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ABSTRACT This paper considers the dissipativity analysis problem for complex-valued stochastic neural
networks (CVSNNs) with time-varying delays. By constructing the Lyapunov functions, using Jensen
inequality and stochastic analysis techniques, several sufficient conditions for the exponential dissipativity
and (Q,R,S)-dissipativity in the mean square are obtained in terms of linear matrix inequalities (LMIs).
Compared with the existing ones, in our work, some results which are more applicable for CVSNNs
with time-varying delays case are derived. Finally, two numerical examples are provided to illustrate the
effectiveness and improvement of our theoretical results.

INDEX TERMS Complex-valued stochastic neural network, time-varying delays, dissipativity, Itô formula.

I. INTRODUCTION
For more than one decade, stability analysis of neural net-
works(NNs) has drawn more and more attentions due to
their wide applications in numerous areas such as signal
processing, image processing, pattern recognition, combi-
natorial optimization and moving object speed detection,
see [1], [2], [12]–[14], [38], [41], etc. On the other hand,
in the electronic circuit implementation of the NNs, time-
delays caused by the finite switching speed of amplifiers
and communication time, and it may be an important
source of oscillation, divergence, instability or other per-
formance of NNs. It is natural that neural networks with
time-delay received considerable attentions, and many results
have been reported in the literatures [3]–[8], [48], [54],
etc. In recent years, stability of complex-valued neural net-
works(CVNNs) have found widespread applications in var-
ious fields such as, but not limited to, optoelectronics,
filtering, speech synthesis, remote sensing, artificial neural
information processing and others. Compared with real-
valued neural networks, the states, connection weights and
activation functions of complex-valued neural networks are
defined in the complex domain, which can provide a simple
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and natural way to maintain the physical characteristics of the
original problems [25], [33], [35], [36], [39], [40], [52], etc.

However, during the research of stability, scholars found
that it is not all the trajectories of dynamical neural networks
all can approach a single stable equilibrium point, and also
some dynamical neural networks have no equilibrium point.
In the course of dealing with these problems, the concept
of dissipativity plays a key role. The idea of dissipativity
theory was first introduced in [28] by Willems, and it was
generalized in [20]. Dissipativity theory is very useful tool
for control technique like robotics, active vibration damp-
ing, electromechanical systems, circuit theory and inverse
control [11], [16], [18], [26], etc. For example, in [10],
by using the framework of Filippov solution, differen-
tial inclusion theory, an appropriate Lyapunov-Krasovskii
functional and LMI technique, the problem of dissipa-
tivity analysis for memristor-based complex-valued neural
networks with time-varying delays is investigated exten-
sively and several new sufficient conditions for global
dissipativity, global exponential dissipativity and strictly
(Q,S,R)-dissipativity are derived. Some novel sufficient
conditions that guarantee the dissipativity of complex-valued
BAM neural networks are obtained in [15] by using the
inequality techniques, Halanay inequality, and upper right
Dini derivative concepts.
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It is well known that the external stochastic interfer-
ence is another important source of oscillation, divergence,
instability or other performance of NNs. It has an destructive
impact on the state of the neural network system. Hence
it is necessary to take into account the effect of stochastic
on the neural network [42]–[46], [50], [53] and solve this
kind of problems. For a long time, stochastic systems have
been widely concerned by researchers from various back-
ground. For instance, the dissipativity analysis of stochastic
neural network system have been the very hot research topic.
However, it should be pointed out that, in large amount of
the existing literatures, the dissipativity problem of neural
networks has been investigated mainly for deterministic real-
valued/complex-valued neural network with or without time-
delay [9]–[11], [32]. In [51], dissipativity for discrete-time
switched systems is investigated, one new concept of decom-
posable dissipativity is proposed and the energy changes of
subsystems and energy dissipation in the whole switched
system are explained. In [11], some new sufficient conditions
on global dissipativity and global exponential dissipativity of
memristor-based complex-valued neural networks have been
derived. And in [9], other novel sufficient conditions that
guarantee the dissipativity of complex-valued bidirectional
associative memory neural networks are obtained by using
the inequality techniques, Halanay inequality, and upper right
Dini derivative concepts. So it is natural that the dissipativity
problem of stochastic neural network has been investigated.

And up to now, many significant results have been pro-
posed regarding the dissipativity of real-valued stochastic
neural networks(RVSNNs) [17], [22], [27], [47], [49], etc.
In [24], authors investigated the global dissipativity of real-
valued stochastic system. By constructing several proper
Lyapunov functionals combining with Jensen inequality,
Itô formula and some analytic techniques, several suffi-
cient conditions for the global dissipativity in means of
such stochastic neural networks are derived in LMIs forms.
In [19], the problems of global dissipativity and global
exponential dissipativity are investigated for discrete-time
stochastic neural networks with time-varying delays and gen-
eral activation functions. By using similar method, several
new delay-dependent criteria for checking the global dissi-
pativity and global exponential dissipativity of the addressed
neural networks are established. While in [21], dissipativity
analysis is also discussed for discrete-time stochastic neural
networks with time-varying discrete and finite-distributed
delays. The discreted Jensen inequality and lower bounds
lemma are adopted to deal with the involved finite sum
quadratic terms, and a sufficient condition is derived to ensure
the considered neural networks to be strictly (Q,R,S)-
dissipative, which is delay-dependent in the sense that it
depends on not only the discrete delay but also the finite-
distributed delay.

