
Received October 24, 2019, accepted November 11, 2019, date of publication November 14, 2019,
date of current version December 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2953542

Global Stock Market Prediction Based on Stock
Chart Images Using Deep Q-Network
JINHO LEE , RAEHYUN KIM , YOOKYUNG KOH , AND JAEWOO KANG
Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Jaewoo Kang (kangj@korea.ac.kr)

This work was supported by the National Research Foundation of Korea under Grant NRF-2017R1A2A1A17069645 and
Grant NRF-2017M3C4A7065887.

ABSTRACT We applied Deep Q-Network with a Convolutional Neural Network function approximator,
which takes stock chart images as input for making global stock market predictions. Our model not only
yields profit in the stock market of the country whose data was used for training our model but also generally
yields profit in global stock markets. We trained our model only on US stock market data and tested it on the
stock market data of 31 different countries over 12 years. The portfolios constructed based on our model’s
output generally yield about 0.1 to 1.0 percent return per transaction prior to transaction costs in the stock
markets of 31 countries. The results show that some patterns in stock chart images indicate the same stock
price movements across global stock markets. Moreover, the results show that future stock prices can be
predicted even if the model is trained and tested on data from different countries. The model can be trained
on the data of relatively large and liquid markets (e.g., US) and tested on the data of small markets. The
results demonstrate that artificial intelligence based stock price forecasting models can be used in relatively
small markets (emerging countries) even though small markets do not have a sufficient amount of data for
training.

INDEX TERMS Artificial intelligence, finance, neural networks, stock markets.

I. INTRODUCTION
Predicting future stock prices has always been a contro-
versial research topic. In ‘‘Efficient Capital Markets [1],’’
Eugene Fama argued that the stock market is highly efficient
and the price always fully reflects all available informa-
tion, which is referred to as the Efficient Market Hypoth-
esis (EMH). He also maintained that technical analysis or
fundamental analysis (or any analysis) would not yield any
consistent over-average profit to investors. However, not
all researchers agreed with EMH [2]–[4]. Some classical
works in financial economics maintained that stock mar-
kets have anomalies and are profitable, which is inconsistent
with EMH [5]–[10]. Also, there was some criticism of the
argument that stock markets are inefficient and profitable.
Studies that asserted stock markets are profitable and have
anomalies were criticized for not considering all transac-
tion costs [11]–[13]. EMH is still the subject of intense
debate. Many following studies focused on demonstrating
the profitability of stock markets. Some works have used

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrei Muller .

technical analysis, which involves studying past stock prices
and volumes, to predict future stock prices and demon-
strated its profitability [14], [15]. Other studies, especially
in the computer science field, have focused on discovering
non-conventional signals that may help to predict the stock
markets. Studies focused on discovering non-conventional
signals have analyzed Web data such as Social Networking
Service (SNS) messages [17], investors’ sentiments [18],
news articles [19], or search engine queries [20], [21]. These
studies found that investors’ sentiments from SNS platforms
and search query frequency data provide useful information
for predicting future stock prices.

One of the other approaches to predicting future stock
prices in the computer science field is to build artificial intel-
ligence based models that use machine learning techniques
such as Neural Network (NN) [22] or Reinforcement Learn-
ing (RL) [23]. NN and RL are currently among the most com-
monly used machine learning methods. Many state-of-the-art
methods in various domains such as natural language process-
ing, image classification, and speech recognition are based
upon Convolutional Neural Network (CNN) or Recurrent
Neural Network (RNN) models. RL is also adopted in many

167260 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-3076-3722
https://orcid.org/0000-0002-2084-0758
https://orcid.org/0000-0002-4022-4012
https://orcid.org/0000-0001-6798-9106
https://orcid.org/0000-0002-2613-0917

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

domains such as robotics and game playing. The goal of RL is
to train an agent to choose the optimal action given the current
state. But unlike supervised learning where exact answers
are given to a model, an RL agent is trained to maximize
cumulative rewards in the training process. A brief overview
of recent studies that used artificial intelligence models for
stock prediction is provided below. A more extensive review
of the recent studies can be found in [24], [25].

Takeuchi and Lee [26] applied a feedforward neural net-
work to a basic momentum strategy [7] to enhance prediction
performance. The authors reported that the performance of
their proposed model on individual US stock market predic-
tion was better than that of the original momentum strat-
egy. Krauss et al. [27] analyzed the performance of deep
neural networks, gradient boosted trees, random forests, and
ensembles of these methods in predicting the future prices
of S&P500 stocks. Fischer and Krauss [28] found that Long
Short Term Memory (LSTM) [29] networks outperformed
deep neural networks and random forests. Deng et al. [30]
proposed an RNN based RL model, and a training algorithm
which addresses the gradient vanishing problem. The authors
validated their model on Chinese stock index futures data,
commodity futures data, and S&P500 index data. All the
above mentioned works used historical price data as input.
However, other previous works directly used stock chart
images as input. Tsai and Quan [31] used candlestick chart
images to predict the Dow Jones Industrial Average Index.
The authors used a model based on a content image retrieval
technique to automatically extract features from candlestick
chart images. Guo et al. [32] proposed a CNN based model
that predicts price movements based on candlestick charts.
All of these studies have demonstrated that among various
input variables, such artificial intelligence based models effi-
ciently capture complex non-linear patterns associated with
future returns. But most of the previous worksmainly focused
on building a high performance model optimized on a limited
number of securities or composite indexes only in a single
country using various input variables such as price, volume,
and technical and other financial indicators. In their works,
it was not determinedwhether the signals or patterns that were
found to yield profit in a given country would yield profit in
other countries. No previous work could design an NNmodel
for emerging countries that usually do not have enough data
for training complex NN models.

In our work, we mainly focus on finding patterns that
generally yield a profit not only in a stockmarket of the single
country whose data is used for training our model but also
in global stock markets. For example, let us assume that our
model learned some unique patterns from the training data
of a single country, and the patterns indicate that the stock
price will sharply go up. Then, we need to show that these
unique patterns consistently indicate the same future stock
price movement (that the stock price will rise) not only in the
stock market of the country in which our model was trained
but also in many others. Interestingly, the results show that
the investment activities of people from different countries

and cultures tend to be similar for certain price/volume
patterns.

We adopt the framework of Deep Q-Network (DQN) [33],
which solves the instability problem which is caused by
using nonlinear function approximators with Q-learning [34].
It uses the following twomethods to stabilize the training pro-
cess: experience replay and parameter freezing. We use the
same methods in our training process. Our model takes chart
images of an individual company as input and chooses one
action among Long, Neutral, or Short every day. It receives
a positive or negative reward based on its action and the sub-
sequent price change of a company. Our model is trained to
select the action that will yield maximum cumulative rewards
given chart images.

We use the framework of DQN as opposed to conventional
supervised learning to effectively train our NN model using
RL for stock prediction. Using RL (Q-learning) instead of
conventional supervised learning for the stock prediction
problem has various advantages. First, our model is trained
using rewards. Since we are dealing with the stock price
prediction problem, assigning binary labels (e.g., True or
False) to actions is insufficient. For example, if a model
decides to take a Long action, it is desirable to receive a
10.0 reward for a +10% subsequent price change and a
1.5 reward for +1.5%. Only receiving True for both cases
does not give any distinction between the two cases. Second,
RL uses cumulative rewards, not just immediate rewards,
to train an agent. In most stock price prediction problems,
supervised learning models are trained to predict the price
(or price change) of the next time step based on the infor-
mation of the current time step. In supervised learning, it is
quite difficult to consider the time steps following the next
time step. But RL can efficiently handle this problem by
maximizing cumulative rewards using information from not
only the next time step but from all subsequent time steps.
Finally, in Q-learning, a trained model can make use of an
action value, which is the expected cumulative rewards of the
corresponding action. So when training is done, our model
not only knows which action to take but also can predict the
amount of profit the action will yield, which enables us to
distinguish strong patterns from weak ones. We use CNN as
the function approximator so that our model can take chart
images as input. Since few previous works used chart images
as input in stock prediction [24], [25], we believe conducting
further studies that directly use chart images as input is nec-
essary. Also, CNN is known to obtain good performance in
numerous tasks [22] and can be trainedmuch faster than RNN
or LSTM.

