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ABSTRACT The modeling of Bézier curves and surfaces with their shape parameters is the most popular
area of research in computer aided geometric design/computer aided manufacturing (CAGD/CAM) due
to their geometric characteristics. In this paper, we propose an important idea to tackle the problem in
construction of some engineering symmetric revolutionary curves and symmetric rotation surfaces by using
the generalized hybrid trigonometric Bézier (or GHT-Bézier, for short) curve. The shape of the curves
and surfaces can be modified by the alteration of shape parameters. The free-form complex curves using
GHT-Bézier curves with constraints of parametric continuity are constructed. Finally, by using the
GHT-Bézier curves with their continuity conditions and symmetric formulas, we construct different types of
symmetric figures, symmetric revolutionary curves and symmetric rotation surfaces inR2 andR3 to show the
efficiency of modeling. These symmetric examples show that the proposed method is time saving, effective
and efficient in construction of complex engineering symmetric curves and surfaces.

INDEX TERMS GHT-Bernstein basis functions, GHT-Bézier curves, parametric continuity, shape
parameters, symmetric revolutionary curves, symmetric rotation surfaces.

I. INTRODUCTION
In mathematics, manufacturing and engineering field, a solid
of revolution is a surface (solid) which is obtained by revolv-
ing a plane curve (area). Revolutionary axis is an option
where the solid revolution curve can be easily rotated. Like
this, symmetric curves and symmetric surfaces are that set of
data points which can show the mirror image of the same fig-
ure around that axis in the left side. These curves and surfaces
can be represented in CAD/CAM field in terms of two and
three tuples. Since traditional Bézier curves can be obtained
by control points andBernstein basis functions. After creating
Bézier curves and surfaces we can construct different shapes
by using parametric and geometric continuities which fulfill
our design requirements. Since shape designing is a time con-
suming process and usually we cannot execute our required
design in one step even though by using continuity conditions.
Especially, when we are going to established some complex
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symmetric revolutionary curves and symmetric rotation sur-
faces by the help of Bézier curves. In order to overcome this
cumbersome problem we define two different functions to
construct these curves and surfaces in two and three tuples.
Since trigonometric Bézier curve with the shape parameters
is more continuous as compared to polynomial Bézier curve.
By the variation of shape parameters we canmodify the shape
according to our own choice.

Recently, many scholars got more attention to the trigono-
metric Bézier curves. Xikum [1] constructed Bernstein-
Bézier curve with the shape parameters, but that curve was
not symmetric curve. Yan and Liang [2] defined generalized
Bézier-like curve. They extended the generalized Bézier-like
curve to tensor product surface and further they approach
to the triangular surfaces. Li et al. [4] presented the mod-
eling of revolutionary surfaces based on the stream curves.
Which are also presented by the integral form of tangent
vectors. Liu et al. [5] also presented the cubic trigonometric
polynomial B-spline curve and surfaces modeling. They pre-
sented the various curves and surfaces modeling by the
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variation of shape parameters. Li [6] defined α-Bézier curves
of degree n with shape parameter α by extending the defi-
nition of Bézier curve and also presented the properties and
applications of α-Bézier curves. Wen-Tao and Guo-Zhao [7]
defined Bézier-like curves having the shape parameter by an
integral approach. Hu et al. [8] constructed a Developable
Bézier-like surfaces with their properties and presented dif-
ferent type of complex surfaces modeling by using C2 and
G2 continuity conditions. Han et al. [9] constructed a cubic
trigonometric Bézier curve with two shape parameters and
also made the ellipse by using it.

Hu et al. [11] presented a new method for the construction
of shape adjustable generalized Bézier rotation surfaces with
the multiple shape parameters. They form an explicit func-
tion by using transfinite vectored rational interpolation for
the construction of an algorithm to form rotation surfaces.
Hu et al. [12] presented a novel extension for the model-
ing of Bézier curves and surfaces and their applications in
manufacturing and engineering field. Hu et al. [13] presented
the modeling of free form complex curves by using paramet-
ric and geometric continuities. They also used the multiple
shape parameters to modify and beautify the complex curves
according to requirement. Qin et al. [15] constructed a class
of new polynomial basis functions with (n − 1) local shape
parameters, which is an extension to the classical Bernstein
basis functions of degree n. The properties of these basis
functions and their C2 and G2 continuity conditions are also
presented with the best approximation.

Cubic and quartic trigonometric Bézier curves with their
shape parameters were presented in [16], [19]. The properties
of these Bézier curves and effect of the shape parameter is
also studied. Special rotation surfaces with their significant
improvement have been studied in [4]. But it has many
drawbacks due to required symmetrical shape adjustability.
In [20], Qin and Hu constructed the PH-Spline Bézier curves
and presented their properties, edge and angle of its control
polygon. Bashir et al. [21] presented the rational quadratic
trigonometric Bézier curve with two shape parameters. They
also presented the conic section and other curves with their
applications. Han [22] described the piecewise quadratic
trigonometric polynomial curves, presented its C2 continuity
conditions and showed that the quadratic trigonometric
polynomial curve has a closer control polygon as com-
pared to the control polygon of quadratic B-Spline curve.
Misro et al. [25], [26] constructed C-shape and S-shape
transition curves and maximum speed estimation on highway
design by using cubic and quintic trigonometric Bézier curves
respectively. G2 Hermite conditions and numerical examples
are also discussed in [25].

Yan [27] presented a particular family of Bézier curves
with three different shape parameters which are also known as
adjustable Bézier curves. These curves have same shape and
structure like quartic Bézier curve. Hu et al. [28] constructed
the designing of local controlled by using control planes and
developable H-Bézier surfaces and also presented the C2

continuity and G2 beta continuity between the developable

generalized H-Bézier surface and constructed different
modeling examples. Sharma [29] constructed quartic trigono-
metric Bézier (QTB) curve with two different shape param-
eters, the properties of QTB curve with various modeling
and shape control of the curve is also discussed. In [30],
a new parameterized surface termed as SQ-Coons surface is
proposed according to the build mode of coons patch. This
result improves the design and scheme adjustment efficiency
in the conceptual design stage.

