

Subproblem 1: A point p is rotated along a screw axis ξ
(direction ω) for angle θ until it is coincident with another
point q, as shown in Fig. 1.

FIGURE 1. Geometric representation of subproblem 1.

The following equations can be used to solve this problem.
First, we define

u = p− r and v = q− r, (9)

where r is an arbitrary point on the axis, and their projections
on the direction ω are

u′ = u− ωωT u and v′ = v− ωωT v. (10)

Then (11) is used to obtain the unknown angle θ . It returns
back one solution, no solution, or an infinite number of
solutions.

θ = a tan 2(ωT (u′ × v′), u′T v′). (11)

Subproblem 2: A point p is rotated along a screw axis ξ2
(direction ω2) for angle θ2 and then rotated along another
screw axis ξ1 (direction ω1) for angle θ1 until it is coincident
with some point q, as shown in Fig. 2.

FIGURE 2. Illustration of subproblem 2.

This can be solved by using the following equations. First,
we define

u = p− r, v = q− r, and z = c− r, (12)

where r is an arbitrary point on the axis, and c is the relay
point whose information is unavailable. Since ω1, ω2, and
ω1 × ω2 are linearly independent,

z = αω1 + βω2 + γ (ω1 × ω2). (13)

Furthermore, by using

α=
(ωT1 ω2)ωT2 u−ω

T
1 v

(ωT1 ω2)2 − 1
and β=

(ωT1 ω2)ωT1 v−ω
T
2 u

(ωT1 ω2)2 − 1
, (14)

we can obtain (15),

γ 2
=
‖u‖2 − α2 − β2 − 2αβωT1 ω2

‖ω1 × ω2‖
2 . (15)

Once γ is determined, z, and hence c, can also be deter-
mined. Then the problem can be decomposed into subprob-
lem 1 for each. They return one group of answers, two groups
of answers, an infinite number of groups of answers, or no
answer, and each group of answers contains two angles.

Subproblem 3: A point p is rotated along a screw axis ξ
(direction ω) for angle θ until it has a specific distance δ with
some point q, as shown in Fig. 3.

FIGURE 3. Illustration of subproblem 3.

First, we define

u = p− r and v = q− r, (16)

where r is an arbitrary point on the axis. Then, their projec-
tions are:

u′=u−ωωT u, v′=v−ωωT v, and δ′2=δ2−|ωT(p−q)|2.

(17)

Let θ0 be the angle between the vectors u′ and v′. Thus,

θ0 = a tan 2(ωT (u′ × v′), u′T v′). (18)

The unknown angle θ2 can then be derived from the
following:

θ = θ0 ± cos−1(

∥∥u′∥∥2 + ∥∥v′∥∥2 − δ′2
2 ‖u′‖ ‖v′‖

), (19)

which returns one answer, two answers, or no answer.
Note that subproblems sometimes provide more than

one answer, so multiple combinations of solutions can be
recorded until they are fit under a suitable condition.

Points and lines are the basis for geometric objects in
Clifford algebra. To understand its application to robotics,
the operation can be found in the Clifford algebra of points,
lines and planes, and in the Points, Lines, Screws and Planes
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in DQ kinematics. However, a problem arises in the descrip-
tion of a posture with an upward movement. A posture can
be determined by two perpendicular lines. This information
can be further combined with the Paden–Kahan subproblems
to provide a DQ analytical solution for IK. Based on that
information, a more suitable representation to describe the
pose and properties of the rigid body motion to formulate
the original DQ analytical solution is proposed, and hence to
reduce the computation load so that it can replace the matrix
approach.

III. FORWARD KINEMATICS USING DUAL QUATERNIONS
In this section, the formula for transforming screw motion
into the form of DQ is introduced first. Later, we present how
these motions can be applied to both points and lines. Last,
the process to derive forward kinematics (FK) using DQ as
operators is presented. The FK must be understood first in
order to comprehend the subsequent IK.

