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ABSTRACT In this paper, an advanced fruit fly algorithm (FOA) is proposed and applied in subarray
phased array antenna synthesis. The proposed algorithm introduces orthogonal crossover, quantum selection
and simulated annealing operations on the individuals, and then combines them by using an adaptive
expansion-contraction factor. Accordingly, a linear generation mechanism of candidate solution based fruit
fly algorithm (LGMS-FOA) is generated, in which individuals are selected in a highly balanced way, and
the poor solutions are still accepted with a varying probability during the iteration. These mechanisms
help the proposed algorithm enhance the population diversity and global searching capability but avoid
falling into local optimum. Numerical classical unimodel benchmark functions are provided to test the
proposed algorithm (OLFOA) in comparison with other advanced algorithms. In addition, to further validate
its superiority, the proposed algorithm is applied to handle the subarray array synthesis of several tough
planar and circular apertures with different array sizes and subarray shapes. Simulation results show that the
proposed OLFOA can achieve better performance than other improved evolutionary algorithms.

INDEX TERMS Irregular subarray, fruit fly algorithm, orthogonal crossing, quantum behavior, simulated

annealing, array synthesis.

I. INTRODUCTION

Recently, subarray technology has attracted considerable
interests in radar and communication systems, because it
can greatly reduce the cost and complexity of the sys-
tem by reducing the number of antenna splitters and phase
shifters [1]. Currently, the subarray partition and optimization
problem remains to be a large barrier in the development of
subarray technology. Various solutions have been explored
to solve this problem. The subarray partitioning method
based on genetic algorithm (GA) was proposed in [2]-[5].
These methods could solve the partitioning of irregular sub-
array, but got poor performance in solving the exact partition
problem. Then, a method based on analytic schemata-
driven optimization, which achieves exact partition in low-/
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medium-sized rectangular subarrays, was introduced in [6].
The X algorithm-based subarray tiling method, which
exhibits great efficiency and accuracy in irregular subarray
partitioning, was proposed in [7]. Although subarray technol-
ogy applied in array antenna design helps to alleviate the high
grating lobe to certain extent, exploring high-performance
intelligent optimization algorithms for array synthesis, espe-
cially for large array or huge elements, is urgently desired.
Evolutionary algorithms have long been considered as effi-
cient candidates to solve antenna synthesis problems. Genetic
algorithm (GA) and particle swarm optimization (PSO) are
two well-known optimization algorithms for array antenna
synthesis [8], [9]. Simulated annealing algorithm (SA),
ant colony optimization algorithm (ACO), and differential
evolution algorithm (DE) are also widely used in array
antenna optimization [10]-[12]. In addition, several recently
proposed algorithms, such as invasive weed optimization
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algorithm (IWO) [13] and artificial bee colony algorithm
technique (ABC) [14], have been successfully implemented
in antenna design and optimization. These algorithms appear
to be less and less effective in solving complex problems with
high dimension and large computation overhead.

In 2012, motivated by the behavior of fruit fly in seeking
food, a new fruit fly optimization algorithm (FOA) [15] was
proposed. As a new global evolutionary algorithm, FOA is
well-known for its simple principle, few adjustable param-
eters, strong global optimization capability, and fast con-
vergence speed. Similar to other evolutionary algorithms,
FOA also shows the disadvantages of easily falling into the
local optimum and limited performance when calculating
multi-dimensional problems. To address these shortcomings,
a modified fruit fly algorithm integrated with the linear
generation mechanism of candidate solution (LGMS) was
proposed in [16], showing that the algorithm performance
was greatly improved without changing any natural concept.
However, the shortcomings of the fruit fly algorithm were still
not addressed completely.

In this study, an advanced LGMS-FOA, namely, OLFOA,
is proposed. By introducing orthogonal cross [17] and
quantum selection [19] operations on the individuals,
the proposed OLFOA combines them with an adaptive
expansion-contraction factor to improve the convergence
performance in solving high-dimensional complex prob-
lems. On this basis, the simulated annealing [20] strategy
is introduced to further enhance the diversity of the popu-
lation. The superior performance of the proposed algorithm
has been validated via both numeral benchmark function
tests and high-dimensional subarray phased array antenna
synthesis problems with different array sizes and subarray
shapes.

This paper is organized as follows: Section II introduces
the concepts of FOA and LGMS-FOA. Section III presents
a detailed architecture of the proposed OLFOA. Section IV
makes comparisons between OLFOA and several recently
proposed algorithms. Section V describes the application of
OLFOA in solving high-dimensional subarray phased array
antenna synthesis problems. Section VI draws the conclusion.

Il. FOA AND LGMS-FOA

A. FOA

Fruit fly algorithm is a global optimization method based on
the food-finding behavior of the fruit fly population. In the
process of searching for food in the search space, other fruit
flies are randomly searched for a certain range from the
current location of fruit fly closest to the food. The search
process is repeated starting from the fruit fly that is currently
closest to the food until the food is found. Fig. 1 illustrates
the food-finding iterative process of the fruit fly swarm. The
x- and y-axis are the search spaces for the fruit fly population.
The circles indicate the fruit fly swarms. The solid arrows
indicate the food-finding direction of the fruit fly population,
whereas the dashed arrows indicate the food-finding direction
of fruit fly individuals. xll; ost? y;') oy indicates the fruit fly that
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FIGURE 1. Food-finding iterative process of fruit fly swarm.

is closest to the food in the ith iteration. x,,y, indicates
the location of nth fruit fly individual in the x- and y-axis,
respectively.

The specific steps of the FOA algorithm are shown as
follows:

Step 1. The maximum number of iterations (genmax),
population size (popsize), range of random fruit flies (LR),
and random direction of fruit fly (FR) in the fruit fly algorithm
are initialized. Then, the location of the fruit fly population is
defined.

x_axis = rand(LR) (@))

y_axis = rand(LR) 2)

where the x_axis and y_axis represent the searching center of
the fruit fly population in x- and y-axis, respectively.