In the study from Fu et al. [31], the influence of various
eddy viscosity turbulence models on the CFD simulations of
a particular racing car typing is discussed. They also pointed
out that the shape of some specific surfaces (i.e., backlight-
decklid junction, spoiler base, roof rails, shark fin) would
affect the result of CFD simulation. Chowdhuary et al. [32]
built a bio inspired CAD car model to take advantage of the
boxfish in water due to its streamline features. The shape
of this model in unified and integral and its characteris-
tic lines consist of the intersection of several subsurfaces.
Hsu et al. [33], proposed a new boundary representation
method of the CAD model, which is more suitable for
mesh generation in CFD preprocessing. From the prediction
of Kumar and Sarkar [34], the similar feature descriptions
extracted from historical models could be used to predict the
vehicle design trend. In their further research [35], a series
of related styling features was integrated into a style-holon to
describe the internal evolution trend of brand characteristics.
Guo et al. [36] proposed a novel algorithm to automatically
transform the CAD model into high quality mesh according
to its shape features line. Xiong et al. [37] proposed that
designers influence users psychological feelings through the
representation of a product’s conceptual features.

Pei et al. [38] replaced the blending function in the second
type of Coons patch with a second order trigonometric blend-
ing function, a blending function with the shape parameter λ
and a RBF-Hermit function to make the patch shape mod-
ifiable. Shen and Wang [39] proposed a new transformation
algorithm to define the C-Bézier curve with one shape param-
eter introduced as a seperated form including a Bézier part
and a trigonometric part in order to represent some regular
curves such as a cycloid or traditional Bézier curve by the
C-Bézier curve. Aljure et al. [40] found a comparison
between the large eddy simulation model and the wall mod-
eled large eddy simulation and a realistic generic car body
CAD model according to the styling of the Audi A4 and the
BMW 3 series was adopted. Since the shape adjustability
is the most prominent characteristic of H-Bézier model in
curves and surfaces modeling and means that the research
in it is practical and theoretical values given in [41], [42].
In [43], [44], the adjustment of the shape according to the
Bézier model is discussed.

II. A FAMILY OF GHT-BÉZIER CURVES
The definition and general properties of GHT-Bézier curve
are defined as follows.
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A. THE GHT-BERNSTEIN BASIS FUNCTIONS
Definition 1: Let we consider the shape parameters µ, α,

ω ∈ [−1, 1] and λ ∈ [−1.5, 0.5], the following function in
terms of variable t ,

S0,2(t) = (1− sin(
π

2
t)[(1− µsin(

π

2
t))eωt

+ λ(1− cos(
π

2
t))],

S1,2(t) = 1− S0,2(t)− S2,2(t),

S2,2(t) = (1− cos(
π

2
t)[(1− αcos(

π

2
t))e(1−ω)t

− λ(1− sin(
π

2
t))],

(1)

is called the hybrid trigonometric Bernstein-like basis func-
tion of degree 2. For any integer n, where (n ≥ 3) the function
Si,n(t) (i = 0, 1, 2, . . . , n), defined by the following recursive
formula,

Si,n(t) = (1− t)Si,n−1(t)+ tSi−1,n−1(t), (2)

is called GHT-Bernstein basis functions of degree n.
Especially for the case, when i = −1 or i > n the function
Si,n(t) = 0.
Figure 1 shows the graphical representation of GHT-

Bernstein basis functions of multiple degrees by variation of
shape parameters.

FIGURE 1. GHT-Bernstein basis functions with shape parameters
µ = (0.5,0,−0.5,−1), α = (0.5,0,−0.5,−1), ω = (0.5,0,−0.5,−1),
λ = (0.5,0,−0.5,−1) of different degrees. (a): n = 3. (b): n = 6.
(c): n = 8. (d): n = 10.

Theorem 1: The GHT-Bernstein basis functions have the
following properties:

1) Non-negativity: For any µ, α, ω ∈ [−1, 1], and λ ∈
[−1.5, 0.5], the function Si,n(t) ≥ 0 where (i =
0, 1, 2, . . . , n).

2) Partition of unity:

n∑
i=0

Si,n(t) = 1.

3) Symmetry: When we keep all shape parameters equal
such as, µ = ω = α = λ, then Si,n(t)(i =
0, 1, 2, . . . , n) are symmetric i.e

Si,n(t, µ, α, ω, λ) = Sn−i,n(1− t, µ, α, ω, λ).

4) Terminal Properties: The GHT-Bernstein basis func-
tions have the following properties at end points.

Si,n(0) = 1, i = 0.
Si,n(0) = 0, i = 1, 2, 3, . . . , n.
Sn,n(1) = 1, i = n.
Si,n(1) = 0, i = 0, 1, 2, 3, . . . , n− 1.

(3)

and the first derivative of these functions at their end
points are:

S ′i,n(0)=
1
2
[−π (1+µ)− 2((n− 2)− ω)], i = 0.

S ′i,n(0) = (n− 2)+
1
2
π (1+ µ)− ω, i = 1.

S ′i,n(0) = 0, i = 2, 3, 4, . . . , n.
S ′i,n(1) = 0, i = 0, 1, 2, 3, . . . , n− 2.

S ′i,n(1) =
1
2
[−π (1+ α)− 2((n− 2)− ω)],

i = n− 1.

S ′i,n(1) = (n− 2)+
1
2
π (1+ α)− ω, i = n.

(4)

Similarly, the second derivative of these functions at the
end points are:
when n is even

S ′′i,n(0) =
π2

4
(λ+ 2µ)− π (1+ µ)(−(n− 2)+ ω)

+ ω2
− (2n− 4)ω+k(2n−4)−(n− 2),

i = 0, k ∈ W

S ′′i,n(1) = 0, i = 0

S ′′i,n(0) = 0, i = n

S ′′i,n(1) =
π2

4
(2α − λ)− π (1+ α)(−(n− 2)+ ω)

− (2n− 4)ω + k (2n− 4)− (n− 2),

i = n, k ∈ W

S ′′i,n(1) =
π2

4
eω(µ− 1)+ (1− α)πω − ω2

+ ω2

−
1
2
π2α, i = 1, n = 2

S ′′i,n(0) =
π2

4
(eω(α − 1)− 2µ)+ π(1+ µ)(ω

− 4k)− ω2
+ 8kω − 4(2k − 1)k,

n = 2, 4, 6, . . . i = 1, k ∈ W

S ′′i,n(1) = 0, i = 1, n = 4, 6, 8, . . .
(5)
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when n is odd.