A. SCREW MOTION
Screw motion consists of rotation of a part [20] around a
straight line, followed by a translation parallel to that line.
According to screw theory [21], all movements in 3D space
can be equated to a screw motion, and screw motion can be
realized with DQ by using the following components: a uni-
tary rotation axis n that does not necessarily pass through the
origin, a rotation angle θ with a translation distance d along n,
and a vector that denotes that there is a displacement between
n and the origin, which is represented as a (an arbitrary
vector point from origin to n). This third component is an
important characteristic because the screw motion formalism
can be used to describe rotations about eccentric points, while
quaternions and rotation matrices cannot be used in this man-
ner. A screw motion can be represented by the following DQ:

q̂s = (cos
θ

2
+ n sin

θ

2
)+ ε(−

d
2
sin

θ

2
+ n

d
2
cos

θ

2

+ (a× n) sin
θ

2
). (20)

B. APPLICATION TO POINTS AND LINES
Before operating on points and lines, a suitable representation
of them under a DQ structure must be determined. According
to the research performed by [22], a 3D physical point p with
coordinates x is represented by a DQ P = 1 + εx. Lines are
known to be able to be represented in Plücker coordinates by
specifying the line orientation n and a moment term m that
comes from the cross product of n with an arbitrary vector
a of a direction from the origin point to n. A DQ line L is
written as follows:

L = n+ ε(a× n) = n+ εm. (21)

After representation has been shown, the operations can
be introduced. DQ operate points and lines in two ways.
The first is by left-multiplying the conjugate of the operator
and then right-multiplying the operator. This is the case if
the new position and orientation of points and lines under

the same reference frame are examined, which in this case
is called active movement. The second way is the opposite,
by left-multiplying the operator and then right-multiplying
the conjugate of the operator, where the effect equals a frame
transformation (i.e., the position and orientation of the same
points and lines are under a different reference frames), which
in this case is called passive movement. The two movements
are explained through two examples also showing the slight
difference between operating on lines and on points. The first
objective is to screw a point and find its coordinates after
moving in the original reference frame. The active movement
can be realized through the following equations (for a point
operation, a mixed conjugate is used):

P′ = ¯̂q∗sPq̂s, (22)

where q̂s denotes the screwmotion that is applied to the point,
and the capital word means it is a DQ.

Next, if a line described from a different reference frame
is examined, passive movement should be used. In a similar
manner, it can be realized through the following operation
(for a line operation, an ordinary conjugate should be used).

L ′ = q̂sLq̂∗s . (23)

Again, all DQ, including screw motion, points, and lines,
are unitary. In other words, they should follow the constraints
mentioned in (7) and (8), which help verify the correctness of
applications.

C. FORWARD KINEMATICS (FK)
In this section, the derivation for FK using DQ is presented.
It is an extension of the knowledge in [23], which presents a
treatment of the theory of screws.

To formulate the FK of a serial robot, the first step is to
determine the joint axis vectors n and the moment vectors
m (or a × n). The second step is to generate screw motion
operators by substituting n,m, d , and θ into (20) with respect
to each joint number. Finally, all operators are multiplied
sequentially to obtain the ‘‘total transformation operator.’’
The following general case may help readers understand the
entire process, supposing the joint number is notated as i.
1) For each i, define the joint axis as ni and then arbitrarily

choose a point ai on the axis ni.
2) Use (20) to formulate the motion operator for each joint

and obtain the equations shown below.

q̂si = (cos
θ

2
+ ni sin

θ

2
)+ ε(−

d
2
sin

θ

2
+ ni

d
2
cos

θ

2

+ (ai × ni) sin
θ

2
). (24)

3) Left-multiply operators sequentially, starting from
step 1, resulting in a total motion operator q̂tot .

q̂tot = q̂si · · · q̂s3q̂s2q̂s1. (25)

After the total transformation operator has been obtained,
the end-effector position can be found by using (21).