Step 2. Each fruit fly is updated with a random search

direction and distance by

Xx; = x_axis + rand(FR) 3)

yi = y_axis + rand(FR) “4)

Step 3. The distance (Dist) between the location of the fruit

fly and the origin and the taste decision value (S) of the fruit
fly (S characterizes the distance from the food) are calculated

as follows:
Dist; = \/x? + y? Q)

1
Si = 6
" Dist; ©
Step 4. The taste decision value is substituted into the fitness
function to calculate the corresponding fitness value (Smell).

Smell; = fitness function(S;) @)

Step 5. The optimal fitness value (bestsmell) and correspond-
ing location (bestindex) of the fruit fly individual are obtained
by

[bestsmell, bestindex] = min(Smell) ®)

Step 6. The optimal fitness is set as the global optimal value
(gsmell), and the corresponding location of fruit fly is used
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as the searching center coordinate of the next iteration.

gsmell = bestsmell ©)]
x_axis = x(bestindex) (10)
y_axis = y(bestindex) 1D

Step 7. Steps 2—6 are repeated until the terminal criterion is
met or the maximum number of iterations is reached.

B. LGMS-FOA

From the description of the fruit fly algorithm, it is discovered
that, given that the taste determination value (S) is always
greater than zero, the fruit fly algorithm cannot express the
negative number in the dimension level. Moreover, given that
the taste judgment value cannot satisfy the uniform distribu-
tion, the searching of the fruit fly algorithm in the dimension
is not uniform; thus, the fruit fly algorithm cannot effectively
solve the complex optimization problem [16].

With this inspiration, the LGMS-FOA proposed by D. Shan
in 2014 [16] expands the range of taste judgment values by
introducing the LGMS mechanism. By doing so, the new taste
judgment value satisfies the uniform distribution. The process
of LGMS-FOA is shown as follows:

Step 1. The maximum number of iterations (genmax),
population size (popsize), searching coefficient (n), initial
weight (wp), and weight coefficient («) are initialized. Then,
the location of the fruit fly population is defined.

x_axis = n X rand(domain) (12)

where x_axis represents the searching center of the fruit fly
population

Step 2. Each fruit fly is updated with a random search
direction and distance by

X; = x_axis +w X rand(domian) (13)

w = wy X a8 (14)

where gen represents the current number of iterations.
Step 3. The taste decision value (§) of individual flies is
calculated on the basis of LGMS.

Si=x; (15)

Step 4. The taste decision value is substituted into the
fitness function to calculate the corresponding fitness value
(Smell).

Smell; = fitness function(S;) (16)

Step 5. The optimal fitness value (bestsmell) and correspond-
ing location (bestindex) of the fruit fly individual are obtained
by

[bestsmell, bestindex] = min(Smell) a7

Step 6. The optimal fitness is set as the global optimal value
(gsmell), and the corresponding location of the fruit fly is used
as the searching center of the next iteration.

gsmell = bestsmell (18)
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x_axis = x(bestindex) (19)

Step 7. Steps 2—6 are repeated until the terminal criterion is
met or the maximum number of iterations is reached.

lll. OLFOA

For the proposed OLFOA, on the basis of the LGMS,
the orthogonal cross and quantum selection mecha-
nism (OQSM) and simulated annealing strategies (SM) are
employed to achieve good performance and highly stable
convergence. The two mechanisms are presented below in
details.

A. 0QSM
1) QUANTUM BEHAVIOR MECHANISM
Quantum behavior mechanism [17] has been already used in
quantum particle swarm optimization (QPSO) to improve the
performance of the algorithm. In the original PSO, the veloc-
ity of the particles and the search space of each iteration
are limited, which means that the searching area cannot
cover the entire feasible searching space. Therefore, the PSO
algorithm cannot guarantee the absolute convergence to the
global optimal solution [18]. In the quantum space, particles
with quantum motion characteristics can appear at any point
in space with a certain probability and can reach the entire
feasible solution space. As a result, the capability of the PSO
algorithm to obtain the global optimum is greatly improved.

On the basis of the principle of quantum behavior, the loca-
tions of the particles are updated by

W(gen)

Xy j(gen + 1) = gbest, ; £ — In( -

yu ~ u(0, 1)
(20

where X means the location of particle, gbest means the best
location of the particle in the last iteration, gen means the
number of current iteration, r and j represent the number of
individuals and the dimension of the locations, respectively.
W means the probability that a particle will appear at a
relative point and is expressed by the following formula:

Wi(gen) =28 - |mbest(gen) — X,,j(gen)I 21
where mbest means the mean value of the best position and

is expressed by

popsize

Z gbest,(gen) (22)

opsize
popsize

mbest(gen) =

where popsize represents the population size. 8 in (21) means
expansion-contraction factor and is expressed by

B = 0.5 x (genmax —gen)/gen max +0.5 (23)

where genmax represents the maximum number of iterations.

The expansion-contraction factor is vital in the QPSO
because it controls the convergence speed and search range
of the particle. In QPSO, the expansion—contraction factor
scales linearly and lacks flexibility. In this study, a weight-
ing factor wf with values between 0 and 4 is introduced in
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FIGURE 2. Expansion contraction factor versus iteration for different
values of wf.

OLFOA. The adaptive expansion—contraction factor value is
determined as follows, which replaces (23) in OLFOA.

B =0.5 x ((genmax —gen)/gen max)wf +05 (24

Fig. 2 shows the adaptive expansion-contraction factor
versus iterations for different values of wf. The correspond-
ing expansion—contraction factors have different convergence
trends due to the different values of wf. A small wf value
results in a slow convergence speed and a wide searching
range. On the contrary, a large wf value leads to a fast con-
vergence speed.

2) ORTHOGONAL DESIGN MECHANISM

As a multi-factor optimized experimental design method,
the orthogonal design [19] introduces a series of orthogonal
arrays for different numbers of factors and levels. The level
represents the variable that affects the experimental results,
whereas the factor represents the value of these variables.
Different level and factor combinations will generate differ-
ent samples and obtain different experimental results. The
orthogonal crossover mechanism shows particular efficiency
in handling the optimization problem, which doesn’t require
an exhaustive search over all the possible combinations to
find the optimal solution.