S ′′i,n(0) =
π2

4
(λ+ 2µ)− π (1+ µ)(−(n− 2)

+ ω)+ ω2
− (2n− 4)ω + k(2n− 4),
i = 0, k ∈ W

S ′′i,n(1) = 0, i = 0
S ′′i,n(0) = 0, i = n

S ′′i,n(1) =
π2

4
(2α − λ)− π (1+ α)(−(n− 2)

+ ω)+ ω2
− (2n− 4)ω + k(2n− 4),
i = n, k ∈ W

S ′′i,n(1) = π + πα +
π2

4
(λ− eω(µ− 1)− 2ω,

i = 1, n = 3

S ′′i,n(0) =
π2

4
(eω(α−)− 2µ)+ (12+ 8r)(ω

− k)+ π (1+ µ)(ω − (4k + 2))− ω2,

i = 1, r, k ∈ W , n = 3, 5, 7, . . .
S ′′i,n(1) = 0, i = 1, n = 5, 7, 9, . . . .

(6)

and

S ′′i,n(0) =
1
4
[4(n− 2)π (1+ µ)− π2(eω(α − 1)

+ λ)−8(n− 2)ω+8(Vr+r+1)], r ∈W ,
i = 2,Vr = Vr−1 + r,V−1 = V0 = 0,

n = 3, 4, . . . ,
S ′′i,n(0) = 0, i = 3, 4, 5, 6, . . . , n− 1

S ′′i,n(1) =
1
4
π2(−2α + eωµ− 1)+ π (ω − 2(n

− 2))(1+ α)− (ω2
− 4(n− 2)ω + 4(Vr

+ r + 1),Vr=Vr−1+r,V−1=V0=0,
i = n− 1, n ≥ 3, r = 0, 1, 2, 3, 4, . . .

S ′′i,n(1) =
1
4
[(4(n− 2)π (1+ α)+ 8 (Vr + r

+ 1)+π2(λ−eω(−1+µ))−8(n− 2)ω],
i=n− 2,Vr=Vr−1 + r,V−1 = V0=0,

n ≥ 4, r ∈ W
S ′′i,n(1) = 0, n ≥ 5, i = n− 3, n− 4, n− 5, . . .

(7)

Proof: It is obvious to obtain these result from
Definition 1.

B. CONSTRUCTION OF GHT-BÉZIER CURVES WITH SHAPE
PARAMETERS
Definition 2: For the given control points Pi(i =

0, 1, 2, 3, . . . , n), the curve

{5t } : H (t;µ, α, ω, λ) =
n∑
i=0

PiSi,n(t), 0 ≤ t ≤ 1 (8)

is called GHT-Bézier curve. Where Si,n(t) are called
GHT-Bernstein basis functions and µ, α, ω, λ are the shape
parameters.
Theorem 2: The GHT-Bézier curves have the following

properties:

1) Shape adjustable property: Since the classical Bézier
curve is always fixed inside the control polygon and
we cannot alter it without changing the control points.
Because it do not possess the shape parameters. But
GHT-Bézier curve having four different shape param-
eters. So, by fixing the control polygon, we can adjust
the shape of the curve only by varying the shape
parameters.

2) Terminal properties: For the given four shape param-
eters µ, α, ω ∈ [−1, 1] and λ ∈ [−1.5, 0.5], we have
the following terminal properties of the curve.

H (0) = P0,
H (1) = Pn,

H ′(0) =
1
2
(2(n− 2)+ π (1+ µ)− 2ω)(P1 − P0),

H ′(1) =
1
2
(2 (n− 2)+ π (1+ α)− 2 ω) (Pn

− Pn−1),

H ′′(0) =
1
4
[π2 (λ+2µ)− 4π (1+ µ)((n− 2)− ω)

+ 4(ω2
− 2(n− 2)+ 12))P0 + [π2(eω

(α − 1)− 2µ+ 4π (1+ µ)(ω − 2(n− 2))
− 4(ω2

− 4(n− 2)+ 4(Uz + z+ 1))] P1
+ π2 (eω (α − 1)+ λ)− 4k π (1+ µ)
+ 8rω + 8(Vr + r + 1)] P2, Uk = Uk−1
+ k, Vr = Vr−1 + r, U0 = 0, V1 = 0,

V−1 = 0, r ∈ Z , k ∈ W ,

H ′′(1) =
1
4
[4 (Uk + k + 1)π (1+ α)+ π2 (eω

(1− µ))− 8 r ω + 8 (Vr + r + 1) ] Pn−2
+ [π2(−2α + eω(µ+ 1))+ 4π (1+ α)(ω
− (2n− 4) )− 4(ω2

− (4n− 8) ω + (Uk
+ k + 1))]Pn−1 + [ π2 (2α − λ)− 4π (1
+ α) (ω − (n− 3))+ 4( ω2

+ (2n− 4)
ω + 2(Uz + z+ 1))]Pn,Uk = Uk−1 + k,
Vr = Vr−1 + r,U0 = 0,V1 = 0,V−1 = 0,

z ∈ Z , r ∈ Z , k ∈ W .
(9)

3) Symmetry: When we have µ = α = ω = λ, the con-
trol points of this curve, P0,P1,P2, . . . ,Pn−1,Pn
and Pn,Pn−1,Pn−2, . . . ,P1,P0 define the same GHT-
Bézier curve having symmetric influence, such as:

H (t;µ, α, ω, λ,P0,P1,P2, . . . ,Pn−1,Pn)

= H (1− t; λ, ω, α, µ,Pn,Pn−1,Pn−2, . . . ,P1,P0).

(10)
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4) Convex hull property: Since the above mentioned
GHT-Bernstein basis functions have two proper-
ties, partition of unity and non-negativity, which
infer that the GHT-Bézier curve with control points
P0,P1,P2, . . . ,Pn, must lie inside the control polygon.

5) Geometric invariance: The shape of GHT-Bézier
curve never depends upon the coordinate axis, which
means that this curve satisfies the following two
equations:

H (t;µ, α, ω, λ;P0 + M̃ ,P1 + M̃ ,P2 + M̃ , . . . ,Pn
+ M̃ ) = H (t;µ, α, ω, λ;P0,P1,P2, . . . ,Pn)+ M̃ ,

H (t;µ, α, ω, λ;WP0,WP1,WP2, . . . ,WPn)

= WH (t;µ, α, ω, λ;P0,P1,P2, . . . ,Pn), (11)

where M̃ is an arbitrary vector in R2 or R3, W is an
arbitrary m× m matrix for m = 2, 3.
Proof: It is obvious to obtain these result from

Definition 2.