In this paper, we study the problem of dissipativity analysis
of CVSNNs with time-varying delays. By use of stochas-
tic integral inequalities, some appropriate Lyapunov func-
tion and linear matrix inequality technique, some sufficient

conditions are derived to guarantee global exponential dissi-
pativity and (Q,R,S)-dissipativity of CVSNNs with time-
varying delays. Finally, two numerical examples are given to
demonstrate the effectiveness of the present results.

This paper is organized as follows: In section 2,
an CVSNNs with time-varying delays is proposed, and some
notations, preliminary definitions and lemmas are presented.
In section 3, sufficient conditions for globally exponential
dissipative and (Q,R,S)-dissipative of CVSNNs with time-
varying delays are presented. In section 4, two numerical
examples are established to illustrate the effective of our pro-
posed theoretical results. Finally, conclusions are presented
in Section 5.
Notation: Throughout this paper, let A be the complex-

valued matrix, the superscript ∗ and T denote the matrix
complex conjugate transposition and matrix transposition,
respectively. Let z be a complex number, z∗ denote the con-
jugate transpose of z, | · | is the Euclidean norm in Cn, and
‖z‖2 = z∗z, |z| = [|z1|, |z2|, . . . , |zn|]T. The notion A > 0
(respectively, A ≥ 0) means that A is a complex symmetric
and positive (respectively,semi-definite) matrix. In is iden-
tity matrix. As matrix A, λmin(A) represents the smallest
eigenvalue of A.

Denote by L2
F0

([−τ, 0];Cn) the family of all F0 measur-

able C([−τ, 0];Cn) random variables ϕ = {ϕ(s) : −τ ≤
s ≤ 0} such that sup

−τ≤s≤0
E‖ϕ(s)‖2 < +∞ where E[·] stands

for the correspondent expectation operator with respect to the
given probability measure P . L[0,+∞) represents the space
of square-integrable vector functions over [0,+∞).

II. PROBLEM FORMULATION AND PRELIMINARIES
In this paper, we consider the following complex-valued
stochastic neural networks with time-varying delay:

dz(t) = [−Dz(t)+ Af (z(t))+ Bf (z(t − τ (t)))

+ u(t)]dt + σ (t, z(t), z(t − τ (t)))dw(t), (1)

where z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Cn is the state vec-
tor, f (z(t)) = [f1(z1(t)), f2(z2(t)), . . . , fn(zn(t))]T ∈ Cn and
f (z(t−τ (t))) = [f1(z1(t−τ (t))), f2(z2(t−τ (t))), . . . , fn(zn(t−
τ (t)))]T ∈ Cn are the vector-valued activation func-
tions without and with the varying-time delay. D =

diag(d1, d2, . . . , dn) ∈ Rn×n with dj > 0(j = 1, 2, . . . , n)
is the self-feedback connection weight matrix. A = (ajk ) ∈
Cn×n and B = (bjk ) ∈ Cn×n are the connection weight matri-
ces without and with varying-time delay, respectively. u(t) =
(u1(t), u2(t), . . . , un(t))T ∈ Cn is the external input vector.
σ (z(t), z(t − τ (t))) = (σ1(z1(t), z1(t − τ (t))), σ2(z2(t), z2(t −
τ (t))), . . . , σn(zn(t), zn(t − τ (t))))T ∈ Cn×n is the diffusion
coefficient function and w(t) = (w1(t),w2(t), . . . ,wn(t))T

is an n-dimensional standard Brownian motion defined on
the complete probability space (�,F , {Ft }t>0,P) with a
filtration {Ft }t≥0 satisfying the usual conditions. The initial
condition of system (1) is given by

z(s) = ϕ(s), − τ ≤ s ≤ 0, ϕ(s) ∈ L2
F0

([−τ, 0],Cn). (2)
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Assumption 1: τ (t) is time-varying delay which satisfies

0 ≤ τ (t) ≤ τ, τ̇ (t) ≤ d < 1 (3)

with τ and d are constants.
Assumption 2: The neuron activation functions fj(·) satisfy

fj(0) = 0 (j = 1, 2, . . . , n) and the following Lipschitz
conditions

|fj(z)| ≤ lj|z|, ∀z ∈ C, j = 1, 2, . . . , n. (4)

From (4), it is clear to get

f ∗(z)f (z) ≤ z∗LTLz, (5)

where L = diag(l1, l2, . . . , ln) and lj is a constant.
Assumption 3:Moreover, we assume that

trace σ ∗(z, zτ )σ (z, zτ )
≤ z∗Q1z+ (zτ )∗Q2zτ , ∀z, zτ ∈ Cn, (6)

where Q1,Q2 are positive Hermitian matrices.
Definition 1: The complex-valued stochastic neural net-

works (1) are said to be globally exponential dissipative
system if there exists a compact set S∗ ⊃ S in Cn such that
∀z0 ∈ L2

F0
([−τ, 0],Cn)\S∗, there exist ε > 0 and a constant

M (z0) such that

inf
z̃∈S∗

E[‖z(t, t0, z0)− z̃‖] ≤ e−ε(t−t0)E[M (z0)].