By using orthogonal arrays, the levels and factors are
rearranged in a certain order in accordance with the
orthogonality, and only the most representative combina-
tions are selected instead of calculating all possible com-
binations to find a suboptimal solution, thereby greatly
reducing the computational burden. Specifically, the pro-
cess of orthogonal crossover mechanism is established as
follows:

I. Orthogonal array Ly (OV) is selected for the orthogonal
crossing, where L denotes a Latin square, Q and N denote the
numbers of levels and factors, which are used for orthogonal
crossing, respectively. M represents the number of combi-
nations that is obtained by orthogonal crossing. Generally,
a large number of M and Q will obtain good experiment
results with an increase in the complexity. After numeral
experiments, the Lo(3*) has been proven to be an efficient
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TABLE 1. Orthogonal array Lg(3%).

Combination Factorl Factor2 Factor3 Factor4

1 1 1 1 1

(R (|| N[ | W|IN
W[ W W N[NNI ==
W= W[N] — W
N[ = WL
=N =W W

orthogonal array by considering performance and calculation
complexity [19]. Table 1 shows the orthogonal array Lo(3%).

In Table 1, each row represents a combination of different
factors and levels. For example, the sixth combination con-
sists of the Factor 1 of Level 2, Factor 2 of Level 3, Factor
3 of Level 1, and Factor 4 of Level 2. The combinations are the
most representative candidates for all possible combinations.

The orthogonality of the orthogonal array is referred to
the following: (1) for the factor in any column, each level
occurs for the same number of times; (2) for the two factors in
any two columns, each combination of two levels occurs for
the same number of times; and (3) the selected combinations
are uniformly distributed over the entire space of all possible
combinations [19].

II. The three individuals belonging to the same experiment
are divided into four factors:

E; = (e1,1,€e12,€1,3,€1.4) (25)
Er = (e2,1,€22,€23,€2.4) (26)
E3 = (e3,1,€3,2,¢€33,€34) 27

where E means the level of experiments and e means the
factor of experiments.

I11. Three individuals are taken into the orthogonal array
Lo(3*) and nine combinations are obtained.

O4 = (emd,la €my,2> €mg,3, emd,4) 1<d<9 (28)

where O; means the dth combination and m; means the
parameter determined by the orthogonal array.

B. SM

The simulated annealing algorithm [20] is originally designed
to search the metal state with the lowest energy during metal
temperature dropping, i.e., metal annealing process. To avoid
the situation that the optimal state cannot be reached due
to rapid cooling, the simulated annealing algorithm accepts
the solution, which is worse than the current with a certain
probability.

In the proposed OLFOA, the similar mechanism named
simulated annealing mechanism (SM) is introduced. Specif-
ically, if the current solution is better than the previous one,
the SM does not work; otherwise, the current solution will be
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FIGURE 3. Diagram of division process.

still taken as the global optimum with a certain probability
determined by SM.

C. OLFOA STEPS
With the improved mechanisms, the process of the OLFOA
is described as follows:

Step 1. Initialization

The population size (popsize), searching coefficient (n),
annealing temperature (7), final temperature (7fin), maxi-
mum iteration number (gen max), and weighting factor (wf)
are initialized. Then, the locations of the fruit fly swarm are
initialized and updated as follows.

x = n X rand(domain) (29)

Step 2. Evaluation of the swarm

In this step, the S parameters of the fruit fly individual,
which are calculated by LGMS, will be substituted into the
objective function to obtain the smell values of the swarm.
The optimal smell value is selected as the global optimal
value (gsmell), and the corresponding fruit fly location is
denoted as gbest.

S,’ = X (30)
Smell; = fitness function(S;) 3D
[gsmell, gbest] = min(Smell) (32)

Step 3. OQSM update of the swarm

The locations for each individual of the fruit fly population
are calculated three times on the basis of (20), and the three
locations are set as levels of orthogonal array. Each level is
divided into four parts and set as four factors. To describe
the division process visually, its diagram is presented as
follows:

The S parameters of the individual flies are assumed
to have 12 dimensions. Each black circle represents the
S-parameter of each dimension of the fruit fly individuals.
Each row represents a fruit fly individual, the vertical num-
bers represent the levels, and the horizontal numbers repre-
sent the factors respectively. As shown in Fig. 3, the taste
decision value (S) of the three fruit fly individuals are divided
into four equal parts (as equal as possible). Each of the
divided parts is brought into Table 1 on the basis of its
number of levels and factors, and nine new individuals are
reconstituted after the crossover.

Then, the smell value of all nine combinations of fruit fly
individuals can be obtained on the basis of the fitness func-
tion (31). The fruit fly individual corresponding to the best
value of smell among the nine individuals will be selected
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TABLE 2. Comparison algorithms.

Algorithm Method Authors and reference
FOA Fruit fly optimization algorithm Pan et al. [15]
IFFO Improved fruit fly optimization Pan et al. [22]

algorithm

CMFOA Chaotic fruit fly optimization L. Wu et al. [23]
algorithm

MSFOA Multi-scale cooperative Y. Zhang et al. [24]
mutation fruit fly optimization
algorithm

CEFOA Co-evolution fruit fly X. Han et al. [25]

optimization algorithm
MFOA Mixed modified fruit fly
optimization algorithm
Repository and mutation-based
particle swarm optimization
Biogeography-based  learning
particle swarm  optimization
algorithm
JADE Adaptive differential evolution
algorithm
NGHS Novel global harmony search
algorithm

Pan et al. [26]
RMPSO B. Jana et al.[27]

BLPSO X. Chen et al. [28]

J. Zhang et al. [29]

D. Zou et al. [30]

as the new fruit fly individual. Then, this process is repeated
until the entire fruit fly swarm are updated.

Step 4. SM update of global optimum

Calculate the smell value of the updated fruit fly swarm.
The best smell value (bestsmell) and corresponding location
of the specific fruit fly (bestindex) is found:

[bestsmell, bestindex] = min(Smell) (33)
The SM triggering conditions are defined as follows:
exp(—(bestsmell — gsmell)/T) > rand (0, 1) (34)

If the current bestsmell is better than the gsmell, or the
gsmell and bestsmell meet the SM triggering conditions
in (34), set bestsmell as the global optimal value (gsmell),
and the corresponding location of specific fruit fly (bestindex)
will be set as gbest.