C. INFLUENCE OF SHAPE PARAMETER ON GHT-BÉZIER
CURVES
The basis functions defined by Equation (2) possess four
different shape parameters, by altering the value of these
shape parameters, we can see the variation on the GHT-Bézier
curves in Figure 2.

FIGURE 2. Cubic Hybrid Trigonometric Bézier curves by the variation of
shape parameters. (a): α = λ = ω = 0, µ = −0.6,−0.1,0.5,0.8.
(b): α = µ = 1, ω = −1, λ = −1.5,−1,−0.1,0.5. (c): ω = 0, λ = 1,
µ = α = 1,0.9,0.83,0.75. (d): µ = α = 1, λ = −1.5, ω = 0,0.5,
−0.5,−1.34.

Consider a cubic hybrid trigonometric Bézier curve
P(t;µ, α, ω, λ) =

∑3
i=0 PiSi,3(t) with four control points

P0 = (0, 0), P1 = (−1, 3), P2 = (3, 3) and P3 = (2, 0).
Figure 2(a) shows the smooth behavior of different curves
by varying the shape parameters. Such as, when we keep the
shape parameter α = λ = ω = 0 fixed and increase the value
ofµ = −0.6,−0.1, 0.5 and 0.8 then the curvesmove towards
the control polygon. Figure 2(b) also depicts the behavior of

cubic curve by the variation of shape parameters. Here the
given curve is generated by keeping the shape parameters
α = µ = 1 and ω = −1 fixed and by altering the values
of λ = −1.5,−1,−0.1, 0.5. This curve shows a beautiful
influence on both left and right side from the center of the
curve. Figure 2(c) shows the behavior of the curve when we
fix the values of the shape parameters ω = 0 and λ = 1 and
gives the simultaneous variation to the parameter µ = α =

1, 0.9, 0.83, 0.75. Here the curves show unique behavior,
as we gradually decrease the value of the shape parameters
the curves move towards the control polygon rather than
moving away from the control net. Figure 2(d) also shows the
influence on the curves by the variation of shape parameters.
In this Figure, we again fix some shape parameters and vary
few of them to check the behavior of the curve. We keep
µ = α = 1 and λ = −1.5 fixed and give variations to
the parameter ω = 0, 0.5,−0.5,−1.34. The blue solid line
is obtained by the minimum value of λ then by gradually
decreasing these values the curves are moving farther away
from the control net.

D. PARAMETRIC CONTINUITY CONSTRAINTS FOR
GHT-BÉZIER CURVES
In CAGD and manufacturing system, we can obtain our
required shape by adjusting the shape parameters of the curve.
But various kinds of complex curves are difficult to be con-
structed by a single curve even though by adjusting the shape
parameters. Therefore, continuity conditions are used to join
multiple curves to obtain the required shape.

Consider two adjacent GHT-Bézier curves which are
defined as:

H1(t;µ1, α1, ω1, λ1)

=

n∑
i=0

PiSi,n(t), 0 ≤ t ≤ 1, n ≥ 3,

H2(t;µ2, α2, ω2, λ2)

=

m∑
j=0

QjSj,m(t), 0 ≤ t ≤ 1,m ≥ 3,

(12)

where Si,n(t) and Sj,m(t) are GHT-Bernstein basis func-
tions of degree n and m, respectively. The µ1, α1, ω1, λ1,
Pi(i = 0, 1, 2, 3, . . . , n) and µ2, α2, ω2, λ2, Qj(j =
0, 1, 2, 3, . . . ,m) are the shape parameters and control points
of these two adjacent GHT-Bézier curves, respectively.
Theorem 3: Given two GHT-Bézier curves of same

degrees

H1(t;µ1, α1, ω1, λ1) =
n∑
i=0

PiSi,n(t),

and

H2(t;µ2, α2, ω2, λ2) =
m∑
i=0

QjSj,m(t),

the necessary and sufficient conditions for C2 continuity at
the joint points are given by
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1) For C0 continuity

Q0 = Pn. (13)

2) For C1 continuityQ0 = Pn,

Q1 = Pn +
(2n− 4)+ π (1+ α1)− 2ω1

(2n− 4)+ π (1+ µ2)− 2ω2
(Pn − Pn−1).

(14)

3) For C2 continuity

Q0 = Pn,

Q1 = Pn +
(2n− 4)+π(1+α1)− 2ω1

(2n− 4)+π (1+µ2)− 2ω2
(Pn − Pn−1),

Q2 = ([−(2(n− 3)+ π +
1
4
π2 (λ1 + eω1 (1

− µ1)))+ 2(
πα1

2
− ω1)− 2D]Pn−2 − (−kn

− (n− 1)π +
1
4
π2λ1−

1
4
π2(λ1+eω1 (1− µ1))

− (2(n− 1)+ π )(
πα1

2
− ω1)+ π α1ω1 − ω

2
1

+ 2D+ 2ω1 − π − πα1+2ω1−(2n− 2))Pn−1
− [ (2 (n− 2)+ π )(

πα1

2
− ω1)+ (2(n− 2)

+ π )(−
πµ2

2
− ω2)+ (−

π2λ1

4
− πα1ω1 − ω

2
1)

− (
π2λ2

4
− πµ2 ω2 + ω2

2)+ 4k + 2π + πα1

+ πµ2 − 2ω1 − 2 ω2] Pn + a)b,

(15)

where,

a =
1

(2(n− 2)+ π(1+ µ2)− 2ω2)(d)
,

b =
1

D2 − 2D1 + 2(ω2 −
πµ1
2 )

,

D =
∏
k∈W

(−k −
π

2
(1+ α1)+ ω1),

D1 =
∏
k∈W

(k +
π

2
(1+ µ2)− ω2),

D2 = −(2n− 3)− π −
1
4
π2(eω2 (1− α2)− λ2)

d = (−kn− (n− 1)π +
1
4
π2(λ2 − eω2 (1

−α2))−
1
4
π2)(λ2 − 2D1 + π µ2 ω2 − ω

2
2

+ (2(n− 1)+ π )(ω2 −
πµ2

2
)), k ∈ W .

where D and D1 are the product of series, which are
used to generalize the expression of control pointQ2 in
C2 continuity.
Proof:

1) To obtain C0 continuity condition, we have H1(1) =
H2(0).

2) For C1 continuity condition, we solve H1(1) = H2(0)
and H ′1(1) = H ′2(0) to obtain the results given in
equation (14).