We conducted numerous experiments on global stock mar-
kets. For this work, only five years (Jan.2001-Dec.2005) of
US individual stock data are used for training and our model
is tested on the stockmarket data of 31 countries over 12 years
(Jan.2006-Dec.2017) after the training period. We only used
the US stock data instead of the stock data of all other
countries to train our model to show that our model not only
yields profit in the stock market of the country whose data is

VOLUME 7, 2019 167261

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

used for training but also in other global markets. The main
contributions of our paper are as follows. First, as shown
by the experimental results, we found that there are some
patterns in stock chart images, which not only yield profit
in a single country but in most of the other counties as well.
Second, unlike most of the previous works, our model does
not need to be trained and tested on data from the samemarket
or country. For example, it is possible to use US stock market
data for training an NN model for Spain or Taiwan. This may
help an artificial intelligence based stock price prediction
models to be more widely used in emerging markets, some
of which are inefficient and have an insufficient amount of
data for training models. As the results show, even though
our model is trained only on the US individual stock data,
it generally yields a considerable amount of profit in other
countries. Finally, to the best of our knowledge, our artificial
intelligence based model, which is trained on the data of only
a single country, is the first to obtain numerous testing results
on global stock markets.

II. BACKGROUND
A. CONVOLUTIONAL NEURAL NETWORK
Deep learning and NNs are currently the most widely used
machine learning methods for classifying highly non-linear
patterns. CNN is one of the NN architectures that was suc-
cessfully applied to image classification problems. Many
state-of-the-art image classification models are based upon
CNN architecture. Such models usually take 2D images as
input with three color channels. The input is passed to mul-
tiple hidden layers. Typically, each hidden layer consists of
convolutional layers followed by non-linearity and pooling
layers. But in the last one or two hidden layers, usually fully
connected (FC) layers are used with a softmax function. The
final output is usually a one-hot vector that corresponds to the
label of the input image. Note that in our work, we use CNN
as a function approximator in the Q-learning algorithm.

B. Q-LEARNING
Q-learning is one of the most common RL algorithms. The
goal of all RL algorithms is to enable an agent to learn optimal
policies, or in other words, train an agent so that it is capable
of choosing the action that would give maximum cumulative
rewards in a given state. In Q-learning, an agent does not
directly learn optimal policies; instead, an agent is trained to
acquire the optimal action value which is the expected cumu-
lative rewards of each action given the current state. So when
training is done, the optimal policy of an agent is simply a
greedy policy where an agent chooses the action with the
maximum action value given the state. To obtain the optimal
action value, an agent should iteratively update the action
value using the Bellman Equation. An agent chooses action
given the current state following behavior policy and observes
reward and next state. Usually, in Q-learning, the ε -greedy
policy is used as a behavior policy, where an agent either
chooses a random action with probability ε or acts greedily.

C. DEEP Q-NETWORK
When state representation is simple, the original Q-learning
algorithm is proven to converge at optimal behavior. But
like in Deep Q-Network (DQN), if the current state is very
complex and cannot be represented in table lookup form, one
can use the function approximator to efficiently represent
the state. The function approximator could be any type of
function that maps raw state representations to actions. In our
case, CNN is used as the function approximator for mapping
a state representation (stock chart image) to a Long, Neutral,
or Short action. But naively implementing a non-linear func-
tion approximator such as NN is known to be ineffective in
real practice because the training process is unstable. DQN
addresses this problem using the following two methods:
experience replay and parameter freezing. Experience replay
is a way to reduce correlations in the sequence of data by
storing the latest M experiences (input data) in the memory
buffer and sampling random batches from the memory buffer
at every iteration to take the gradient step. The parameter
freezing method temporarily freezes the target parameters
during training. To reduce correlations with the target, two
sets of parameters are maintained and the target network
parameters are updated periodically.

III. METHOD
A. OVERVIEW
In this subsection, a brief overview of our model is provided.
Fig. 1 illustrates how our CNN reads input and outputs
action values for an individual company. The term action
value refers to the expected cumulative rewards of an action.
Fig. 1 (a) shows the architecture of our CNN. Fig. 1 (b) illus-
trates example of a W by W chart image at time t and time
t+1. For example, ifW equals 8 as shown in this figure, our
CNN reads input as an 8 by 8 matrix with all elements filled
with 0 or 1. A single column in this matrix represents a single
day. Elements filled with the color black corresponds to 1;
otherwise, they are all 0. The top part of the matrix represents
the relative value of the closing price and the lower half repre-
sents the relative value of the volume. Two rows in the middle
of the chart are empty (has zero value) to help our CNN to
distinguish price from volume. Fig. 1 (c) shows sequential
chart of 39 consecutive days. In this figure, all price volume
data are min-max normalized over 39 days for visualization.
In other words, for price data, the highest price in 39 days
is listed in the first row, and the lowest price is provided in
the third row; however, this is only for visualization purposes.
In our actual experiments, input data are min-max normalized
over W days (horizontal size of chart), and are not min-max
normalized over the entire experimental period.

As shown in Fig. 1, our CNN takes a W by W chart
image as input at each time step t, which shows the daily
closing price and volume data of a single company over the
last W days. At time t, our CNN outputs two vectors with a
length of 3:ρ and η. Based on these vectors, the action (Long,
Neutral, or Short) to take at time t is decided. Likewise,

167262 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

FIGURE 1. Overview of how our CNN reads an input chart of a single company at a specific time point (time t) and outputs the two
vectors ρ and η.

at time t + 1 (or the next day), our CNN in Fig. 1 reads a
stock chart image at time t + 1 and decides which action
to take at time t + 1. The action value vector ρ represents
an action value which is the expected cumulative rewards
of an action (Long, Neutral, or Short). One hot vector η is
marked as 1 in the same index where ρ has the maximum
action value; otherwise, it is marked as 0. Each element of the
vectors represents Long, Neutral, or Short action respectively.
Thus, for example, the value of ρ[3] at time t denotes the
expected cumulative rewards if our CNN takes the Short
action at time t. For simplicity, we standardized the index of
all vectors in this paper to start from one. To sum up, the way
in which our CNN operates is simple. It reads a chart at time t
and chooses the action which has the maximum action value.
At time t + 1, it receives reward based on the action at time t
and the price change from time t to t + 1. It takes action at
time t + 1 in the same way it does at time t.

B. NETWORK ARCHITECTURE
Our CNN takes 32 × 32 × 1 as input. The input has only
1 channel because it does not need to be colored. The exact
architecture of our CNN is as follows. Our CNN has six
hidden layers. Thereby, H equals 6 in Fig. 1 (a). The first four
hidden layers are convolutional layers followed by a Rectifier
non-Linearity Unit (ReLU) and the last two hidden layers are
FC layers. In the FC layers, ReLU is implemented only after
the fifth layer. Each of the first four hidden layers consists
of 16 filters of size 5 × 5 × 1, 16 filters of size 5 × 5 × 16,
32 filters of size 5 × 5 × 16, and 32 filters of size 5 × 5 ×
32, respectively, all with stride 1, zero padding and followed
by ReLU. Right after the second and fourth hidden layers,

a max-pooling layer with a 2× 2 filter and stride 2 is applied.
The last two hidden layers are FC layers with 2048 × 32 and
32× 3 parameters, respectively, followed by ReLU except for
the final layer. The batch normalization [35] layer is added in
every layer right before ReLU. The parameters are initialized
using Xavier initialization [36]. The softmax function is not
implemented since the output of our CNN is an action value,
not a probability distribution between 0 and 1.

C. DATA DESCRIPTION
We collected daily closing price and volume data from Yahoo
Finance. But Yahoo Finance does not provide the list of com-
panies that can be download from the web site, we obtained
the list of companies of roughly 40 countries including
most of the developed markets from http://investexcel.net/all-
yahoo-finance-stock-tickers/. Only for US, we used the list
of companies of Russell 3000 index (The first half of 2018).
We downloaded the adjusted closing price data to reflect
events such as stock splits. Countries that did not have
enough valid data were excluded. The data of 30 countries
collected over 12 years and data of one country (US) collected
over 17 years were downloaded. In each country, we also
eliminated companies with noisy data. First, we eliminated
companies that had no price data. Second, we also eliminated
companies that had an excessive number of days with zero
volume (we eliminated the companies that had zero volume
for more than 25% of the entire testing period). Strictly
speaking, many days of zero volume may not be considered
as noise because a company’s stocks may not be traded
on some days or in some cases, stocks may be suspended
for trading for a certain period. But stocks that have been

VOLUME 7, 2019 167263

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

suspended for more than 25% of the entire testing period are
definitely abnormal, and may indicate that the data of the
given company is erroneous. Thus, excluding such companies
does not undermine the validity of our work.