Then, T is updated by

T =T — (T — Tfin)/(gen max —gen) (35)

Step 5. Termination
Steps 3—4 is repeated until the maximum number of itera-
tions is reached or the optimal value is found.

IV. EXPERIMENTS

In this section, OLFOA will be evaluated via the classical
benchmark functions. The test results are compared with
those of other improved algorithms to show the superior
performance of the proposed OLFOA algorithm. Table 2 lists
the improved algorithms in the experiments.

A. EXPERIMENTAL RESULTS

In this subsection, the capability of OLFOA is compared with
the algorithms via 16 classic benchmark functions presented
in Table 3. These algorithms are implemented by MATLAB
2016a and run on an i5 3.3 GHz CPU with 8§ GB memory
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TABLE 3. Benchmark functions.

ID Function name Equation Global optimum Domain
F1 Exponential problem f(x)= —exp(—O.SZLZ ) x =0andf(x")=-1 -1<x, <1
F2 Quatic Sx)=ix} +rand() x'=0andf(x)=0 -5.12<x,<5.12
i=1
F3 Schwefels f@=2 %) x =0 andf(x")=0 100 < x, <100
=l j=1
F4 Schwefels 2.21 S(x)=max|x[,1<i<n x =0andf(x")=0 -100 < x, <100
F5 Schwefels 2.22 S0 = 2|+ x' =0and f(x")=0 -100 < x, <100
i=1 =
F6 Sphere f=3x X =0andf(x)=0 -100 < x, <100
i=1
F7 Axis f)=2ix X =0andf(x)=0 5.12<x <5.12
i=1
zZ=X—-0,0=
F8 Shifted Sphere f)=2 2+ _bias (01:051-0,).x =0 -100 < x, <100
= f(x")=f bias
z=X—-0,0=
F9  Shifted Schwefels 1.2 S =2z + [ _bias (0,0;5-,0,),x" =0 -100 < x, <100
=l =1 * .
f(x)=f_bias
) -
f(x)=-20exp(-0.2, /;Z,z, x)
F10 Ackley 1 *Z0and f(x)=0 32<x,<32
7exp(fz cos(27x,))+20 +e x =0andf(x)= DESX =
nig
Fl1 Alpine Sx)=|x;sinx, +0.1x x =0and f(x")=0 100 < x, <100
i=1
F12 Griwank f(X)=Lix2—l£ICOS(x")+1 *=0andf(x")=0 600 < x, < 600
riwan 2000&" i N x =0andf(x)= -600<x, <
. = X2 +x2 +0.5xx,
() ==Y (exp(- T =)
F13 Cosine Wave il "0 andf(x') =1 s<y<s
xCOS(4y[X% + 27, +0.5xx,,,) ¥ =0and/(x)=ln PENS
) ) x =i(n+1-i) and
F14 Neumaier 3 problem S(x)= Z(x, - - zxix:—l . n(n+4)(n-1) R )
p = ()= e — n<x <n
F15 Rastrign F() =2 (x] —10cos(27zx,) +10) X =0andf(x")=0 5.12<x <5.12
i=1
F16 Salomon f(x)=1—cos(27r4/2xi2)+0.l,fo,2 " =0andf(x")=0 -100 < x, <100
i=1 i=1

capacity. These algorithms are applied to minimize 16 bench-
mark functions with dimensions Dim = 30, 50. The popu-
lation size is set as 80. In order to make a fair comparison,
the maximum generation number is set to 300 for each func-
tion, which is consistent with the references. The experiment
results are obtained by independently running 10 times for
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fairness. The control parameters of all improved algorithms
are set as the same as in [15] and [22]-[30]. In OLFOA,
T is set as 900, Tfin is set as 0.001 x 10710, and the weighting
factor wfis set as 0.4.

Table 4 shows the mean values and standard deviations
of different fruit fly algorithms evaluated via numerical
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TABLE 4. Results of algorithms on basic benchmark functions with dimension = 30, 50.