3) Similarly, for C2 continuity condition, we have both
C0 and C1 continuity conditions. Moreover, we solve
H ′′1 (1) = H ′′2 (0) for the required control point Q2 and it
yields the result given in equation (15).

Example 1: Figure 3 shows the hybrid trigonometric
Bézier curves of degree 3which satisfy theC2 continuity con-
ditions at their joints. As described earlier that µ1, α1, ω1, λ1
and µ2, α2, ω2, λ2 are the shape parameters of two adja-
cent curves H1(t;µ1, α1, ω1, λ1) and H2(t;µ2, α2, ω2, λ2),
respectively. The control points of H1(t;µ1, α1, ω1, λ1) are
P0 = (0, 0.2), P1 = (−0.05, 0.25), P2 = (0.1, 0.34) and
P3 = (0.2, 0.27) while the three control points Q0,Q1,Q2
of H2(t;µ2, α2, ω2, λ2) are obtained by C2 continuity con-
ditions described in Theorem 3 and last control point of
H2(t;µ2, α2, ω2, λ2) is considered according to designer
choice.

FIGURE 3. C2 continuity of cubic hybrid trigonometric Bézier curve.
(a): λ1 = λ2 = α1 = α2 = ω1 = ω2 = 0, µ1 = µ2 = 0,0.37,0.75,0.98.
(b): λ1 = λ2 = µ1 = µ2 = ω1 = ω2 = 0, α1 = α2 = 0.1,0.8,−0.4,−1.
(c): α1 = α2 = µ1 = µ2 = ω1 = ω2 = 0, λ1 = λ2 = 0,0.5,−0.5,−1.5.
(d): µ1 = µ2 = 0.5, α1 = α2 = 1, ω1 = ω2 = λ1 = λ2 = 0.5,0.1,
−0.2,−0.8.

Figure 3(a) shows the variation in shape parameters, when
we consider λ1 = λ2 = α1 = α2 = ω1 = ω2 = 0
and vary the values of µ1 = µ2 = 0, 0.37, 0.75, 0.98. Thin
colored lines are obtained by altering the shape parameters of
H1(t) while dotted colored lines are obtained by the variation
of shape parameters of H2(t). In Figure 3(b), the shape of
the curve is obtained by keeping the λ1 = λ2 = µ1 =

µ2 = ω1 = ω2 = 0 and varying the values of α1 =
α2 = 0.1, 0.8,−0.4,−1. Similarly, Figure 3(c) shows the
variation in graph when keep all other shape parameters fixed
to zero and vary the value of λ1 = λ2 = 0, 0.5,−0.5,−1.5.
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Figure 3(d) is obtained when we keep fixed µ1 = µ2 = 0.5,
α1 = α2 = 1, and vary ω1 = ω2 = λ1 = λ2 = 0.5,
0.1,−0.2,−0.8 simultaneously.

III. SYMMETRIC REVOLUTIONARY CURVES
Let V = (v1, v2, v3, . . . ., vn) ∈ Rn be any vector space
and v1, v2, v3, . . . ., vn are their corresponding n vectors.
In 2D planes two tuples of vector are drawn by using coor-
dinate axis. So, the control points of GHT-Bézier curves are
also consist of two tuples of vectors like Pi = (xi, yi). But in
case of 3D planes 3 tuples of vectors like Pi = (xi, yi, zi) are
used to construct the surfaces.

In construction of symmetric revolutionary curves about
an axis, there are assortment of problem occurs to construct
the curves by continuity. So, the key technology to overcome
this difficulty is to form an expression by using vectored
rational interpolating function. Which will used in graphics
and symmetric representation of figures as well.

IV. ALGORITHM FOR THE CONSTRUCTION OF
SYMMETRIC REVOLUTIONARY CURVES
The symmetric revolutionary curves can be achieved using
following procedure.

1) Given the Bernstein basis functions having the shape
parameters α,µ, ω ∈ [−1, 1] and λ ∈ [−1.5, 0.5].

2) Consider the control points Pi = (xi, yi), i =
0, 1, 2, . . . , n in 2D plane.

3) Choose the values of shape parameters α,µ, ω and λ
from their given domain.

4) Calculate the functions xn(s) and yn(s) by using the
definition of GHT-Bézier curve.

5) Put the functions xn(s) and yn(s) as xy-coordinates
along with the rational factors 2−s1

2s12−2s1+r
and

− (2−s1)
2s12−2s1+r

to obtain Gxsymmetricrevolution and

G̃xsymmetricrevolution or Gysymmetricrevolution and
G̃ysymmetricrevolution respectively.

6) Plot these both functions and join them to obtain sym-
metric curves.

Theorem 4: For the set of control points Pi = (xi, yi),
where (i = 0, 1, 2, 3, . . . , n), the right revolutionary curve
along x-axis is constructed by the control points like Pi =
(xi, yi) and left revolutionary curve along x-axis is constructed
by the control points Pi = (−xi, yi) including the rational
factors 2−s

2 s2−2 s+r
, where r ≥ 0 is any positive real num-

ber which is used to maximize and minimize the thickness
of the desired shape. So, the equation of whole symmetric
revolutionary curve along x-axis is obtained by rotating the
generating curve H (t;µ, α, ω, λ) with one revolution is

Gxsymmetricrevolution(s, s1;α,µ, ω, λ)

=

{
2− s1

2s12 − 2s1+ r
xn(s), yn(s)

}
,

G̃xsymmetricrevolution(s, s1;α,µ, ω, λ)

=

{
−

2− s1
2s12 − 2s1+ r

xn(s), yn(s)
}
,

(16)

where,  xn(s) =
∑n

i=0
xiSi,n(s),

yn(s) =
∑n

i=0
yiSi,n(s),

and Si,n(s) are GHT-Bernstein basis functions defined by
Equation 2. Similarly, upper revolutionary curve along posi-
tive y-axis is obtained by the control points Pi = (xi, yi) and
lower part of the revolutionary curves along negative y-axis
is constructed by control points Pi = (xi,−yi) including the
above mentioned rational factors. So, the equation of whole
revolutionary curve along y-axis is

Gysymmetric revolution(s, s1;α,µ, ω, λ)

=

{
xn(s),

2− s1
2s12 − 2s1+ r

yn(s)
}
,

G̃ysymmetric revolution(s, s1;α,µ, ω, λ)

=

{
xn(s),−

2− s1
2s12 − 2s1+ r

yn(s)
}
.