After downloading and eliminating noisy data, the entire
dataset is divided into the training set and test set. The training
set contains only US market data collected over a five-year
period (Jan.2001-Dec.2005) from approximately 1500 com-
panies that are included in the Russell 3000 Index (The first
half of 2018). Only about half of the companies listed in
the Russel 3000 index in the first half of 2018 had data
from Jan. 2001 to Dec. 2005. Approximately 80% of the
training set is actually used for training our model and about
20% is used for optimizing the hyperparameters. The test set
contains data from 31 countries including the US, which was
collected over a 12-year period (Jan.2006-Dec.2017). The
test set is further divided into four-year intervals as follows:
(2006-2010), (2010-2014), (2014-2018). Every four years,
the top liquid N companies are selected from each country
for the experiment. Values of 3000, 500, and 100 are initially
assigned to N for US, developed countries, and emerging
countries, respectively. The values are selected based on mar-
ket capitalization and the number of available companies in
each country. All the available companies were used if the
number of valid companies were less than initial N value.
In further experiments, we also tested our model on the data
of the most liquid NL companies from each country. Values
of 1000, 200, and 40 are assigned toNL for the US, developed
countries, and emerging countries, respectively. The top N
and NL liquid companies are selected every four years based
on the data collected over last 30 business days prior to the
first day in each test set. For example, the topN andNL liquid
companies from Jan.2006 to Dec. 2009 were selected based
on data collected from Nov. 15, 2005 to Dec. 31, 2005. Not
all companies have all 12 years of data. The companies listed
in Jan. 2010 have data starting from Jan. 2010. So companies
that were listed in the exchangemarket for the entire four-year
period were used for that testing period. In other words, all
companies used in the testing period (Jan.2006-Dec.2009)
were listed before Jan.2006 (strictly speaking, Nov. 15, 2005)
and were still listed in the exchange market after Dec.2009.

In our experiments, we used daily closing price and volume
data downloaded from Yahoo Finance, and we converted the
raw data to input data as follows. A single input (corresponds
to a single day of one company) consists of two parts: input
chart Sct and scalar value Lct . The superscript c and subscript
t indicate company c and time t, respectively. The input chart
Sct is aW byW matrix in which all elements are either 0 or 1.
The W by W matrix consists of the last W days of closing
price and volume data of a single company. For example,
the input chart of company c at time t contains closing price
and volume data from time t −W + 1 to time t of company
c. Like mentioned earlier, when closing price and volume are
included in a chart, the values of closing price and volume
are min-max normalized over last W days. The scalar value
Lct represents the price change in percentage from time t to

time t + 1. In other words, Lct is simply the daily return of
company c from time t to time t + 1. In Fig. 1, chart Sct is
shown as the only input to our CNN because the scalar value
Lct is used with our CNN output to calculate reward. But in the
actual training and test procedure, our CNN receives aW by
W matrix of company c on time t as input Sct and outputs an
action based on Sct . The reward for this action is calculated
using the scalar value Lct . Equation (1) calculates Lct where
Prcct indicates the closing price of company c at time t.

Lct = 100× (Prcct+1 − Prc
c
t)/Prc

c
t (1)

While generating Lct , we applied two simple methods for
training our model. First, we bounded the values of Lct
between −20% and 20% to prevent excessive rewards from
noisy data. Though we tried to remove noisy data, there
may still be some noisy data. Since (1) involves division,
the value of Lct can easily change when an extremely small
or potentially incorrect value is assigned to the closing price.
By bounding the values of Lct , we could minimize the impact
of such undesirable cases. In addition, we conducted more
experiments with less tight bounds (50%, 100%) but there
was no notable change in the results. Second, for the training
set (not the test set), we neutralized the daily return Lct to
address the data imbalance problem. In other words, the daily
return averaged over the entire training set is subtracted from
each daily return Lct . If we sample stock market data for a
long period, the data usually becomes imbalanced because the
market tends to go up. So the data usually has more positive
values than negative values. Although the degree of imbal-
ance in the stock market data is not that significant, we found
that neutralizing the imbalance improves our training process.
Table 1 summarizes the information about the dataset used in
our experiments. The number of available companies from
each country is listed in column Com#. The number of com-
panies actually used in our experiments is listed in columns
N and NL . The total number of data used in our experiments
is listed in column Data#. The column Avg lists the average
daily return (in percentage) of the buy and hold portfolios of a
given period. As shown in the first row of Table 1, the return
average of the training set is 0 because we neutralized the
training set. The column Std lists the standard deviations of
daily returns. The column ExcessRate lists the percentage of
data with the absolute value of Lct , which originally had a
value larger than 20% before bounding.

Our training and test sets are in the form of a matrix. For
example, the training set consists ofN × T data points where
N is ≈1500 and T is ≈1000 (number of business days in
four years which is 80% of entire training set). The test set is
formatted in the same way with different values of N and T .

D. TRAINING PROCESS
The standard Q-learning algorithm is based on the Bellman
equation, and iteratively updates its action value based on
the assumption that if an action value is optimal then it
satisfies the Bellman equation. The Bellman equation defines
the relationship between the current action value Q(s, a)

167264 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 1. Data statistics from 31 countries. The first row lists the training set that contains data collected over a 5-year period (2001-2006) from the US,
and all other rows list the test set collected over a 12-year period (2006-2018).

and the subsequent action value Q(s′, a′). The loss func-
tion is derived from this equation. Our training process uses
the following two methods of DQN: experience replay and
parameter freezing. Our loss function is defined in (2).We use
the Adam optimizer [37] to perform a gradient step on
Loss(θ) with respect to parameters θ . For better understand-
ing, the batch size is omitted in (2) so the loss function can
be interpreted as loss calculated from a single experience.

Loss(θ) = [r + γmax
a′
Q(s′, a′; θ∗)− Q(s, a; θ)]2 (2)

where s, a, r, s′, and a′ refer to current state, action,
reward, subsequent state, and subsequent action, respec-
tively, and γ denotes the discount factor. New symbols are
used to maintain consistency with the standard Q-learning
algorithm used in previous works. In Fig. 1, input chart
and output action at time t correspond to state s and

action a, respectively. Likewise, input chart and output action
at time t + 1 also refer to subsequent state s′ and action a′,
respectively. As mentioned earlier, output ρ in Fig. 1, which
is the output of our CNN, is the action value vector of each
element which corresponds to each Long, Neutral, or Short
action. The term Q(s, a; θ) is a scalar value that represents
the action value of action a given state s using our CNN
parameterized by θ . Thus, given state s, if action a is Short,
then Q(s, a; θ) exactly corresponds to output ρ[3] from our
CNN parameterized by θ . Here, the network parameters θ and
target network parameters θ∗ are maintained throughout the
training process to implement the parameter freezingmethod.
Both θ and θ∗ are randomly initialized with the same value
in the beginning of the training stage. In the original version
of the parameter freezing method, the optimizer performs a
gradient step on Loss(θ) with respect to the network param-
eters θ at every iteration, and no gradient step is performed

VOLUME 7, 2019 167265

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

with respect to the target network parameters θ∗. Target
network parameters θ∗ are only updated at every C iteration
by copying parameters θ to θ∗.
Although our training algorithm is based on the standard

Q-learning algorithm, our algorithm differs in the following
ways. Unlike the standard Q-learning algorithm, our algo-
rithm needs information about the previous action to calculate
the current reward. Reward rct is calculated as below. Super-
script c and subscript t are added in (3) and denote company
c and time t, respectively.

rct = act × L
c
t − P× |a

c
t − a

c
t−1| (3)

where rct , L
c
t and a

c
t are reward, next day return, and action

of company c at time t, respectively. Scalar value Lct in (3)
and that in (1) are exactly the same term. Also, P denotes
the transaction penalty. Our model assigns a value of 1, 0 or
−1 to act for Long, Neutral, or Short actions respectively,
for company c at time t. Thus, we can interpret the first
term on the right side of (3) as the earned profit by choosing
action given state. The second term on the right side of (3)
refers to transaction costs when the model changes position
at time t. Without some penalty, the model could change
positions too frequently, which would incur high transaction
costs in real practice. Equation 3 indicates the model needs
to know the previous action act−1 to calculate the current
reward. The previous action act−1 given the previous state is
also chosen by implementing the ε -greedy policy. Unlike in
the standard Q-learning method, in our method, the next state
is not affected by the current action. Thus, when performing
experience replay, our training algorithm needs to obtain the
previous state and implement the ε -greedy policy to obtain
the previous action.