P′ = q̂∗totPq̂tot , (26)
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where p is the initial position of the end-effector. For ori-
entation, two lines that are perpendicular to each other and
intersect at the end-effector initial position p must be well-
defined. Equation (23) is then applied to obtain the following
equations, assuming initial lines are parallel with the x- and
y-axes, respectively:

L ′x = q̂totLx q̂∗tot and L
′
y = q̂totLyq̂∗tot . (27)

Background knowledge and application of DQ to FK have
been shown in this section. The next section will present the
analytical solution of IK using DQ.

IV. ANALYTICAL SOLUTION FOR INVERSE KINEMATICS
USING DUAL QUATERNIONS
This section will describe the line-based analytical solu-
tion and the configuration-based analytical solution for IK
using DQ.

A. LINE-BASED ANALYTICAL SOLUTION
According to the precedent knowledge, the relationship
between two configurations, also known as the total motion
operator, can be found through the following steps. First,
the relationship of one line to the total motion operator is
examined, which can be described in (28) and then rearranged
in (29) by right-multiplying a conjugate of the total motion
operator.

q̂∗n1Lq̂n1 = L ′, (28)

q̂∗n1L = L ′q̂∗n1. (29)

Now, assume q̂n1 = [a, b, c, d, e, f , g, h], L = [0, u1,
v1, w1, 0, x1, y1, z1], and L ′ = [0, u2, v2,w2, 0, x2, y2, z2].
Equation (29) can then be expanded and arrayed into (30),
where ū1 = u1− u2 and ū2 = −u1− u2, which is true for the
other symbols. The null space of the matrix on the left side in
(30) is the solution of q̂n1.

0 ū1 v̄1 w̄1 0 0 0 0
ū1 0 −w̄2 v̄2 0 0 0 0
v̄1 w̄2 0 −ū2 0 0 0 0
w̄1 −v̄2 ū2 0 0 0 0 0
0 x̄1 ȳ1 z̄1 0 ū1 v̄1 w̄1
x̄1 0 −z̄2 ȳ2 ū1 0 −w̄2 v̄2
ȳ1 z̄2 0 −x̄2 v̄1 w̄2 0 −ū2
z̄1 −ȳ2 x̄2 0 w̄1 −v̄2 ū2 0





a
b
c
d
e
f
g
h



=



0
0
0
0
0
0
0
0


. (30)

However, the number of degrees of freedom (DOFs) is
greater than needed. This situation has been expected, as pre-
viously said, and the information from another line should

be used. After doing the same thing on the second line,
another equation similar to (30) is obtained, but the subscripts
under the symbols are changed from 1 to 3, and 2 to 4. For
convenience, the left-hand side is called matrix x, and the
resemble matrix is called matrix y (since they are originally
lines parallel to the x- and y-axes, respectively). The com-
bination of matrix x and matrix y provides an augmented
matrix, but such a large matrix is not necessary, so Gaussian
elimination is employed, and the two constraints are shown
in (31) that come from (7) and (8) are applied to matrix x and
matrix y.

qT q = 1 and qT qO = 0. (31)

Equation (32) shows matrix x after going through the
reduction. As for matrix y, only the subscript needs to be
modified.
w̄1 −v̄2 ū2 0 0 0 0 0
x̄1 0 −z̄2 ȳ2 ū1 0 −w̄2 v̄2
ȳ1 z̄2 0 −x̄2 v̄1 w̄2 0 −ū2
z̄1 −ȳ2 x̄2 0 w̄1 −v̄2 ū2 0

.
(32)

This matrix has a maximum rank equal to 4 (6 minus 2 for
rotation and translation). In addition, its first row can be
changed according to the configuration used. In a more
detailed explanation, (32) was generated since the x- and
y-directions were chosen to build the initial frame. If y and
z directions are picked instead, then the second row in matrix
x (30) should be used as the first row to form a new equation.
In the next step, (33) is built by combining the reducedmatrix
x and matrix y.