(17)

Hence, by splicing above two expressions we can obtain the
symmetric revolutionary curves along y-axis.

But straight lines cannot be constructed by using these
above expressions. So, by deducting the rational factors from
above expressions we can generate the straight lines by using
these expressions{

Gxsymmetric(s;α,µ, ω, λ) = {xn(s), yn(s)} ,

G̃xsymmetric(s;α,µ, ω, λ) = {−xn(s), yn(s)} ,
(18)

to generate symmetric straight lines along x-axis.{
Gysymmetric(s;α,µ, ω, λ) = {xn(s), yn(s)} ,

G̃ysymmetric(s;α,µ, ω, λ) = {xn(s),−yn(s)} ,
(19)

is used to generate symmetric straight lines along y-axis.
Proof: It is obvious from Definitions 1 and 2.

A. SYMMETRY OF BUTTERFLY BY GHT-BÉZIER
REVOLUTIONARY CURVE
The beauty ofMathematics and its balance can often be found
in nature. Such type of beauty and structure can be seen
in insects, fishes, fruits, planets, shells and clouds etc. This
display of structure which is usually found in nature is the
motivation for the scholars to study these type of models
for their mathematical representation. In such type of natural
modeling, examples of mathematical symmetry can be found
in number of figures and curves also.

Figure 4 represents a beautiful labeled butterfly (see
Figs 4(a) and 4(b)), which is symmetric along y-axis and
consists of two upper wings and two lower wings, full body
and mouth, antenna, eyes and tail constructed by using GHT-
Bézier revolutionary curve with help of Wolfram Mathe-
matica 9 software. Variation in the shape parameters of
generating curve which is the dotted wings of the butterfly
are constructed by GHT-Bézier curve.
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FIGURE 4. Butterfly as the mathematical model of symmetric
revolutionary curves. (a): Labeled graph. (b): Beautification of graph.

B. SYMMETRY OF AN APPLE BY GHT-BÉZIER
REVOLUTIONARY CURVE
Figure 5 shows the symmetrical representation of an apple
along y-axis. The right part of an apple is constructed by using
GHT-Bézier revolutionary curve given in Equation 16 with
control points Pi = (xi, yi) where xi = (0, 2.7, 3.3, 2.8, 0),
yi = (2.9, 4.5, 1,−1,−0.5), (i = 0, 1, 2, 3, 4). Similarly,

FIGURE 5. Symmetric revolutionary figure of an Apple. (a): Labeled
Graph. (b): Spliced Graph. (c): Beautification of graph by variation of
shape parameter.

the left part is constructed by using the same control points
and Equation 16. Figure 5(a) shows the labeled graph of an
apple. Figure 5(b) shows the spliced graph which is obtained
by joining curves. Thin and dotted lines are obtained by
varying the different values of shape parameters. Figure 5(c)
shows the beautification in graph by variation of shape
parameters.

C. SYMMETRY OF A FLOWER BY GHT-BÉZIER
REVOLUTIONARY CURVE
Figure 6 shows the symmetrical representation of flower.
The two petals of flower are constructed along x-axis shown
in Figure 6(a) and two petals are constructed along y-axis
shown in Figure 6(b) by equations 16 and 17, respectively.
Figure 6(c) shows the connected graph of symmetrical flower.
The red and yellow dotted lines are obtained by the variation
of shape parameters along x-axis and y-axis.

FIGURE 6. Symmetric revolutionary figure of a flower. (a): Symmetry
along x-axis. (b): Symmetry along y-axis. (c): Connected graph.

D. SYMMETRY OF A HUT BY GHT-BÉZIER
REVOLUTIONARY CURVE
Figure 7 shows the graphical representation of symmetry
of Hut along y-axis. This figure is constructed by joining
the straight lines. Since above mentioned formulas in equa-
tion 16 and 17 are not used to generate the lines due to

165786 VOLUME 7, 2019



S. Bibi et al.: Novel Approach of Hybrid Trigonometric Bézier Curve to the Modeling of Symmetric Revolutionary Curves

FIGURE 7. Symmetrical representation of Hut.

involving of rational factor. So, after deduction of rational
factor the expressions given in equations 18 and 19 are used
to construct symmetrical representation of Hut. Figure 7 also
shows the efficiency of these curves and CAGD in architec-
tural purpose.

V. CONSTRUCTION OF GHT-BÉZIER SURFACES WITH
SHAPE PARAMETERS
Definition 3: For the set of control points Pi,j ∈ R3 where

(i = 0, 1, 2, . . . , n),(j = 0, 1, 2, . . . ,m) and m, n ≥ 3,
the tensor product defined as:

R(s, s1;µ, α, ω, λ, µ1, α1, ω1, λ1)

=

n∑
i=0

m∑
j=0

Pi,jSi,n(s)Sj,m(s1), 0 ≤ s, s1 ≤ 1, (20)

is called GHT-Bézier surface of order m, n with control
points Pi,j. Where Si,n(s) and Sj,m(s1) are the GHT-Bernstein
basis functions and µ, α, ω, λ, and µ1, α1, ω1, λ1 are the
shape parameters for the basis functions Si,n(s) and Sj,m(s1),
respectively.
Remark 1: The tensor product of GHT-Bézier surfaces

have the properties similar to the tensor product of classical
Bézier surfaces. By keeping the control polygon fixed the
shape of the GHT-Bézier surfaces can also be modified by
altering the shape parameters. It also possess other prop-
erties similar to classical Bèzier surface like angular point
interpolation property, symmetry, shape adjustable property,
convex hull property, boundary property and affine invariance
property.

A. INFLUENCE OF SHAPE PARAMETERS ON GHT-BÉZIER
SURFACES
Surfaces are basically generalization of planes. The mutual
action of two different curves with the control mesh points
in 3D planes form surfaces. So, just like curves, surfaces

also show the variation in their behaviour by adjustment of
different shape parameters.
Example 2: Consider a Bi-cubic hybrid trigonometric

Bézier-like surface

G(s, s1;µ, α, ω, λ, µ∗, α∗, ω∗, λ∗)

=

3∑
i=0

3∑
j=0

Pi,jSi,3(s)Sj,3(s1), 0 ≤ s, s1 ≤ 1, (21)

with different eight shape parameters µ, α, ω, λ and
µ∗, α∗, ω∗, λ∗ and having sixteen control points. Figure 8
shows the different behaviour of surfaces by the alteration of
shape parameters in their domain. Figures 8(a)-8(h) represent
the effect of shape parameters when shape is farther away
from the control polygon. While by adjustment of these
shape parameters, the shape of the surface is moving very
close to the control net and its behaviour is shown in the
Figs 8(f)-8(h).