Dim F1 F2 F3 F4
Mean Std Mean Std Mean Std Mean Std
MFOA 30 —6.24E-2 2.34E-2 1.98E-3 1.05E-3 1.36E1 6.51 0.152 0.274
50 -9.92E-1 1.86E—2 1.04E-2 1.16E-2 2.01E1 5.73 1.70 1.05
IFFO 30 -0.3674 0.5879 7.66E1 4.59E1 3.58E2 1.72E2 2.86E1 2.58E1
50 —5.68E-2 09113 3.01E2 2.29E2 1.78E2 1.04E2 2.60E2 1.79E2
FOA 30 —9.54E-2 2.16E-2 1.05E-7 1.77E-7 5.29E1 2.45 3.98E-2 4.46E-2
50 —8.37E-2 2.86E-2 1.21E-6 2.98E-6 5.07E1 2.44 2.10E-1 5.91E-1
MSFOA 30 —0.9999 9.14E-5 6.24E-8 6.55E-8 3.1462 4.5233 0.4139 0.4549
50 —0.9999 9.03E-5 7.60E-7 7.96E-7 2.15E-8 2.20E-8 0.7171 4.17E-3
CMFOA 30 —0.9998 0.0001 3.35E-7 4.17E-7 0.0017 0.025 14.6682 15.3765
50 —0.9906 0.036 6.53E-5 1.31E-5 0.0056 0.022 20.1622 11.2438
CEFOA 30 -1.00 0.00 1.2E-4 1.79E-4 7.92E-14 1.98E-14 1.98E-9 3.46E-8
50 -1.00 0.00 9.52E-3 2.08E-4 1.02E-13 2.10E-12 4.99E-7 3.50E-7
OLFOA 30 -1.00 0.00 3.26E-3 3.68E-3 6.37E-1 5.13E-1 7.35E-10 2.84E-8
50 -1.00 0.00 7.78E-3 5.59E-3 5.35 7.56 3.26E-7 4.53E-6
Dim F5 F6 F7 F8
Mean Std Mean Std Mean Std Mean Std
MFOA 30 4.74E-4 2.56E-4 1.97 1.09E-1 2.82E1 5.07E1 —4.45E2 5.45E1
50 9.64E-4 1.75E-3 2.07 1.28E-1 2.01E1 5.27E1 —4.45E2 5.45E1
IFFO 30 3.28E-1 1.58E-1 0.94 1.76E-1 2.25E1 5.63E1 —4.43E2 3.38E-3
50 0.5367 0.2219 2.56 1.16 1.50E2 3.12E2 —4.34E2 2.13E-1
FOA 30 1.03E2 4.26E2 1.05E-12 5.80E-1 8.64E1 1.45E1 —4.45E2 1.05E-1
50 3.36E2 2.55E1 1.43E-11 4.26E-1 9.05E1 1.03E1 —4.41E2 4.33E-1
MSFOA 30 2.04E-5 2.39E-5 1.7160 1.7222 0.2159 0.2204 —448.26 1.8145
50 2.46E-5 2.46E-5 2.1005 1.1212 0.787 0.588 —442.739 1.1184
CMFOA 30 0.0057 0.0078 0.0928 0.1 0.0269 0.0296 —449.916 0.0896
50 0.0081 0.0114 0.1422 0.927 0.5809 0.5496 —442.976 0.1578
CEFOA 30 1.95E-28 2.08E-10 1.95E-12 2.08E-10 0.00 0.00 —450 0.00
50 1.02E-12 1.01E-6 1.95E-12 1.88E-10 0.00 0.00 —450 0.00
OLFOA 30 1.50E-7 2.12E-7 0.00 0.00 0.00 0.00 —450 0.00
50 3.25E-6 8.19E-6 0.00 0.00 0.00 0.00 —450 0.00
Dim F9 F10 F11 F12
Mean Std Mean Std Mean Std Mean Std
MFOA 30 —4.44E2 3.67 1.87E1 1.32E-1 2.65E-3 4.22E-3 1.89E2 4.31E1
50 —4.34E2 2.58 2.05E1 3.45E-1 4.82E-2 3.52E-2 3.63E2 5.31E1
IFFO 30 —4.35E2 4.57E-4 5.17E-1 9.19E-1 1.1222 2.56 1.52E—2 2.75E-2
50 —4.15E2 4.70E-3 3.2973 1.3559 1.02E1 2.76E1 5.11E-1 1.32E-2
FOA 30 —4.36E2 3.56 1.26E1 5.01E-1 4.15E1 1.58 5.07E1 1.70E1
50 —4.35E2 1.16 3.02E1 1.05E-1 3.99E1 1.38 6.89E1 1.11E1
MSFOA 30 —447.014 3.1573 0.5921 5.98E-01 0.0536 5.42E—02 0.9661 9.67E-01
50 —450 1.24E-08 0.6491 7.11E-01 0.1741 1.56E-01 1.6335 1.36
CMFOA 30 -449.18 0.0335 0.1205 0.1235 0.1313 0.1536 0.2594 0.2759
50 —448.982 0.04273 0.4475 0.4387 0.4520 0.5165 33.1151 40.7375
CEFOA 30 —450 0.00 1.60E-10 4.01E-10 9.15E-14 1.55E-12 8.89E-16 4.70E-15
50 —450 0.00 1.69E-10 2.13E-10 1.05E-13 1.95E-13 1.09E-15 8.70E-14
OLFOA 30 —450 0.00 1.32E-4 5.33E-4 2.87E-20 5.91E-18 6.44E-4 2.82E-4
50 —450 0.00 3.72E-2 7.28E-2 2.21E-16 4.39E-15 7.17E-3 8.33E-3
Dim F13 F14 F15 F16
Mean Std Mean Std Mean Std Mean Std
MFOA 30 -5.57 6.11E-1 7.30E5 2.41E5 1.60E-4 2.27E-3 2.98E-1 2.24E-2
50 —6.02 5.51E-1 2.46E5 1.41E5 6.11E-4 1.50E-3 4.00E-1 2.74E-2
IFFO 30 -17.25 1.15E-1 3.15E3 6.29E2 3.15E2 2.98E2 2.63 1.75
50 -13.99 2.65E-1 2.265E2 5.56E2 4.18E3 1.69E3 2.44 2.71
FOA 30 —6.09 0.71 1.24E6 6.60E5 2.76E1 3.20E1 4.06E-1 7.73E-3
50 —6.57 0.98 1.68E6 3.98E5 4.12E2 2.89E1 4.76E—1 7.60E-3
MSFOA 30 —28.9297 7.15E-2 15.9872 4.95E3 0.882 9.00E-01 0.1965 1.97E-01
50 —48.864 1.37E-1 15.9872 4.95E3 1.635 4.37E-01 0.3122 1.16E-01
CMFOA 30 —23.0247 6.1269 827.128 4103.259 0.3156 0.3368 1.4198 1.4512
50 —38.6263 10.5073 931.128 3357.637 2.2025 1.1627 1.0772 1.7336
CEFOA 30 -27.3134 1.05 -1.89E4 3.60E3 9.46E-8 4.42E-8 0.00 0.00
50 —44.5835 1.52 -1.69E4 2.64E3 1.06E-8 2.27E-8 0.00 0.00
OLFOA 30 -27.7434 1.56E-3 1.08E5 2.26E5 6.60E-8 8.85E-7 5.13E-3 4.45E-3
50 -46.9264 5.56E-3 1.97E5 5.50E6 7.87E-5 3.67E-4 3.32E-2 1.32E-2

benchmark functions with dimensions of 30 and 50. OLFOA
exhibits computational benefit and superior performance
compared with FOA, MFOA, IFFO, and CMFOA. OLFOA
performed better than MSFOA and CEFOA with a faster
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convergence speed for most of the benchmark functions
(F1, F4, F6, F7, F8, F9, F11, and F15), whereas it does
not show outstanding performance compared to MSFOA in
F2 and F13. Compared with CEFOA, the OLFOA does not
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FIGURE 4. Convergence curve of multimodal functions for different algorithms with dimension = 30.

work well in F3, F5, F10, F12, F14 and F16. Thus, conclusion
can be drawn that the proposed OLFOA prevails over other
algorithms for most of the benchmark functions. In the case
with a dimension of 50, similar results have been acquired
except both the mean value and standard deviation of all
algorithms have certain deterioration.