Next, we modified the experience replay introduced in the
previous work. First, our model not only samples random
batches from the memory buffer to take a gradient step on the
loss function but it also randomly generates an experience at
every iteration to store it in the memory buffer. Second, our
model updates parameters θ every B iteration, and not every
iteration like the original version. In other words, our model
stores an experience in the memory buffer at every iteration,
updates the network parameters θ at every B iteration by
taking a gradient step on the loss function, and updates the
target network parameters θ∗ at every B × C iteration by
copying θ to θ∗. We modified the original version of experi-
ence replay to prevent our model from updating parameters
θ for too many iterations with experiences generated from
only a few companies. As mentioned earlier, we use 80%
of our entire training set to actually train our model; our
training set contains data on approximately 1500 companies,
which was collected over 1000 days (total ≈1,500,000). The
original version of experience replay generates experiences
and stores them in the memory buffer by the order of input
sequence (one company at a time). Assuming that the size
of the memory buffer is 1000, the memory buffer has experi-
ences from only one or two companies over the entire training
period. It will take approximately 1000 iterations to observe

an experience generated from a new company. Randomly
generating experiences and taking a gradient step at every B
iteration are done to help our model use many experiences
uniformly generated from the entire training set.

The training algorithm generates experience eb at b th itera-
tion and stores it in the memory buffer. Experience is simply a
tuple of the current state, action, reward, and subsequent state,
i.e., (S, A, R and S′). The algorithm first randomly selects a
data index (c and t) from the training set. Next, the ε -greedy
policy (either randomly selects an action with probability ε
or acts greedily) is used as the behavior policy on state sct−1
and sct to obtain the previous action act−1 and the current
action act . When implementing the behavior policy, value ε is
initialized to 1 and gradually decremented until it reaches the
minimum value εm. Rewards are calculated based on previous
and current actions and Lct , then the tuple (S, A, R and S′) is
assigned to experience eb. The experience eb is stored in the
memory buffer. At every B iteration, the minibatch of size
β is randomly sampled from the memory buffer and used to
calculate Loss. A gradient step is taken to minimize Losswith
respect to parameters θ . The target network parameters θ∗ are
updated every B × C iteration. The full training algorithm
is stated in Algorithm 1. Also, the list of hyperparameters
mentioned in this paper is provided in Table 2.

E. SOURCE CODE AVAILABILITY
Our source code used in our experiments is available
at https://github.com/lee-jinho/DQN-global-stock-market-
prediction/. Since the converted data (chart image data) that
was used as input data in our experiments is too large to be
uploaded to the online repository, only the sample data is
available. The entire dataset can be provided by the corre-
sponding author upon request.

IV. EXPERIMENTS
A. PORTFOLIO CONSTRUCTION
Our CNN introduced in the previous section basically takes
a single chart image as input and outputs an action value for
a single company at time t. But in experiments, we have to
deal with more than one company. To deal with more than one
company, we constructed a lengthN portfolio vector α which
satisfies

∑N
c=1|α[c]| = 1.0 based on the output vectors of

our CNN. N is the total number of companies. At time t, our
CNN produces the predictions for N companies instead of
one. The portfolio is constructed based on the following N
outputs: ρc and ηc where 1 ≤ c ≤ N . Thus, the portfolio
for N companies is reconstructed every day as done for a
single company. The portfolio weight assigned to company c
(α[c]) represents the portion of the total asset that should be
invested into company c. Vectors ρc and ηc also represent an
action value and one hot vector for company c, respectively.
Note that vector α can have a negative value, which means
a Short position was taken on the company. For example,
assuming that the total asset is 1.0, α[c] = −0.008 indicates
that our CNN is taking a 0.008 Short position on company c at
time t. There may be multiple ways to assign weights to each

167266 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

Algorithm 1 Training Algorithm
1: Initialize memory buffer to capacity M
2: Initialize network parameters θ
3: Initialize target network parameters θ∗ = θ
4: Initialize ε = 1
5: for all b = 1,maxiter do
6: c← randomly chosen index
7: t ← randomly chosen index
8: With probability ε, act−1← random action
9: otherwise act−1← max

a
Q(sct−1, a; θ)

10: With probability ε, act ← random action
11: otherwise act ← max

a
Q(sct , a; θ)

12: S← sct
13: A← act
14: R← act × L

c
t - P × |act - a

c
t−1|

15: S’← sct+1
16: Set eb←

{
S,A,R,S’

}
17: Store experience eb in memory buffer
18: if ε > εm then
19: ε ← ε × 0.999999
20: end if
21: if Memory buffer is full then
22: Delete the oldest experience from the memory

buffer
23: end if
24: if b % B == 0 then
25: Random sample minibatch of size β from memory

buffer
26: Loss← 0
27: for all k in minibatch do
28: Set Sk ,Ak ,Rk , S ′k ← from ek
29: Loss ← Loss + [Rk + γmax

a
Q(S ′k , a; θ

∗) −

Q(Sk ,Ak ; θ)]2

30: end for
31: Loss← Loss/β
32: Perform gradient step to minimize Loss with respect

to the parameters θ
33: end if
34: if b % (B × C) == 0 then
35: θ∗← θ

36: end if
37: end for

company even if we use the same output of our CNN. In our
experiments, we used twomethods that were used in previous
works and real practice for creating portfolios. We conducted
various experiments with the portfolios we created, which are
described in the following subsections.

B. MARKET NEUTRAL PORTFOLIO
First, we use the market neutral portfolio which takes the
same number of Long and Short positions every day. In other
words, the portfolio satisfies

∑N
c=1αn[c] = 0 every day.

The term ‘‘neutralize’’ could be interpreted as making the

average zero. The subscript n is added to represent the market
neutral portfolio. Because the market neutral portfolio takes
the same number of Long and Short positions every day,
its return has a much lower correlation with the average
market return than the return of the non-neutral portfolio;
hence, the portfolio is relatively free from overall market risk.
In our experiments, we measured the correlation between our
market neutral portfolio and the average market return. The
results are shown in Table 3.

Algorithm 2 Market Neutral Portfolio
1: Initialize αn← 0
2: for all c do
3: if ηc[1] == 1 then
4: αn[c]← 1
5: else if ηc[3] == 1 then
6: αn[c]←−1
7: end if
8: end for
9: µn←

1
N

∑N
c=1 αn[c]

10: αn[c]← αn[c]− µn for all c
11: 6n←

∑N
c=1 |αn[c]|

12: αn[c]← αn[c] / 6n for all c

One hot vector ηc is used when constructing the market
neutral portfolio vector αn. Steps to create the market neu-
tral portfolio are described in Algorithm 2. First, for com-
pany c, a scalar value of 1, 0, or −1 is assigned to αn[c]
for Long, Neutral, and Short actions, respectively, based on
vector ηc. Then, the mean of vector (µn = 1

N
∑N

c=1αn[c])
is subtracted from each element of the vector αn. Finally,
each element of αn is divided by the sum of the absolute
value of the vector’s element (6n =

∑N
c=1|αn[c]|) to make

sure that the portfolio satisfies
∑N

c=1|αn[c]| = 1.0 every
day.

To evaluate the performance of our market neutral portfo-
lio, we conducted various types of experiments. The annual
return and the return per transaction prior to transaction costs
are reported in Table 3. Also, the risk of our market neutral
portfolio is measured using the Sharpe ratio [38], [39] and
the maximum drawdown [40], both of which are reported
in Table 4. The Sharpe ratio is a commonly used measure
and is calculated by dividing the mean of the excess return by
the standard deviation of the excess return. We used the US
13-week Treasury bill for measuring the excess return of our
market neutral portfolio. The maximum drawdown measures
the portion of an asset that could be lost during an entire
testing period. So the maximum drawdown is simply the loss
from a peak to a trough of a portfolio. The exact formula can
be found in [38]–[40].