B. GHT-BÉZIER SYMMETRIC ROTATION SURFACES
Just like revolution surfaces, the problem of rotation surfaces
about an arbitrary axis in three dimensions plays a vital
role in many fields including molecular simulation, archi-
tectural design and computer graphics etc. A rotation sur-
face is generated by rotating a two dimensional curve about
an axis of rotation in space, the resulting surface therefore
has an azimuthal symmetry. In 3D, if we translate a space
the rotation axis passes through the origin. If we rotate a
space about the z-axis then rotation axis lies in xoz plane
and by rotating the space about y-axis, the rotation axis lies
along the z-axis. Hence, by making use of basic translational
transformation and rotation transformation, the GHT-Bézier
symmetric rotation surfaces can be moved in any orientation
to the specified location.

For any surface, the axis of rotation in the space is shown
in the Figure 9 [24].

Consider a GHT-Bézier curve as a generating line in the
plane xoy. If the axis of rotation is x-axis for generating sym-
metric surfaces, then the matrix representation and equation
of rotation can be expressed as:

XSymmetric−rotation =

1 0 0
0 cos(s1) −sin(s1)
0 sin(s1) cos(s1)

H (s)

= [x(s), y(s)cos(s1), y(s)sin(s1)]T . (22)

Similarly for yoz plane and xoz plane, the equation of rotation
surface for y-axis and z-axis can be expressed as:

YSymmetric−rotation =

 cos(s1) 0 sin(s1)
0 1 0

−sin(s1) 0 cos(s1)

H (s)

= [z(s)cos(s1), y(s), z(s)sin(s1)]T , (23)

ZSymmetric−rotation =

cos(s1) −sin(s1) 0
sin(s1) cos(s1) 0

0 0 1

H (s)

= [x(s)cos(s1), x(s)sin(s1), z(s)]T , (24)
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FIGURE 8. Bi-cubic hybrid trigonometric Bézier surfaces with different
shape parameters. (a): (−0.5,−0.5,1,0.5,−0.5,−0.5,1,0.5). (b): (−0.75,
0.75,−0.75,−0.25,0.9,−0.25,0.9,0.5). (c): (−1,−0.5,−1,−0.5,−1,
−0.5,−1,−0.5). (d): (0.9,−0.25,0.9,−0.25,0.9,−0.25,0.9,−0.25).
(e): (0.9,0.8,1,0.5,0.9,0.8,1,0.5). (f): (0,0,0,0,0,0,0,0).
(g): (0.9,0.8,1,0.5,0.9,0.8,1,0.5). (h): (1,0,1,0,1,0,1,0).

where 0 ≤ s1 ≤ 2π . So, by using GHT-Bézier curve as
a generating curve, we can construct a family of rotation
surfaces and can modify the shape of the figures according to
our own choice by adjusting the values of shape parameters.
Theorem 5: For the given coordinates (0, yi, zi) of the

control points Pi where (i = 0, 1, 2, . . . , n) in yoz plane,
the equation of whole rotation surface is obtained by rotating
the generating curve H (s;α,µ, ω, λ) around y-axis with one

FIGURE 9. Rotation about arbitrary axis in 3D.

revolution is

Y symmetric−rotation(s, s1;α,µ, ω, λ)

=

{
1− 2s1

2s12 − 2s1+ 1
zn(s), yn(s),

2s1− 2s12

2s12 − 2s1+ 1
zn(s)

}
,

Ỹ symmetric−rotation(s, s1;α,µ, ω, λ)

=

{
−(1− 2s1)

2s12 − 2s1+ 1
zn(s), yn(s),

− (2s1− 2s12)
2s12 − 2s1+ 1

zn(s)
}
,

(25)

and by joining these two expressions Y symmetric−rotation and
Ỹ symmetric−rotation, we can obtained the GHT-Bézier rotation
surface in yoz plane. The components yn(s) and zn(s) are given
as:  yn(s) =

∑n

i=0
yiSi,n(t),

zn(s) =
∑n

i=0
ziSi,n(t),

(26)

where Si,n(t) are the GHT-Bernstein basis functions, yi and zi
are the coordinates of the control points.

Proof: The proof is given in [11].
Similarly, the symmetric rotation surfaces in xoy and xoz

can also be generated by rotation formula.

C. SYMMETRY OF A CHALICE BY GHT-BÉZIER ROTATION
SURFACE
In practical applications, the designers mostly starts with
a rough idea to make the required shape of surface. They
usuallymade an algorithm to compute their idea to display the
result. A common example is a rotation surface. Figure 10(a)
and Figure 10(b) represent the left and right part of sym-
metry, respectively. Figure 10 shows the connected graph of
Chalice by using GHT-Bézier rotation surface see Theorem 5.
Figures 11(a)-11(f) show the symmetric representation of
Chalice surfaces by GHT-Bézier rotation surface with dif-
ferent shape parameters. Due to the fact that, the rotation
surface possess four different shape parameters, by varying
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FIGURE 10. Construction of symmetric Figure of Chalice. (a): Left portion
of symmetry. (b): Right portion of symmetry. (c): Connected of graph of
Chalice.

these shape parameters we can modify the shape of the curve
according to our own choice. For the set of control points
Pi(i = 0, 1, 2, 3, . . . ., 11) in xoy plane, whose coordinates
are taken as:
P0= (−3.2, 1.8, 0), P1= (−2.5, 2, 0), P2= (−2, 2, 0),
P3= (−1.5, 1.5, 0), P4= (−1, 1, 0), P5= (−0.7, 1.1, 0),
P6= (−0.7, 1, 0), P7= (−0.6, 1.2, 0), P8= (−1.5, 0, 0),
P9= (1.5,−0.4, 0), P10= (2, 0.1, 0), P11= (3, 1.54, 0).

By using expressions given in Theorem 5, we can obtain the
symmetric representation of chalice as shown in Figure 11.

D. SYMMETRY OF A CERAMIC POT BY GHT-BÉZIER
ROTATION SURFACES
Figure 12 shows the symmetric representation of Ceramic
Pots in xoz plane by GHT-Bézier rotation surface with vari-
ation of different shape parameters. These figures are sym-
metric about z-axis. Width of these surfaces can be altered by
adjusting the different values of different shape parameters
for the required shape.