B. CONVERGENCE ANALYSIS

To describe the convergence performance of the algorithms
visually, Figs. 4 and 5 provide the average convergence
results of randomly selected test functions (F2, F4, F5, F6,
F11, and F15) after 300 iterations with dimensions of 30 and
50, respectively. The dB fitness value is used and displayed
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in the y-axis of the figures in the optimization of F2, F4, F5,
and F11. Only for benchmark functions F2 and F5, OLFOA
does not show outstanding performance compared to other
algorithms in terms of the convergence and optima. However,
for the other unimodel benchmark functions, OLFOA shows
its obvious advantage in stability and efficiency in acquir-
ing the global optimum, especially for benchmark functions
F11 and F15. For benchmark functions F4 and F6, OLFOA
obtained the best fitness value and showed a fast convergence
speed. These results indicate that the proposed OLFOA algo-
rithm outperforms numerous improved FOA methods (IFFO,
CEFOA, CMFOA, MFOA, and MSFOA) and the original
FOA in global optimum and convergence capability.
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FIGURE 5. Convergence curve for multimodal functions with dimension = 50.

C. EXTRA EXPERIMENTAL RESULTS

Considering the array synthesis application of the proposed
algorithm has a specific range of [0, 1], it is necessary to carry
out tests on benchmark functions in the specific range for fur-
ther performance verification. In this subsection, OLFOA is
compared with CEFOA, and the recently proposed improved
FOAs in Table 5. The search space of fruit fly individuals are
set as [0,1].

Table 6 shows the mean value and the standard deviation
of those FOAs for different benchmark functions in the range
of [0, 1] with a dimension of 30. Conclusion can be drawn
that the performance of CEFOA deteriorates severely when
applied in such test functions, whereas the proposed OLFOA
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TABLE 5. Comparison algorithms in extra tests.

Algorithm Method Authors and reference
AE-LGMS-  Averager engine linear generation A. Darvish et al.
FOA mechanism of candidate solution of [21]

FOA
IFOA Improved fruit fly algorithm

Xu et al. [31]

obtains better and more stable results when compared with
other improved FOA algorithms.

D. COMPARISON WITH OTHER ALGORITHMS
In this subsection, OLFOA is compared with other different
types of improved algorithms (RMPSO, BLPSO, JADE, and

165591
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TABLE 6. Results of extra basic benchmark functions with dimension = 30.

Dim F1 F2 F3 F4
Mean Std Mean Std Mean Std Mean Std
AE-LGMS- 30 —1.04E-1 3.57E-2 331E-2 7.76E-2 4.49 3.36 7.95E-4 1.54E-4
FOA
IFOA 30 —2.19E-1 4.10E-2 3.54E2 1.82E-2 3.18 2.68 6.68E—6 2.97E-6
CEFOA 30 -0.51 3.27E-1 232.5 6.77E-1 7.54E5 8.82E-5 0.7 5.99E—4
OLFOA 30 -1 0.00 2.9E-3 1.78E-3 9.37E-1 3.34E-1 5.27E-9 3.75E-8
Dim F5 F6 F7 F8
Mean Std Mean Std Mean Std Mean Std
AE-LGMS- 30 5.96E-7 8.58E—6 5.46E-23 4.14E-23 3.33E-25 4.90E-25 —4.49E2 9.12E-14
FOA
IFOA 30 6.68E—6 2.85E-6 8.82E-26 2.65E-26 6.47E-27 3.43E-26 —4.49E2 2.05E-17
CEFOA 30 20 2.79E-2 15 1.02E-15 4.2E3 5.87E-3 —4.35E2 6.65E-24
OLFOA 30 1.87E-15 2.5E-14 0.00 0.00 0.00 0.00 —450 0.00
Dim F9 F10 F11 F12
Mean Std Mean Std Mean Std Mean Std
AE-LGMS- 30 —4.49E2 7.14E-9 3.98E-7 9.66E—6 5.68E-11 4.89E-10 2.69E-23 6.77E-23
FOA
IFOA 30 —4.48E2 5.31E-12 7.29E-9 4.47E-7 2.74E—-12 2.78E-10 7.32E-21 5.02E-21
CEFOA 30 —4.35E2 8.83E-30 3.57 5.14E-1 4.04E—4 1.91E—+4 5.45E-1 1.46E—2
OLFOA 30 —450 0.00 3.64E-14 1.12E-14 5.74E-20 1.32E-18 0.00 0.00
Dim F13 F15 F16
Mean Std Mean Std Mean Std
AE-LGMS- 30 —28.57 2.12E-3 4.98E-4 5.79E-3 4,63E-1 4.24E-1
FOA
IFOA 30 —27.71 1.78E-5 1.89E-4 2.18E-4 5.17E-2 2.98E-2
CEFOA 30 —23.84 7.87E-9 4.06E2 8.00E1 6.28E—1 3.05E-1
OLFOA 30 -29 0 1.95E-8 1.50E-7 3.13E-3 7.71E-3

NGHS) to justify its performance. The parameter settings are
the same as those in Part A of Section IV.

Table 7 shows the mean value and standard deviation
of those algorithms for different benchmark functions with
dimensions of 30 and 50. Obviously, OLFOA exhibits its
superior advantage in global optimum and convergence sta-
bility when compared with RMPSO, BLPSO, and JADE.
When compared with NGHS, OLFOA performs better for
most of the benchmark functions (F1, F2, F4, F5, F6, F7,
F8, F9, F10, F11, F12, F13, F15, and F16) with fast and
stable convergence speed, whereas OLFOA does not show
competitive performance advantage compared to NGHS for
F3 and F14.

From all these results and analysis above, conclusions can
be drawn below:

1) OLFOA obtains much more superior values among all
the algorithms in most cases. OLFOA can achieve excellent
results with high stability in different dimensional and popu-
lation problems.

2) OLFOA shows a strong local search capability and
stable convergence rate among most of the algorithms.

3) OLFOA can demonstrate its competitive advantage in
the benchmark tests in the range of [0, 1], which exactly
corresponds to the application considered later in this paper.