These results in Table 3 and Table 4 show that our
approach generally obtains good performance in most of
the stock markets worldwide during most of the testing
periods. Except for a few testing periods, our market neutral
portfolio generally yields≈ a 10 to 100 percent annual return

VOLUME 7, 2019 167267

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 2. List of hyperparameters mentioned in the paper. Hyperparameter optimization is done using 20% of the training set.

TABLE 3. Results of the market neutral portfolio on a 4-year interval prior to transaction costs. The column Acc lists the prediction accuracy averaged
over an entire testing period (2006-2018). The column TR# lists the average number of transactions of each company per year. The per TR columns list the
return per transaction in percentage. The Annual columns list the annual returns in percentage. The correlation between the returns of our market neutral
portfolio and the average market returns are shown in the Cor columns. The last row lists the overall average of 31 countries.

prior to transaction costs or has a Sharpe ratio of ≈2.0 to
10.0 in developed countries as well as in emerging coun-
tries. But in some countries where the number of candidate

companies is very small, such as AUR and IRL, themaximum
drawdown of our market neutral portfolio is larger
than 10%.

167268 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 4. The SR columns list the annualized Sharpe ratios of our market neutral portfolio. The MDD columns list the maximum drawdowns of our
market neutral portfolio. The maximum portfolio weight assigned to one company for each 4-year period is also listed in the MW columns.

Also, the absolute value of the maximum portfolio weight
assigned to one company during the testing period (the
columns MW) is reported in Table 4. For example, the value
0.0021 in the first row of the column MW during the period
of 2006-2010 indicates that the largest absolute value of
the portfolio weight assigned to one company during the
period of 2006-2010 is 0.0021, assuming that the total asset
is 1.0. Thus, about 0.21 %, at most, of the total asset
is assigned to one company during the 2006-2010 period
in the US. As shown in the column MW in Table 4,
except for a few countries with a small number of can-
didate companies, the market neutral portfolio distributes
the asset to most of the candidate companies in most of
the countries during most of the testing period. In other
words, the profit of the market neutral portfolio does not
come from a small number of extremely well performing
companies.

Although our model is not designed for classification
problems, we also calculated the prediction accuracy of our
market neutral portfolio for further understanding. For sim-
plicity, the action Neutral is ignored and prediction accuracy
is calculated based on only Long or Short actions taken.
Only when the next day’s return is positive and the current
action is Long or when the next day’s return is negative and
the current action is Short, the action is considered correct.
Then the prediction accuracy is calculated by dividing the
number of correct actions by the total number of correct and
wrong actions. The results are provided in the column Acc
of Table 3. As the results show, the prediction accuracy is
slightly higher than 0.5 in most cases, even when the port-
folio yields a considerably high annual return. These results
indicate that our model focuses on the patterns that yield
relatively high rewards, rather than on all input patterns that
yield relatively low rewards.

VOLUME 7, 2019 167269

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

C. TOP/BOTTOM K PORTFOLIO
Next, we use the top/bottom K portfolio, which takes a posi-
tion only when the signal is strong. In other words, our CNN
takes a Long position for the top K% of companies, a Short
position for the bottom K% of companies, and a Neutral
position for the others each day based on vector ρc, which
is another output of our CNN. Note that this portfolio also
satisfies

∑N
c=1αs[c] = 0 (market neutral). The difference

is that the top/bottom K portfolio distributes its asset to
only 2 × K% companies. To construct this portfolio, first,
subtract ρc[3] from ρc[1] and use this value to decide which
company to take position. Note that each element of vector
ρc represents the action value of corresponding action. If we
take a closer look, the value (ρc[1] − ρc[3]) is the difference
between the expected cumulative return of the Long action
and the expected cumulative return of the Short action of
company c at time t. Intuitively, this value indicates how
much the stock price of company c will increase at time
t + 1. Based on this value (ρc[1] − ρc[3]), a value of 1.0 is
assigned to αs[c] for the top K% of companies (which have
a bigger value) and −1.0 is assigned to αs[c] for the bottom
K% of companies (which have a smaller value). As done in
the market neutral portfolio above, we divide each element
of αs by the sum of the absolute value of the element of
αs (6s =

∑N
c=1|αs[c]|) and use this as the top/bottom K

portfolio. The subscript s is added to represent the top/bottom
K portfolio. Steps to create the top/bottom K portfolio are
described in Algorithm 3.

Algorithm 3 Top/Bottom K Portfolio
1: Initialize αs← 0
2: for all c do
3: if ρc[1]− ρc[3] is in the top K% then
4: αs[c]← 1
5: else if ρc[1]− ρc[3] is in the bottom K% then
6: αs[c]←−1
7: end if
8: end for
9: 6s←

∑N
c=1 |αs[c]|

10: αs[c]← αs[c] / 6s for all c

The main purpose of testing the performance of the
top/bottom K portfolio is as follows. We used the Q-learning
algorithm for training, which uses an action value that cor-
responds to the expected cumulative rewards of an action.
In this sense, a larger action value of the Long (Short) position
should indicate more profit the model will receive if the
model takes a Long (Short) position. So if our CNN is trained
properly, the top/bottom K portfolio that takes a position
based on the subtracted value (ρc[1] − ρc[3]) should yield
more profit than the market neutral portfolio that distributes
asset to all companies. Thus, by this test, we are able to show
that our CNN is not only capable of choosing the best action
among Long, Neutral, and Short actions, but also can assign
higher values to more profitable actions.

Table 5 compares the overall performance of the
top/bottomK portfolio with the average annual market return.
The results generally show that when the portfolio distributes
more of its asset to a smaller number of companies that have
larger action value, the annual return increases. Although the
transaction costs are not included in the results, the results
show that the annual return is much higher than the average
market return in most countries for the majority of the
time period. The average tendency is also shown in Fig. 2.
Fig. 2 (a) shows the results of countries, with relatively large
market capitalization, where an initial N value of 3000 or
500 is used in the experiments (12 countries total). Fig. 2 (b)
shows the results of other countries (19 countries total), which
were obtained by our model which used an initial N value
of 100. The results clearly show that decreasing K increases
the annual return.

D. STATISTICAL TESTS
For statistical tests, we constructed one random market neu-
tral portfolio and three random top/bottom K portfolios.
We compared the performance of random portfolios with
that of our portfolios to verify the statistical significance of
our results. Since the number of companies and the type
of portfolio affect the standard deviation of the return on a
portfolio, each of the four portfolios (neutral, K = 20, 10,
and 5) was tested in the US, developed, and emerging coun-
tries (initial N = 3000, 500, and 100) over the entire
testing period. 10,000 simulations were conducted for each
experiment, and the mean µ and standard deviation σ of
the annual return were calculated. Random portfolios were
created as follows. A value between −1 and 1 was randomly
selected, neutralized, and divided by the sum of absolute
values to construct the random market neutral portfolio αn
using the same method mentioned in the Market Neutral
Portfolio section. So αn is a randomly weighted portfolio
which satisfies

∑N
c=1αn[c] = 0 and

∑N
c=1|αn[c]| = 1.0.

The random top/bottom K portfolios αs were also generated
in a similar way. K% of randomly selected companies took a
Long position and the other K% of randomly selected com-
panies took a Short position. Like the portfolios of our model,
the random market neutral portfolio and the three random
top/bottom K portfolios were also reconstructed every day.

The return of a portfolio is generally assumed to be nor-
mally distributed, so we calculated Z-scores for the statistical
test. The results are provided in Table 6. In Table 6, µ and σ
denote themean and standard deviation of the annual return of
the random portfolios, respectively. Since all the four random
portfolios (neutral,K = 20, 10, 5) are actuallymarket neutral,
µ is zero. The standard deviation σ tends to increase asK and
N become smaller; K and N are smaller when the portfolio
distributes its asset to a smaller number of companies. The
columns µ and Z-score list the average annual returns of
our portfolios and Z-scores, respectively. As the results show,
in most cases, the average annual returns of our portfolios are
usually more than 30-σ away from the average annual returns
of random portfolios.