FIGURE 11. Representation of Chalice as a GHT-Bézier symmetric rotation
surface with different values of shape parameters. (a): (α,µ,ω, λ) =
(0,0,−1,0). (b): (0,1,1,0). (c): (−1,0,0,0.5). (d): (0.8,0.8,1,0.5).
(e): (1,1,1,0.5). (f): (0.9,0.9,1,0.5).

E. SYMMETRY OF A CAPSULE TORUS BY GHT-BÉZIER
ROTATION SURFACES
Figure 13 shows the symmetric representation of Capsule
Torus which also act as a rotation surface and it can rotate
about an axis of rotation. As the distance of the Torus surface
from the axis of rotation is decreases, its width also decreases
but by increasing the distance between the axis of rotation and
Torus surface, its width become increases. Since the GHT-
Bézier rotation surface possess four different shape parame-
ters and by variation of these shape parameters, we can see
alteration in the surface of Capsule Torus. This Capsule Torus
which is made by GHT-Bézier rotation surface technique has
smooth shape on both surfaces but as we varies the values of
its shape parameters, the surface altered.

VI. ALGORITHM OF DESIGNING SYMMETRIC ROTATION
SURFACES
The symmetric rotation surfaces can be designed by using
following algorithm.

VOLUME 7, 2019 165789



S. Bibi et al.: Novel Approach of Hybrid Trigonometric Bézier Curve to the Modeling of Symmetric Revolutionary Curves

FIGURE 12. Representation of Ceramic Pot as a GHT-Bézier rotation
surface with different values of shape parameters. (a): (α,µ,ω, λ) =
(0,1,0,0). (b): (0,0,1,0.5). (c): (−1,−1,0,0). (d): (0,0,0,0.5).
(e): (1,1,1,0.5). (f): (1,0,0,0).

1) Given GHT-Bernstein basis functions having the shape
parameters α,µ, ω ∈ [−1, 1] and λ ∈ [−1.5, 0.5].

2) Suppose we want to construct any symmetric rotation
surface in yoz plane.

3) Consider these control points Pi = (0, yi, zi), i =
0, 1, 2, . . . , n in 3D plane.

4) Choose the shape parameters α,µ, ω and λ from their
given domain.

5) Calculate the functions yn(s) and zn(s) by using the
definition of GHT-Bézier curve.

6) Put the functions xn(s) and zn(s) as coordinates
in 3D plane along with their rational factors
which are 1−2s1

2s12−2s1+1
and 2s1−2s12

2s12−2s1+1
to construct

YSymmetric−rotation and use − (1−2s1)
2s12−2s1+1

and − (2s1−2s12)
2s12−2s1+1

to construct ỸSymmetric−rotation to form the symmetric
rotation surfaces.

7) Plot these two functions and join them to obtain sym-
metric figures in yoz plane.

Similarly, the symmetric rotation surfaces can also be con-
structed in xoy plane and xoz plane by interchanging the
coordinates.

FIGURE 13. Symmetric GHT-Bézier rotation surfaces of capsule torus with
different values of shape parameters. (a): (0,0,0,0,0,0,0,0). (b): (0.5, 0, 0, 0,
0.5, 0, 0, 0). (c): (−0.5, −1, 0.5, 1, −0.5, −1, 0.5, 1). (d): (−0.5, −1, 1, 0.5,
−1, −1, −1, −1). (e): (−1, 0.5, 0.5, 0.5, −1, −1, −1, 0.5). (f): (−0.5, 1, 1, 0.5,
−0.5, 1, 1, 0.5). (g): (−1, −1, −1, −1.5, −1, −1, −1, −1.5). (h): (−1, −1,
−1.5, 0, −1, −1, −1.5, 0).

VII. APPLICATIONS OF SYMMETRIC FIGURES
In industrial production, we should consider these two main
formulas (given in this study) if the product of symmetric
curves and surfaces (such as in buildings, aircraft wings,
sketches of butterfly, flowers, ceramic pots etc.) cannot be
designed easily by joining Bézier curve and Bézier surface by
continuity conditions. By using the method described in this
paper various kinds of symmetric revolutionary curves and
symmetric rotation surfaces with multiple shape parameters
have been constructed flexibly.

Roughly speaking, this study is time saving for us because
any symmetric figure can be drawn easily in one stroke by
using this method while by using simple continuity condi-
tions it will take twice time. Furthermore, the construction
of symmetric figures are helpful in mathematics, architec-
tural, industry and engineering purposes. Some figures are
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FIGURE 14. Real life applications of symmetry curves with different
shape parameters (a): (1, 1, 1, 1). (c): (0.5, 0, 0, 0, 0.5). (e): (0.5, 1, 0, 0.5).
(a) Symmetry in nature. (b) Symmetry in civil engineering. (c) Symmetry in
Fractals (Mathematics).

given here which shows the representation of symmetry along
y-axis can be constructed by the method given in this paper.
Because when we divide or fold into half so that the two
halves match exactly.

Just like, Figure 14 shows the application of symmetri-
cal representation in engineering/industrial field and in nat-
ural life. Figure 14(c) and 14(d) is the best example of
civil/architectural engineering because here we need to con-
struct only one portion (right/left portion) of this building
while the second portion will be obtained automatically by
using the formulas given in above literature. Similarly, other
two figures can also be drawn by using the above algorithm.

VIII. CONCLUSION
In this paper, we have constructed GHT-Bernstein basis
functions with four different shape parameters, studied their
properties and also presented their shapes ofmultiple degrees.
By using these GHT-Bernstein basis functions, we have
constructed GHT-Bézier curves and also presented their
parametric continuity. Then we extended these GHT-Bézier
curves up to tensor product surfaces. The influence of shape
parameters on surfaces is also presented here. The dominant
analysis of this paper is the construction of symmetric rev-
olutionary curves and symmetric rotation surfaces by using
specific formulas. Based on these GHT-Bézier curves and
formulas, the symmetric Figures of Butterfly, Apple, Flower,
Hut, Chalice, Ceramic Pot and Capsule Torus is presented.
The variation in Figures with the shape parameters is also
presented. Finally, use of this literature in natural life and
applications of this literature is also given here. In short,
construction of any type of symmetric curves and symmetric
rotation surfaces with these formula is very effective, signif-
icant and time saving process.
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