w̄1 −v̄2 ū2 0 0 0 0 0
x̄1 0 −z̄2 ȳ2 ū1 0 −w̄2 v̄2
ȳ1 z̄2 0 −x̄2 v̄1 w̄2 0 −ū2
z̄1 −ȳ2 x̄2 0 w̄1 −v̄2 ū2 0
w̄3 −v̄4 ū4 0 0 0 0 0
x̄3 0 −z̄4 ȳ4 ū3 0 −w̄4 v̄4
ȳ3 z̄4 0 −x̄4 v̄3 w̄4 0 −ū4
z̄3 −ȳ4 x̄4 0 w̄3 −v̄4 ū4 0





a
b
c
d
e
f
g
h



=



0
0
0
0
0
0
0
0


. (33)

This matrix (33) has the rank of 6, because the solution qn1
already exists, as well as an additional orthogonal solution
[0, 0, 0, 0, a, b, c, d]. These solutions span a 2-dimensional
null space. Using a singular-value decomposition (SVD)
on the left-hand side in (33), two bases of null space are
obtained. Finally, two free variables are verified according
to Daniilidis [11]. Two free variables, λ1 and λ2, are set, and
two bases of null space are assumed as n̂1 = (n1, nO1 ) and
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TABLE 1. Kinematic parameters of 6-Axis robot manipulator.

n̂2 = (n2, nO2 ), respectively, so that q̂n1 = λ1n̂1+λ2n̂2. Using
the constraint of (31), we have

λ21n
T
1 n1 + 2λ1λ2(nT1 n2)+ λ

2
2n
T
2 n2 = 1, (34)

λ21n
T
1 n

O
1 + λ1λ2(n

T
1 n

O
2 + n

T
2 n

O
1 )+ λ

2
2n
T
2 n

O
2 = 0. (35)

Without loss of generality, nT1 n
O
1 6= 0. Consequently, λ2 6= 0.

Setting c= λ1
/
λ2 and substituting into (35) yields

λ22(n
T
1 n

O
1 c

2
+ (nT1 n

O
2 + n

T
2 n

O
1 )c+ n

T
2 n

O
2 ) = 0. (36)

Furthermore, by solving this equation with λ2 6= 0, two
values of c are obtained. Now, considering (34), substituting
λ1 into cλ2 gives:

λ22(n
T
1 n1c

2
+ 2nT1 n2c+ n

T
2 n2) = 1. (37)

For stability, the value of c that provides the greatest value
of the inner term of (37) is used. Then, all the unknowns
become known, and q̂n1 can then be clearly determined. After
we have the total motion operator, the solving process can
thus be started.

FIGURE 4. Joint configurations and standard D-H coordinates of the
National Taiwan University (NTU) articulated 6-DOF robot arm.

An example is provided to help explain the analyti-
cal IK solving process. Consider the self-fabricated NTU-
articulated robot arm [24]–[28] designed by our laboratory,
as shown in Fig. 4. It is a 6-DOF all-revolute-joint robot arm,
with a robot configuration of SRRR (S-spherical, R-revolute),
with kinematic parameters of (a, α, d, θ), as shown in Table 1.
q61 is defined as the total motion operator, and its value

can be obtained through the method mentioned earlier in this
section. The beginning equation can be written by applying
q61 on a point P56 (the subscript is the axis that has passed

through it). This operation generates a new coordinate P′56
and provides (38).

¯̂q∗61P56q̂61 = P′56. (38)

Because rigid body motions produced by revolute joint
5 and 6 have no effect on P56, their motion operators can be
canceled from each side, leaving only q̂41. Consequently, (38)
can also be represented by (39).