167270 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 5. Comparison of the average annual return of the top/bottom K portfolios (K = 5, 10, 20) with the average annual market return (the columns
avg) prior to transaction costs. The average annual market return is the return of the buy and hold portfolio with asset uniformly distributed to N
companies.

E. CONSIDERING TRANSACTION COSTS
In this subsection, we describe the experiments where trans-
action costs are considered. In real practice, various types
of transaction costs are applied when an asset is reallocated.
Brokerage fees, transaction taxes (in some countries), or bid-
ask spreads are some of the different types of transaction
costs. However, since we are using the daily closing price data
of 31 countries, considering all types of transaction costs is
infeasible. Therefore, we conducted two experiments. In the
first experiment, we assumed that the transaction cost is a
certain percentage of the transaction amount. In the second
experiment, we tested our portfolios on the most liquid NL
companies and compared the results with that of the previ-
ous experiments which used the most liquid N companies
for testing our portfolios. Values of 1000, 200 and 40 are
assigned to NL for US, developed countries, and emerging

countries, respectively. Table 1 shows the exact number
of companies (N and NL) from each country used in our
experiments.

Before discussing the results, the transaction cost should
be clearly defined. We define the transaction cost as the cost
of a buy/sell transaction. For example, if a share is bought
at $100, and it is sold at $110, a profit of $9.9 instead of
$10 will be earned if the transaction cost is 0.1%. Note that
transaction cost is different from the value P in Equation 3.
Transaction penalty P works like transaction cost, but P is a
fixed value applied only in training. The transaction cost in
the experiments is denoted as ζ .

Table 7 summarizes the results of the first experiment. The
column Type lists the types of portfolios (Neutral, K = 20,
10, 5). All 31 countries are categorized into three groups
US, Dv and Em based on their market capitalization, where

VOLUME 7, 2019 167271

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

FIGURE 2. Comparison of the average annual returns of the market neutral portfolio and top/bottom K portfolio with the
annual market average return.

TABLE 6. Statistical results of the random portfolios compared to our market neutral (NEU), top/bottom K portfolios. The results are calculated and
averaged over the entire testing period (12 years).

TABLE 7. The average annual returns of four types of portfolios (neutral, K = 20, 10, and 5) after transaction costs (ζ) are applied. Countries are divided
into three groups (US, Dv, and Em) based on their market capitalization. The first row lists the testing periods.

the US, Dv, and Em groups have 1, 11, and 19 countries,
respectively. The abbreviations Dv and Em correspond to
developed and emerging countries, respectively. All the val-
ues in Table 7 are annual returns (in percentage) averaged

over each testing period and Group. The transaction cost in
percentage is denoted by ζ . For example, the value of 28.53 in
the upper left corner is the annual return of the market neutral
portfolio, averaged over 11 developed countries from 2006 to

167272 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 8. Comparison of the average annual returns of four types of portfolios (neutral, K = 20, 10 and 5). The columns N list average annual return of
each portfolio tested on the most liquid N companies. The columns NL list average annual return of each portfolio tested on the most liquid NL
companies. The first row lists the testing periods. The transaction cost is not applied.

2010when a transaction cost of 0.1% is applied. As the results
show, the returns of all the portfolios in Table 6 decrease
as the transaction cost increases. In addition, the column
Return(06-18) shows that the market neutral portfolio did not
make a profit in the US (ζ = 0.2) or in developed countries
(ζ = 0.3). But the top/bottom K portfolios yield a consider-
able amount of return in developed and emerging countries
after a transaction cost of ζ = 0.3 is applied. The top/bottom
K = 5 portfolio yields more than the average market return
in 23 countries when a transaction cost of ζ = 0.2 is applied,
and yieldsmore than the averagemarket return in 17 countries
when a transaction cost of ζ = 0.3 is applied.
The second experiment was conducted since the more liq-

uid companies are relatively easy to trade at the desired time
and price. Four types of portfolios were tested on the more
liquid companies (NL). Table 8 compares the results of using
a top liquid NL companies (columns NL) with the results of
using the original top liquid N companies (columns N). The
data listed in columns N of Table 8 are obtained from Tables 3
and 5. The columns Type and Group in Table 8 list the types
of portfolios and the categories of countries, respectively.
Table 8 shows that the annual return decreases when the asset
is allocated to only more liquid companies. The annual return
of the portfolios may decrease more if the portfolios allocate
the asset to evenmore liquid companies. The results show that
it is more difficult for portfolios of more liquid companies
to yield profit. But as the column Return(06-18) shows, our
portfolio still yielded profits in the US, developed countries,
and emerging countries. Our top/bottom K = 5 portfolio
yields more profit than the market average in 28 countries.

F. COMPARISON WITH OTHER BASELINES
In this subsection, we compare our model with NN based and
technical analysis based baselines. The NN baselines are as
follows: FC network, CNN, and LSTM network all of which

are trained using conventional supervised learning. We use
FC network, CNN, and LSTM network as our baselines for
two reasons. First, recent state-of-the-art studies [27], [28]
have applied different types of NNs to the stock prediction
problem and obtained good performance. Second, in the
Introduction section, we stated that RL ismore suitable for the
stock prediction problem; hence, comparing the performance
of FC network, CNN, and LSTM each trained using a con-
ventional supervised learning method with that of our model
is necessary. We also use the momentum strategy and mean
average convergence and divergence (MACD), both of which
are based on conventional technical analysis, as our baselines.
A brief overview of the training process and architectures of
the NN baselines is provided below.

We used the same data used in our previous experiments
for training and testing FC network, CNN, and LSTM net-
work. Five years (Jan. 2001-Dec. 2005) of US data are used
for training (80%) and hyper-parameter tuning (20%). All
other data is used for testing. FC network, CNN, and LSTM
network are trained using supervised learning. Based on the
next day’s return, the training data is equally divided into
the following classes: Long, Neutral, or Short. The entire
training set is sorted based on the next day’s return. The
top 33.3% of training data with high returns are labeled as
Long, the bottom 33.3% of training data with low returns
are labeled as Short, and the others are labeled as Neutral.
In the testing stage, evaluation metrics such as precision or
recall, which are widely used in classification problems, were
not used to evaluate the performance of the NN baselines.
To compare the performance of the NN baselines with that
of our model, we constructed a market neutral portfolio
using the output of the NN baselines. Since the NN base-
lines are trained to classify the current input (closing price
and volume data of the past W days) as Long, Neutral, or
Short, the predicted label of the current input can be consid-
ered as the action that has to be taken at the current time.

VOLUME 7, 2019 167273

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 9. Performance comparison of our model and other baselines. The first row lists the testing periods. The column Methods lists the baselines and
our model. MM12, MACD, FCN, CNN, LSTM, and Ours denote momentum strategy, mean average convergence and divergence, fully connected network,
convolutional neural network, LSTM network, and our model, respectively. All values are annual returns averaged over each period and Group. Group Avg
in the column Group denotes the annual returns averaged over all 31 countries.

We can construct a portfolio and evaluate the performance
of the portfolio using the same method discussed in the
previous Portfolio Construction andMarket Neutral Portfolio
sections.

The network architectures of FC network, CNN, and
LSTM network are as follows. The FC network consists of
four FC layers with 64 × 128, 128 × 64, 64 × 32, and
32 × 3, parameters respectively. Only the first three FC
layers are followed by a batch normalization layer and ReLU.
A softmax function is implemented after the final FC layer.
A vector with a length of 2×W is inputted to the FC network;
the inputted vector consists of the min-max normalized clos-
ing price and volume data over the last W days. The LSTM
network consists of one LSTM layer which is followed by a
fully connected layer. The LSTM layer consists of 64 hidden
units. The FC layer takes the last hidden vector from the
LSTM layer (vector with a length of 64) as input and outputs a
vector with a length of 3. A softmax function is implemented
after the FC layer. The shape of the matrix inputted to the
LSTM network is 2 by W, where each column corresponds
to each time step of the LSTM network. Therefore, the min-
max normalized closing price and volume data of each day is
input at each corresponding time step of the LSTM network.

The network architecture and the shape of the matrix inputted
to the CNN are the same as those of our model, except that in
the CNN, the softmax function is implemented after the final
FC layer.