V. OLFOA APPLICATION

In this section, OLFOA is applied into several different subar-
ray phased array synthesis problems to prove its performance.
In the simulation, the excitation of each subarray element
is set as one dimension of the individual fruit fly, and the

165592

excitation of the entire subarray antenna element constitutes
the location of individual fruit fly, the number of the swarm
is set as 80, T is set as 900, Tfin is set as 0.001 x 10710 the
weighting factor wf'is set as 0.4, and the maximum iteration
number is set as 100.

A. ANTENNA ARRAY NOTATION

Considering a planar array antenna with N rows and M
columns of elements arranged in a rectangular grid in the x-
and y-axis, then the radiation pattern of planar array can be
expressed as:

N M

FF©,0) =" Lufun(0. ¢)
n=1 m=1

x e—j(kdxmn sin 6 cos @+kdyyp Sin 6 sin @+@py,) (36)
where I, is the element excitation current amplitude, ¢,
is the element excitation current phase, f,,,,(0, ¢) is the array
element pattern, dyy, and dy;,, are the distance from array
element to axis origin in x-and y-axis respectively.

Put this array antenna into the subarray tiling and each
subarray consists of C elements. Then the maximum number
of subarrays (L) that can be used to tile the entire aperture is
L = N - M/C[2]. If the shape of the subarray is the same,
after rotating and folding, eight different shapes exist on the
array aperture. Furthermore, if the subarray is symmetrical,
the subarray shapes are reduced to four or even two [3].

In this study, the subarray tiling method based on X algo-
rithm [7] is adopted to achieve the exact partition of subarrays
on the array aperture. After the exact partition, the radiation
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TABLE 7. Results of five algorithms on basic benchmark functions with dimension = 30, 50.

Dim F1 F2 F3 F4
Mean Std Mean Std Mean Std Mean Std
RMPSO 30 —1.04E-3 2.15E-2 2.18 1.59 5.93 1.46 1.709E-1 4.51E-1
50 —7.15E-2 3.733E2 1.87E1 2.13El 8.19E1 451E1 1.93 474
BLPSO 30 —6.47E-2 1.04E-2 3.54E-2 2.80E-2 2.10E-1 3.08E-2 8.13E-1 2.65E-1
50 —5.72E2 3.54E-2 2.99E2 1.96E-2 2.04E-1 2.87E-2 5.24E-1 2.85E-1
JADE 30 —3.57E-1 3.12E-1 4.27E2 5.19E-2 8.54E-1 2.97E-2 6.07E—4 2.48E—4
50 —3.14E-1 2.92E-1 3.86E-2 424E-2 7.11E-1 2.49E-2 5.67E4 1.98E—4
NGHS 30 —1.03E-4 4.47E-5 7.48E-3 2.04E-3 2.80E—6 3.16E—6 1.44E—4 1.29E-3
50 ~1.01E-4 2.15E-5 5.22E-3 1.09E-3 3.02E-6 2.92E-6 1.04E—4 7.20E—4
OLFOA 30 -1.00 0.00 3.26E-3 3.68E-3 6.37E-1 5.13E-1 7.35E-10 2.84E-8
50 -1.00 0.00 7.78E-3 5.59E-3 535 7.56 3.26E-7 4.53E-6
Dim F5 F6 F7 F8
Mean Std Mean Std Mean Std Mean Std
RMPSO 30 3.71E-1 5.48E-1 6.67E-1 1.44 5.78E-1 2.26E-1 —4.41E2 3.72E—4
50 635 442 1.92 1.77 3.56 1.85 —4.23E2 1.36E—4
BLPSO 30 1.12E-1 5.29E-2 1.78E—4 4.22E—4 2.88E—4 5.60E-3 —4.40E2 1.41E-3
50 1.08E-1 6.19E2 1.25E-4 359E4 1.93E-4 511E-3 ~4.40E2 1.05E-3
JADE 30 1.12E-1 5.29E-2 1.78E—4 4.22E—4 2.88E—4 5.60E-3 —4.43E2 3.89E-1
50 1.17E-5 351E-5 1.19E-5 3.08E-6 5.70E-5 2.03E-5 —433E2 2.94E-1
NGHS 30 4.55E-7 3.24E-6 6.99E-8 3.18E-8 1.50E—6 8.62E-8 —4.42E2 1.06E-1
50 2.44E-7 2.28E—6 6.14E-8 1.27E-8 9.12E-7 7.29E-8 ~4.40E2 LOTE-1
OLFOA 30 1.50E-7 2.12E-7 0.00 0.00 0.00 0.00 —450 0.00
50 3.25E-6 8.19E-6 0.00 0.00 0.00 0.00 —450 0.00
Dim F9 F10 F11 F12
Mean Std Mean Std Mean Std Mean Std
RMPSO 30 —4.32F2 3.13E-1 4.47TE-2 6.69E—2 8.23E-1 8.46E-1 9.82 6.77
50 —425E2 235E-1 5.89 461 6.03E-1 273E-1 1.35E1 1.22E1
BLPSO 30 —441E2 1.35E-2 9.27E-3 2.27E-3 4.06E-2 1.41E-1 7.32E-2 5.02E-2
50 —4.40E2 1.24E-08 7.19E-3 5.98E-01 34152 5.42E-02 532E2 9.67E-01
JADE 30 —433E2 5.70E-1 8.06E-1 5.14E-1 3.78E-2 1.79E2 5.45E-1 1.46E-2
50 ~4.36E2 5.10E-1 7.43E-1 4.58E-1 320E-2 1.51E-2 3.75E-1 L11E-2
NGHS 30 —4.45E2 1.00E—2 2.56E-3 3.80E-3 7.01E-4 4.11E—4 3.22E2 1.12E-2
50 —4.44E2 1.04E-2 2.776-3 2.63E-3 8.54E—4 27164 3.02E-2 1.02E2
OLFOA 30 —450 0.00 1.32E-4 5.33E-4 2.87E-20 5.91E-18 6.44E-4 2.82E-4
50 —450 0.00 3.72E2 7.28E-2 221E-16 4.39E-15 7.17E-3 8.33E33
Dim F13 F14 F15 F16
Mean Std Mean Std Mean Std Mean Std
RMPSO 30 —2.33 4.66 2.54E5 1.151E4 4.77E1 7.82E1 3.54E-1 2.44E-1
50 -1.51 657 2.76E5 251E4 5.12E2 4.43E2 8.98E-1 4.89E-1
BLPSO 30 -1.24 245 8.75E4 3.67E4 3.27 3.07E-01 271E-2 1.89E-2
50 -1.15 1.59 7.05E4 3.13E4 218 1.53E-1 2.0E2 1.80E—2
JADE 30 -5.05 1.23 4.22E3 7.23E3 4.06E2 8.00E1 6.28E-1 3.05E-1
50 —4.84 12 3.11E3 5.03E3 3.54E2 4.12E1 3.14E-1 351E-1
NGHS 30 -6.00 1.07E-1 1.05E3 3.91E3 4.80E-2 1.46E-2 2.48E-2 9.22E-3
50 —6.22 8.25E2 8.12E2 4.58E3 487E2 7.23E-3 2.08E-2 1.29E-2
OLFOA 30 -27.7434 1.56E-3 1.08E5 2.26E5 6.60E-8 8.85E-7 5.13E-3 4.45E-3
50 -46.9264 5.56E-3 1.97E5 5.50E6 7.87E-5 3.67E-4 332E-2 13262
pattern of the subarray antenna can be expressed as as:
= Fit b FF (38)
FF@.9) =) 11"e 3 Ltfun(®. g)e om T . oerrs \ max(FF)
=0 {m,n|lyn=1} :
s o~k Sin B €05 Ky 5in 6 sin ) 37) where FFs represents the area of sidelobe.
where I;“” is the normalized subarray excitation current B. RESULTS OF ARRAY SYNTHESIS
amplitude, 7¢ is the normalized element excitation cur- The first synthesis case is a 40-element array (5 x 8) with