¯̂q∗41P56q̂41 = P′56. (39)

A point P123 is then subtracted at each side of (40). This
allows the equation to be rearranged by pulling out the first
three motion operators and sorting out an identical formula-
tion to subproblem 3. The formulas are as follows:

¯̂q∗41P56q̂41 − ¯̂q
∗

31P123q̂31
= P′56 − P123,

⇒

∥∥∥ ¯̂q∗4P56q̂4 − P123∥∥∥ = ∥∥P′56 − P123∥∥ . (40)

After solving subproblem 3, θ4 and q̂4 become known.
Next, P123 is operated. This time, the conjugate of the total
motion operator is used, allowing the effects of the first three
joints to be canceled. New coordinates and equations can be
shown by (41):

¯̂q61P123q̂61 = P′123. (41)

As mentioned earlier, this can also be shown as

¯̂q64P123q̂∗64 = P′123. (42)

If the motion operators of axis 5 and 6 are multiplied to both
sides of (42), the following is obtained:

¯̂q4P123q̂∗4 = ¯̂q
∗

65P
′

123q̂65. (43)

This is the standard form of subproblem 2, allowing the
values of θ5 and θ6 to be obtained. At the present stage, θ4,
θ5, and θ6 are determined. For the next operation, the total
operator should be transferred into q31 using the following
equation.

q̂31 = q̂∗4q̂
∗

5q̂
∗

6q̂61. (44)

This equation can be applied to P3, which is a point on axis
3 but does not go through axis 2, giving

¯̂q∗31P3q̂31 = P′3. (45)

For the same reason, (45) can be represented as

¯̂q∗21P3q̂21 = P′3. (46)

Equation (46) is the standard form of subproblem 2, and
it can be used to find θ1, θ2. The last operator is the motion
caused by joint 3, and its value can be derived by using the
information already obtained from other angles.

q̂3 = q̂31q̂∗1q̂
∗

2. (47)

There are two methods for determining θ3, and both have
the same result. One is using subproblem 1, while the other
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uses (24) to compare the coefficients to verify θ3. At this
point, all the unknowns are solved. Next, we introduce a more
optimized method that presents operators and configurations
simultaneously.

B. CONFIGURATION-BASED ANALYTICAL SOLUTION
The previously discussed traditional method where DQ are
used to manage points and lines is very inefficient. Therefore,
presented in this section is another way to represent a frame
configuration, which can be achieved by using (48).

q̂g = [qR,
1
2
qRqt ], (48)

where q̂g is the DQ representation of a configuration, qR is
a quaternion representation of the orientation, while qt is a
quaternion representation of the translation, and qR and qt can
be found by

q̂R = cos(
θ

2
)+ n sin(

θ

2
), (49)

q̂t = 1+ ε
d
2
t, (50)

where n is a three-dimensional vector that denotes the unitary
rotation axis, θ denotes the rotation angle, d represents the
distance, and t represents the direction. The configuration
was formulated by combining a single rotation and a single
translation DQ. Since this representation is a configuration
and also a motion operator, using it to derive FK only needs
right-multiplication, such as

q̂′g = q̂gq̂tot , (51)

where q̂′g is the configuration of the end-effector after the
operation. Furthermore, orientation and position can be
obtained by reversing the establishing process.

By employing this technique, less effort is required than
the first method. The relationship between two configurations
can easily be derived by left-multiplying only the conjugate
of the initial configuration DQ, and q̂n1, the total motion
operator, can then be found by

q̂n1 = q̂∗ginitial q̂gfinal . (52)

Also, for the solving process, this expression can help
reduce computation loading. Notice that the deriving pro-
cess is used to determine which point should be substituted
into these subproblems. Most of the computational resource
is used to find points and solve subproblems, while the
subproblems are already fixed in the procedure. Therefore,
the computational speed of how fast these treated points can
be found is the most influential factor in favor of this method.
The configuration-based method utilizes the dual property
of its representation, which can be freely switched from a
configuration to an operator to form a new process and suc-
cessfully reduces the computational load. The new process
shares nearly the same architecture with the previous process,
but there is quite an improved version in computational speed.

Now let an operation (q̂g)p be defined to represent the
motion of extracting position information from a DQ-
represented configuration q̂g = [q, qO].