The conventional momentum strategy, which is introduced
in [7], is a simple strategy of buying winners and selling
losers. This strategy is used to rank all candidate companies
based on past returns; it takes a Long position on the top
10% of companies and takes a Short position on the bottom
10% of companies. We tested the strategy in two different
settings. In the first setting, companies are ranked based on
the last 3 months, and the asset is reallocated every month.
In the second setting, companies are ranked based on the last
12 months and the asset is reallocated every 3 months. Higher
performance was obtained in the second setting, and only
the results from the second setting are reported in Table 9.
MACD [41] is one of the most commonly employed technical
indicators and consists of the MACD line and the signal line.
The MACD line is calculated by subtracting a 26 day-period
moving average from a 12 day-period moving average. The
signal line is a 9 day-period moving average of the MACD
line. The most common MACD strategy used for trading
stocks involves buying when the MACD line crosses above

167274 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

TABLE 10. Average annual returns of portfolios that were created using different types of network architectures, which are listed in the column
Architecture. The first row lists the testing periods. The annual returns are calculated using the market neutral portfolio and without considering
transaction cost.

the signal line and selling when theMACD line crosses below
the signal line.

Table 9 summarizes the results of our experiments. The
results of NNbaselines and ours are obtained using themarket
neutral portfolio. Each baseline is tested with (ζ = 0.1)
and without (ζ = 0) transaction cost and the resulting
annual return is averaged over each group of countries (US,
developed, and emerging) as done in the previous subsec-
tions. As the results show, the performance of our model is
better than that of the NN baselines trained using supervised
learning and conventional technical analysis. There are two
main findings in this experiment. First, the performance of
FC network and CNN is fairly high before transaction cost
is included. But as the columns ζ = 0.1 indicate, the profit
significantly decreases when transaction cost (ζ = 0.1) is
applied. If a naive supervised learning method for classi-
fication problems is implemented, it could be difficult to
control the number of transactions, and the model could be
trained to excessively change positions. Second, although the
performance of the NN baselines is affected by the number of
layers, the model architecture, and other hyper-parameters,
the experimental results show that RL is generally more
suitable and efficient than conventional supervised learning
for solving stock prediction problems.

G. ROBUSTNESS VERIFICATION
In this subsection, we test the robustness of our model. The
market neutral portfolio was created and tested on the same
data used in our previous experiments using different network
architectures or different sizes of input (W = 16, 8). The
results are shown in Table 10. The column W lists the input
sizes. The column Architecture lists the symbol indicating
different network architectures used in this experiment. Like
in previous subsections, all values are averaged over the cor-
responding group of countries (US, developed and emerging).
The exact description of the network architectures is provided
below. L616 × 32 is the architecture of our model, which is
described in the Network Architecture section.
L68 × 16 and L632 × 64 each consist of four convolu-

tional layers and are followed by two FC layers. The four
convolutional layers of L68 × 16 consist of 8 filters of size

5 × 5 × 1, 8 filters of size 5 × 5 × 8, 16 filters of size 5 ×
5 × 8, and 16 filters of size 5 × 5 × 16, respectively, and
are followed by two FC layers with 1024 × 16 and 16 ×
3 parameters, respectively. The four convolutional layers of
L632 × 64 consist of 32 filters of size 5 × 5 × 1, 32 filters
of size 5× 5× 32, 64 filters of size 5× 5× 32, and 64 filters
of size 5 × 5 × 64, respectively, and are followed by two FC
layers with 4096 × 16 and 16 × 3 parameters, respectively.
L416 × 32 and L432 × 64 each consist of two convo-

lutional layers and are followed by two FC layers. The two
convolutional layers of L416 × 32 consist of 16 filters of
size 5× 5× 1 and 32 filters of size 5× 5× 16, respectively,
and are followed by two FC layers with 2048 × 32 and
32× 3 parameters, respectively. The two convolutional layers
of L432 × 64 consist of 32 filters of size 5 × 5 × 1 and
64 filters of size 5 × 5 × 32, respectively, and are followed
by two FC layers with 4096 × 64 and 64 × 3 parameters,
respectively.

As the results in Table 10 show, changing the network
architecture affects the overall performance of models. Also,
naively increasing the number of parameters or layers may
degrade the performance of our model. Even though the
results in Table 10 show that changing the network archi-
tecture or input size does not drastically affect performance,
using a suitable architecture and input size still helps to
improve performance.

V. DISCUSSION
In this work, we applied DQN for making global stockmarket
predictions. Unlike the previous works, we focused mainly
on discovering patterns from stock chart images, which could
yield a profit not only in a country whose stock data was used
for training our model but also in other countries. We showed
that the investment activities of people from different coun-
tries and cultures tend to be similar for certain price and
volume patterns. The results also showed that the RL based
DQN method is more suitable than conventional supervised
learning methods for stock prediction problems.

We conducted further experiments to bridge the gap
between our results from the experiment in the ideal cir-
cumstances and real practice. We conducted the experiments

VOLUME 7, 2019 167275

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

where transaction costs were applied or the asset was dis-
tributed to a more liquid universe (NL). Although increas-
ing the transaction cost reduced the profit generated by our
portfolios, our portfolios generally yielded a considerable
amount of profit in many countries. Still, our work has some
limitations. By increasing transaction cost, our result shows
that our portfolios did not make a profit in some well devel-
oped countries such as the US. The profit also decreased
when our portfolios distributed the asset to only a more liquid
universe (NL). Also, we were not able to consider bid-ask
spreads or calculate the actual amount of asset could be
managed, since we only have daily scale data.

VI. CONCLUSION
We conducted numerous experiments to determine whether
our model trained on certain patterns in stock charts from a
single country can make a profit not only in the given country
but generally in all other countries. As our results show,
our model trained in only the US market, also performed
well or even better in many other markets for the 12-year
testing period. Based on this observation, artificial intelli-
gence and machine learning stock price forecasting studies,
which have been conducted in only a single country so far,
can be employed in global stock markets. In other words,
if the model structure, input feature, and training procedure
are satisfactory, the model does not have to be trained and
tested in the same market. To the best of our knowledge, our
artificial intelligence based model, which is trained on the
data of only a single country, is the first to obtain numerous
testing results on global stock markets.

REFERENCES
[1] E. F. Fama, ‘‘Efficient capital markets: A review of theory and empirical

work,’’ J. Finance, vol. 25, no. 2, pp. 383–417, May 1970.
[2] B. G. Malkiel, ‘‘The efficient market hypothesis and its critics,’’ J. Econ.

Perspect., vol. 17, no. 1, pp. 59–82, 2003.
[3] N. Barberis and R. Thaler, ‘‘A survey of behavioral finance,’’ Handbook

Econ. Finance, vol. 1, pp. 1053–1128, Jan. 2003.
[4] J. H. Kim, A. Shamsuddin, and K. P. Lim, ‘‘Stock return predictability and

the adaptive markets hypothesis: Evidence from century-long U.S. data,’’
J. Empirical Finance, vol. 18, pp. 868–879, Dec. 2011.

[5] W. F. M. De Bondt and R. Thaler, ‘‘Does the stock market overreact?’’
J. Finance, vol. 40, no. 3, pp. 793–805, Jul. 1985.

[6] N. Jegadeesh, ‘‘Evidence of predictable behavior of security returns,’’
J. Finance, vol. 45, no. 3, pp. 881–898, Jul. 1990.

[7] N. Jegadeesh and S. Titman, ‘‘Returns to buying winners and selling
losers: Implications for stock market efficiency,’’ J. Finance, vol. 48, no. 1,
pp. 65–91, Mar. 1993.

[8] L. K. C. Chan, N. Jegadeesh, and J. Lakonishok, ‘‘Momentum strategies,’’
J. Finance, vol. 51, no. 5, pp. 1681–1713, Dec. 1996.

[9] J. S. Abarbanell and B. J. Bushee, ‘‘Fundamental analysis, future earnings,
and stock prices,’’ J. Accounting Res., vol. 35, no. 1, pp. 1–24, 1997.

[10] G. W. Schwert, ‘‘Anomalies and market efficiency,’’ Handbook Econ.
Finance, vol. 1, pp. 939–974, Jan. 2003.