rent amplitude, ¢; is the subarray excitation current phase,
{m, n|l,,;, = 1} is the set of antenna elements longing to the
Ith subarray, ¢; is the element excitation current phase.

For engineering practicality, the optimization object of
subarray antenna array synthesis problems is set as the sub-
array excitation current amplitude (1 f”b ), which ranges from
0 to 1. The optimization target is the maximum sidelobe level
of the antenna pattern. The fitness function can be expressed
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half-wavelength spacing, and a rectangular subarray con-
sisting of two connected elements is desired [6], as shown
in Fig. 6. Fig. 7 presents the far-field radiation pattern of the
arrays optimized after 100 iterations, and the corresponding
PSL is —23.46 dB, which is 4.57 dB lower than that in [6].
Arrays of 128 (8 x 16) and 432 (18 x 24), with
inter-element spacing of half-wavelength, are considered
in the second and the third synthesis cases, respectively.
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FIGURE 6. Structures of 5 x 8 array tiling optimized with X algorithm.
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FIGURE 7. Radiation pattern for the arrays optimized with OLFOA.
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FIGURE 8. Structures of 8 x 16 array tiling optimized with X algorithm.
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FIGURE 9. Radiation pattern for the arrays optimized with OLFOA.

A subarray with an L-octomino shape consisting eight
connected elements is desired. Fig. 8 and 10 show the accept-
able exact partition of the aperture by using the X algo-
rithm. Fig. 9 and 11 present the far-field radiation patterns
of the arrays optimized by OLFOA after 100 iterations. The
corresponding PSL for these two arrays are —19.98 and
—30.64 dB, respectively.
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FIGURE 10. Structures of 18 x 24 array tiling optimized with X algorithm.
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FIGURE 11. Radiation pattern for the arrays optimized with OLFOA.

FIGURE 12. Structures of circular aperture array tiling optimized with the
X algorithm.

The fourth case is a 349-element circular aperture array
with half-wavelength spacing. The subarray consists of eight
connected polyhex-shaped elements. As shown in Fig. 12,
the array is divided into 55 subarrays by the X algorithm
(including 42 eight-element polyhex-shaped subarrays and
13 independent elements) [7]. The subarray partition and the
beam pointing of the array are set to be the same as in [7].
Fig. 13 displays the far-field radiation pattern of the arrays
optimized after 100 iterations, and the corresponding PSL
is —30.76dB. This optimization result is 3.56dB lower than
the maximum sidelobe achieved in [7], which indicates the
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FIGURE 13. Radiation pattern for the arrays optimized with OLFOA.

TABLE 8. Performance comparison of different subarray antennas
synthesized by different methods of three algorithms.

Synthesis PSL (dB)
case Case 1 Case 2 Case 3 Case 4
Uniform 5 45 ~13.17 ~13.29 ~17.34
excitation
LGMS-
FOA [16] 21.97 17.19 26.45 25.47
AE-
LGMS- —22.63 —18.68 —28.28 -27.89
FOA [21]
GA -19.26 —15.74 —24.5 —24.14
DE —-18.13 —-16.61 -25.1 -23.43
QPSO ~18.64 -16.79 244 -23.85
[17]
OLFOA —23.46 -19.98 -30.64 -30.76

superiority of the proposed algorithm when applied in the
design of irregular subarray antennas.

Table 8 presents the comparison results in terms of PSL
optimized by those different algorithms under four irregular
subarray cases. For fair comparison, the parameters of the
other algorithms are set the same as those of the proposed
algorithm. From Table 8, conclusion can be drawn that the
proposed OLFOA shows the superior PSL performance when
compared with the other algorithms for all these cases.

VI. CONCLUSION

In this paper, an advanced fruit fly optimization algorithm,
namely, OLFOA has been proposed. Individuals are selected
in a highly balanced way by adding the OQSM and SM
mechanisms. The population diversity, global searching capa-
bility, and ability to escape from the local optimum of the
algorithm are significantly improved. The OLFOA has been
tested via numerous classical benchmark functions in com-
parison with other improved FOAs and advanced algorithms
to demonstrate its capability. Then, OLFOA is applied to
synthesize four different cases of subarray antenna array of
planar and circular aperture. Simulation results show that
the proposed algorithm presents a superior performance both
in benchmark function test and the subarray antenna array
synthesis problems.
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