(q̂g)p = take the last three elements of[2q∗(qO)] = p, (53)

where p is the coordinate or the origin of this configuration.
By using this concept, the work presented in the previous
method can be simplified. For example, (38) can be replaced
by

(Pg56q̂61)p = p′56, (54)

which reduces about half of the computation and results in
a faster calculation speed. The complete process using a
configuration-based solution is summarized in Table 2.

TABLE 2. Complete process using a process configuration-based solution
algorithm.

Using subproblem 1 or comparing coefficients with (24)
gives the final value of unknowns, and the entire IK has been
done.

This section has shown two different ways of solving
analytical solutions using DQ. Clearly, the configuration-
based analytical solution is more efficient. For the following
sections, the analytical method based on DQ refers to the
configuration-based analytical solution.

V. SIMULATIONS AND EXPERIMENTS
To prove the efficiency and compactness of the proposed
method, the computational load has been considered, and
several methods are compared for both FK and IK. Although
this paper proposes the inverse analytical solution using DQ,
FK is still an important part because a complete kinematic
will be better if operating under the same mathematical
structure. The results have shown that the method of using
DQ to represent configuration is the most efficient way to
describe kinematics. The D–H convention method, exponen-
tial mapping method [23], and the proposed DQ method are
compared, and the results are summarized in Table 3, where
n is the number of joints. Clearly, the proposed method has
the least computational load.
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TABLE 3. Forward kinematics comparison.

D–H convention:

i−1
i A =


cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di
0 0 0 1


0
nA =

0
1A

1
2A · · ·

n−1
n A

. (55)

Exponential mapping:

eξθ =

[
eω̂θ

(
I − eω̂θ

)
(ω × v)+ ωωT vθ

0 1

]
g(θ ) = eξ1θ1eξ2θ2 . . . eξnθngst (0). (56)

Dual quaternions (DQ):

q̂si = (cos
θ

2
+ ni sin

θ

2
)+ ε(−

d
2
sin

θ

2
+ ni

d
2
cos

θ

2

+ (ai × ni) sin
θ

2
),

q̂tot = q̂si . . . q̂s3q̂s2q̂s1,

q̂′g = q̂gq̂tot . (57)

The equations show that in FK, the D–H convention
uses the fewest number of parameters for identification but
requires 16 memory units to record a matrix, and it spends
moderate resources on calculation. As for exponential map-
ping, it has the largest loading on both memory size and
computation, but it has flexibility in reference choice and rep-
resents the actual joint displacements. Equation (57) shows
the DQ calculation. Although it requires more parameters
than D–H to identify a joint motion, only eight parameters
are used to record a rigid body motion. Moreover, the DQ
calculation shows the least computational complexity, and it
has the same advantage as exponential mapping due to their
identical theoretical origin: screw theory. In addition, it is
competitive in a situation with additional DOFs.

For IK, there is no general comparison because every
analytical solution has its uniqueness. Consequently, one case
is used to demonstrate the resources they will consume. Also,
the most commonly used numerical solution method was
assigned to be one of the selections for this comparison.
In the comparison, the precision of the numerical solutionwas
adjusted to 0.0001 (m), and the robot model is the same as the
example mentioned in the previous section. Three methods
(D–H Convention, Exponential Mapping, and Dual Quater-
nions) were used to solve a T-shaped trajectory lying parallel

to the x–y plane segregated into 601 segments. To avoid
singularity, the following procedure was executed ten times
to generate the final result.
• ALGORITHM:

1) Given a set of Cartesian space missions.
2) Each of the group of target DQ analytical solutions and a

solution with answers may be stored in the joint space.
3) Use the level of joint activity to find the best (minimum)

combination. ∫
θ̇T θ̇dt. (58)

4) For a singular point and the case corresponding to an
infinite number of solutions, the average value between
this step and the next step will be used for the joint space
to ensure that equation (58) has a minimum value.
• FEATURES:
1) Global optimal solution.
2) Small number of calculations, and fast.
3) High precision.
4) Can deal with singular points without losing

precision.
5) It has geometric meaning without loss of generality.