[11] M. C. Jensen, ‘‘Some anomalous evidence regarding market efficiency,’’
J. Financial Econ., vol. 6, pp. 95–101, Sep. 1978.

[12] S. M. Phillips and C. W. Smith, Jr., ‘‘Trading costs for listed options:
The implications for market efficiency,’’ J. Financial Econ., vol. 8, no. 2,
pp. 179–201, Jun. 1980.

[13] H. R. Stoll and R. E.Whaley, ‘‘Transaction costs and the small firm effect,’’
J. Financial Econ., vol. 12, no. 1, pp. 57–79, Jun. 1983.

[14] A. W. Lo, H. Mamaysky, and J. Wang, ‘‘Foundations of technical analysis:
Computational algorithms, statistical inference, and empirical implemen-
tation,’’ J. Finance, vol. 55, no. 4, pp. 1705–1765, Aug. 2000.

[15] C.-H. Park and S. H. Irwin, ‘‘What do we know about the profitability of
technical analysis?’’ J. Econ. Surv., vol. 21, no. 4, pp. 786–826, 2007.

[16] A. J. Patton, ‘‘Are ‘market neutral’ hedge funds really market neutral?’’
Rev. Financial Stud., vol. 22, no. 7, pp. 2495–2530, Jul. 2008.

[17] J. Bollen, H. Mao, and X. Zeng, ‘‘Twitter mood predicts the stock market,’’
J. Comput. Sci., vol. 2, no. 1, pp. 1–8, Mar. 2011.

[18] D. Huang, F. Jiang, J. Tu, and G. Zhou, ‘‘Investor sentiment aligned:
A powerful predictor of stock returns,’’ Rev. Financial Stud., vol. 28, no. 3,
pp. 791–837, Mar. 2014.

[19] R. P. Schumaker and H. Chen, ‘‘Textual analysis of stock market prediction
using breaking financial news: The azfin text system,’’ ACM Trans. Inf.
Syst., vol. 27, no. 2, p. 12, Feb. 2009.

[20] Z. Da, J. Engelberg, and P. Gao, ‘‘In search of attention,’’ J. Finance,
vol. 66, no. 5, pp. 1461–1499, Oct. 2011.

[21] T. Preis, H. S. Moat, and H. E. Stanley, ‘‘Quantifying trading behavior
in financial markets using Google trends,’’ Sci. Rep., vol. 3, Apr. 2013,
Art. no. 1684.

[22] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Reading, MA, USA: MIT Press, 1998.

[24] G. Atsalakis and K. P. Valavanis, ‘‘Surveying stock market forecasting
techniques—Part II: Soft computing methods,’’ Expert Syst. Appl., vol. 36,
no. 3, pp. 5932–5941, Apr. 2009.

[25] R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega,
and A. L. I. Oliveira, ‘‘Computational intelligence and financial markets:
A survey and future directions,’’ Expert. Syst. Appl., vol. 55, pp. 194–211,
Aug. 2016.

[26] L. Takeuchi and Y. Y. A. Lee, ‘‘Applying deep learning to enhance momen-
tum trading strategies in stocks,’’ Stanford Univ., Stanford, CA, USA,
Working paper, Dec. 2013.

[27] C. Krauss, N. A. Do, and N. Huck, ‘‘Deep neural networks, gradient-
boosted trees, random forests: Statistical arbitrage on the s&p 500,’’ Eur.
J. Oper. Res., vol. 259, no. 2, pp. 689–702, Jun. 2017.

[28] T. Fischer and C. Krauss, ‘‘Deep learning with long short-term memory
networks for financial market predictions,’’ Eur. J. Oper. Res., vol. 270,
no. 2, pp. 654–669, 2018.

[29] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement
learning for financial signal representation and trading,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2016.

[31] C.-F. Tsai and Z.-Y. Quan, ‘‘Stock prediction by searching for similarities
in candlestick charts,’’ ACM Trans. Manage. Inf. Syst., vol. 5, no. 2, p. 9,
Jul. 2014.

[32] S.-J. Guo, F.-C. Hsu, and C.-C. Hung, ‘‘Deep candlestick predictor:
A framework toward forecasting the price movement from candlestick
charts,’’ in Proc. 9th Int. Symp. Parallel Architectures, Algorithms Pro-
gram., pp. 219–226, Dec. 2018.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control
through deep reinforcement learning,’’ Nature, vol. 518, pp. 529–533,
Feb. 2015.

[34] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[35] S. Loffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ Feb. 2015,
arXiv:1502.03167. [Online]. Available: https://arxiv.org/abs/1502.03167

[36] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. Int. Conf. Artif. Intell. Statist.,
May 2010, pp. 249–256.

[37] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-
tion,’’ Dec. 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[38] W. F. Sharpe, ‘‘Mutual fund performance,’’ J. Bus., vol. 39, no. 1,
pp. 119–138, Jan. 1966.

[39] W. F. Sharpe, ‘‘The Sharpe ratio,’’ J. Portfolio Manage., vol. 21, no. 1,
pp. 49–58, 1994.

[40] M. Magdon-Ismail, A. F. Atiya, A. Pratap, and Y. S. Abu-Mostafa, ‘‘On
the maximum drawdown of a Brownian motion,’’ J. Appl. Probab., vol. 41,
no. 1, pp. 147–161, Mar. 2004.

[41] G. Appel and E. Dobson, Understanding MACD. Greenville, SC, USA:
Traders Press, 2008.

167276 VOLUME 7, 2019

J. Lee et al.: Global Stock Market Prediction Based on Stock Chart Images Using DQN

JINHO LEE received the B.S. degree in computer
science and engineering from Korea University,
Seoul, South Korea, in 2012, where he is currently
pursuing the Ph.D. degree in computer science and
engineering. His research focus on applying state-
of-the-art machine learning algorithms to finan-
cial time series problems, such as stock market
prediction problem.

RAEHYUN KIM received the B.S. degree from
the Business School, Korea University, Seoul,
South Korea, in 2018, where he is currently pur-
suing the Ph.D. degree in computer science and
engineering. His research interests focus on stock
market prediction and recommendation systems.

YOOKYUNG KOH received the B.S. degree
in mathematics from Korea University, Seoul,
South Korea, in 2017, where she is currently pur-
suing the M.S. degree in computer science and
engineering. Her current research interests include
deep learning applied to social media and recom-
mendation systems.

JAEWOO KANG received the B.S. degree in
computer science from Korea University, Seoul,
South Korea, in 1994, the M.S. degree in com-
puter science from the University of Colorado
at Boulder, CO, USA, in 1996, and the Ph.D.
degree in computer science from the University of
Wisconsin–Madison, WI, USA, in 2003.

From 1996 to 1997, he was a Technical Staff
Member with AT&T Labs Research, Florham
Park, NJ, USA. From 1997 to 1998, he was a

Technical Staff Member with Savera Systems Inc., Murray Hill, NJ, USA.
From 2000 to 2001, he was the CTO and a co-founder of WISEngine Inc.,
Santa Clara, CA, USA, and Seoul. From 2003 to 2006, he was an Assistant
Professor with the Department of Computer Science, North Carolina State
University, Raleigh, NC, USA. Since 2006, he has been a Professor with the
Department of Computer Science, Korea University. He also serves as the
Department Head for the Interdisciplinary Graduate Program in Bioinfor-
matics with Korea University. He is jointly appointed as a Professor with the
Department of Medicine, School of Medicine, Korea University.

VOLUME 7, 2019 167277

	INTRODUCTION
	BACKGROUND
	CONVOLUTIONAL NEURAL NETWORK
	Q-LEARNING
	DEEP Q-NETWORK

	METHOD
	OVERVIEW
	NETWORK ARCHITECTURE
	DATA DESCRIPTION
	TRAINING PROCESS
	SOURCE CODE AVAILABILITY

	EXPERIMENTS
	PORTFOLIO CONSTRUCTION
	MARKET NEUTRAL PORTFOLIO
	TOP/BOTTOM K PORTFOLIO
	STATISTICAL TESTS
	CONSIDERING TRANSACTION COSTS
	COMPARISON WITH OTHER BASELINES
	ROBUSTNESS VERIFICATION

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	JINHO LEE
	RAEHYUN KIM
	YOOKYUNG KOH
	JAEWOO KANG