In the comparison of different calculations, the exponen-
tial mapping analytical solution was used for comparison to
reflect its advantages as an advanced version. The optimal
solution at the singular point is guaranteed by the algorithm.
The results of the experiment (compared with the numerical
method) include the calculation time, the angle of the joint
movement, and the angular velocity. The behavior produced
by the singular point can prove the merits and effectiveness
of the proposed method.

As for the experimental configuration, a Windows appli-
cation with multi-thread programming was developed as the
software for both simulation and real-world experimental
purposes. The software development and testing environment
wereMicrosoft R© Visual Studio 2012 IDE underMicrosoft R©

Windows 7, the programing language used was C/C++, and
the GUIwas built using theMFCLibrary. For the 3-D display,
OpenGL [29] and OpenCV [30] were used for real-time
computer vision and image processing. The computations
related to linear algebra were consigned to the Eigen C++
library [31]. Multiple functions can be controlled through
the program, including the robot control panel, trajectory
planning, force/torque sensor oscilloscope, and Kinect sensor
monitor. Among them, the robot control panel provided joint
space and Cartesian space control, and the trajectory planning
made the addition of time, position, velocity, and acceleration
of a via point available and, further, was able to hybridize joint
space andCartesian space trajectories. Further, it also had var-
ious kinds of trajectory interpolations such as cubic/quantic
polynomial, spline, and so on. Fig. 5 and Fig. 6 depict the
main dialogue of the program interface of the multi-robot
control.

Table 4 shows the derived computational load for two
methods, where one is the proposed method, and the other is
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FIGURE 5. The main dialogue of the GUI application.

FIGURE 6. The dialogue of the robot control panel.

TABLE 4. Inverse Kinematics Comparison.

TABLE 5. Time consumption of inverse kinematics.

its predecessor (exponential mapping, an analytical solution
based on the matrix). It gives the theoretical evidence to
prove the high speed of the proposed method. Table 5 shows
the experimental time consumed in each method, including
the proposed method, its predecessor, and the generally used
numerical method. Among them, the proposed method has
the least time-consuming. Table 6 shows the complete com-
parison methodology framework. Fig. 7 demonstrates three

FIGURE 7. Cartesian coordinate trajectory comparison (notice that due to
the z direction, variations are below 0.0001. While the z label seems to
remain constant, virtually, it is varying).

trajectories in 3D space: the desired T-shaped trajectory (red),
trajectories obtained by substituting joint angles calculated
from the DQ analytical method (green), and the numerical
method (blue) back into the FK. The conspicuous protuber-
ance of the trajectory from the numerical method can be
found near the intersection point. It is engendered since the
intersection point is a singularity of the model robot. While
the numerical method suffers from the singularity, the DQ
analytical method visibly overlaps the desired trajectory. As a
special configuration of a robot, the singular point will cause
the Jacobian matrix to lose full rank and numerical instability.
It can also be interpreted as the disappearance of a certain
degrees of freedom in this configuration. Its importance is
that when the singularity occurs, the robot is then unpre-
dictable, and the joint may require a large angle of rotation at
that instant. In real-world environments, people do not expect
this behavior. The singular point in our experiment is found
due to three collinear axes if the robot has to describe an
Euler wrist [32], which is a singular wrist (however, we do
not have the Euler wrist). Since the robots with an Euler wrist
can be easily and directly analyzed geometrically, and the
end-effector and body position information can be decoupled,
there is no need to use the DQ approach.

Figure 8 is the animation screenshot of a robot operating
the desired trajectory. The hand is mounted on the robot
arm to simulate a manipulation task, although in this case,
the hand [33] performs no motion. As can be seen, once the
robot backed to initial condition and started the next direction
motion, rotations of the first joint and the third joint were
particularly large, approximately 90 degrees, for an instant.
This obviously displays the situation of the robot encoun-
tering singularity. Fig. 9 simultaneously shows six simulated
dimension errors (error along the x, y, and z directions and
orientation errors around the x, y, and z directions) of the
numerical method (blue), the analytical method based on the
matrix (red), and the analytical method based on DQ (green),
taken from simulation. In the figures, the green line and the
red line are almost overlapping, and the abruptly ascending
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TABLE 6. Methodology comparison framework.

FIGURE 8. 3D display of robot demonstrating trajectory. Reading order is
from left to right, top to bottom. a) Initial condition (first). b) Started to
move to its left side (joint 1 and joint 3 significantly varied). c) Arrived at
trajectory boundary and started to move back to initial position. d) Initial
condition (second). e) Started to move forward (joint 1 and joint 3
significantly varied). f), g), h), i) Repeat above motion (to its right side).

error is due to singularity. Notice that the large discrepancies
in error scale between the numerical method and other two
methods can be due to the user. The precision of the numerical

FIGURE 9. Error comparison of numerical method (blue), analytical
method based on matrix (red), and analytical method based on dual
quaternions (green).

method can be freely adjusted, which means equivalent pre-
cision can be achieved at the expense of more computation
time. In contrast, the proposed method achieves the same
precision with less computation time. The difference between
the numerical method and the DQ method is obvious. It may
be possible to set the accuracy of the numerical method to
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FIGURE 10. Error comparison of analytical method based on
matrix (blue) and analytical method based on dual quaternions (red).

FIGURE 11. Joint 4 velocity comparison of numerical method (blue) and
analytical method based on dual quaternions (red).

a relatively comparable level or to take a logarithm on the
Y-axis of the chart to compare. Nonetheless, the pros and cons
of accuracy and computation time are already obvious.

Fig. 10 gives us the infinitesimal error comparison between
the analytical method based on a matrix (blue) and the
analytical method based on DQ (red). Although errors of
DQ are greater, it is still safe to say that the errors of the
DQ method have less magnitude than those of the matrix
methods. Fig. 11, Fig. 12, and Fig. 13 show the anomalous
oscillations (encompassed by red circle) that occurred at
singularity in the velocity aspect of the numerical method at

FIGURE 12. Joint 5 velocity comparison of numerical method (blue) and
analytical method based on dual quaternions (red).

FIGURE 13. Joint 6 velocity comparison of numerical method (blue) and
analytical method based on dual quaternions (red).

joints 4, 5, and 6. Here, velocities are the average velocities
in each sampling time interval (5ms). Again, the proposed
method avoided an unstable situation with a stable solving
process.

VI. CONCLUSION
This paper proposes a combination of DQ and Paden–Kahan
subproblems to form an analytical solution. The process
started with background knowledge of DQ and Paden–Kahan
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subproblems, continued with DQ-based kinematics, and then
introduced two kinds of operations under the frame of DQ for
solving an NTU-articulated robot arm IK problem, and the
proposed configuration method proved to be better. Finally,
the computational loads of our proposed method were com-
pared with other methods to support our viewpoint. A trajec-
tory simulation showed that our method using DQ was better
than other traditional methods in constructing kinematics
for robots. Specifically, the proposed method had the fastest
speed, the best precision, the fewest singularity influences,
and the advantage of the availability of recording every pos-
sible joint angle as the answer of IK for one configuration.
Conversely, the numerical solution only provided one answer.
However, even if the above results look excellent, there are
still some shortcomings in this method. One is that analytical
solutions do not always exist if the target robot does not
have enough axis intersection, which limits the extensive use
of this method. Another problem corresponds to the solving
process, which is too specific to have the skill easily applied
to its robot (every robot’s different analytical solution process
requires users to derive these themselves). However, once the
above two constraints are no longer valid in an application,
an analytical solution based on DQ is a worthy technique.

Since the initial tests were conducted, the breadth and
depth of this method have been improved and more algo-
rithms have been applied. The method has proved to be more
robust and effective, addressing the singular importance of
rising global demand for freedom of choice for computing
speed.
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