Moreover, the set S∗ is called globally exponential attractive
set.

Now we introduce another definition on dissipativity. Let
the energy supply function of neural network (1) be
defined by

E{G(u, z,T )} = E{〈z,Qz〉} + 2E{〈z,Su〉}
+E{〈u,Ru〉}, T ≥ 0, (7)

where Q,S and R are Hermitian matrices, Q ≤ 0 and

〈z, v〉T =
∫ T

0
zTvdt, T ≥ 0.

Definition 2: The complex-valued stochastic neural net-
works (1) are said to be strictly (Q,S,R)-dissipative if, for
any T ≥ 0 and some scalar γ > 0, under zero initial state,
the following inequality

E{G(u, z,T )} ≥ γE{〈u, u〉T}

holds for any nonzero input u ∈ L2[0,∞).
Lemma 1 (Jensen Inequality): For any constant Hermitian

matrix R ∈ Cn×n with R > 0 and vector function u(s) :
[a, b] → Cn with scalars a < b, such that the following
inequalities hold

(
∫ b

a
u(s)ds)∗R(

∫ b

a
u(s)ds)

≤ (b− a)
∫ b

a
u∗(s)Ru(s)ds,

(
∫ b

a

∫ t

t+λ
u(s)dsdλ)∗R(

∫ b

a

∫ t

t+λ
u(s)dsdλ)

≤
1
2
(b2 − a2)

∫ b

a

∫ t

t+λ
u∗(s)Ru(s)dsdλ.

Lemma 2 [18]: Let (�,F ,P) be a probability space,
X an integrable real-valued random variable and 9 : R→ R
a measurable convex function, with E(‖X‖) < ∞. Then
9(E(X )) ≤ E(9(X )).
Lemma 3 [34]: Given a Hermitian matrix 2, then 2 < 0

is equivalent to [
2R

−2I

2I 2R

]
< 0,

where 2R
= Re(2) and 2I

= Im(2).
Lemma 4 (Schur Complement): The LMI[

611 612
621 622

]
< 0

with 611 = 6
∗

11, 622 = 6
∗

22, is equivalent of the following
conditions:

(1) 622 < 0, 611 −6126
−1
22 6

∗

12 < 0,

(2) 611 < 0, 622 −6
∗

126
−1
11 612 < 0.

Remark 2:We suppose that the activation functions and the
diffusion coefficient functions are all not explicitly expressed
by separating real-imaginary parts throughout this paper.
Moreover, obviously, the case with separable functions on
real and imaginary parts is the special case of our inseparable
case and it can be dealt with by the methods in real number
domain, as stated in [19].

III. MAIN RESULTS
In this section, we will derive several sufficient conditions
which ensure the CVSNNs (1) to be dissipative. Let

z(t) = Re(z)+ iIm(z), u(t) = uR(t)+ iuI (t),

A = AR + iAI , B = BR + iBI , (8)

and for convenience, denote

zt = z(t), zt−τ (t) = z(t − τ (t)), zt−τ = z(t − τ ).

Theorem 1: Suppose that Assumptions 1, 2 and 3 hold.
If there exist Hermitian matrices Pj > 0(j = 1, . . . , 5),
N > 0, diagonal matrices G > 0, H > 0, J > 0,
a positive real constant ρ and any appropriate dimension
matrices Ml(l = 1, 2, 3), such that the following LMIs
hold:

8 =


811 812 P1A P1B 817
∗ 822 0 0 827
∗ ∗ 844 0 0
∗ ∗ ∗ 855 0
∗ ∗ ∗ ∗ 877

 < 0, (9)

P1 ≤ ρI , (10)

where

811 = εP1 − (DP1 + P1D)+ ρQ1 + 2N

+ eετ (P2 + P4)+ 2M1 + GL̂,

822 = ρQ2 − (1− d)P2 − 2M2 + HL̂,

844 = eετ (P3 + P5)+ G,
165078 VOLUME 7, 2019
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855 = (d − 1)P3 − H , 877 = −2M3,

812 = M2 −M∗1 , 817 = M3 −M∗1 ,

827 = −M3 −M∗2 ,

then the CVSNNs (1) are said to be globally exponentially
dissipative and S = {z : ‖Ez‖ ≤ 1

λmin(N )‖utP1‖, z ∈ C
n
} is

said to be the attractive set.
Proof: Consider the following Lyapunov function as

V (t) = V1(t)+ V2(t)+ V3(t), (11)

where

V1(t) = eεtz∗t P1zt ,

V2(t) =
∫ t

t−τ (t)
eε(s+τ )z∗sP2zsds

+

∫ t

t−τ (t)
eε(s+τ )f ∗(zs)P3f (zs)ds,

V3(t) =
∫ t

t−τ
eε(s+τ )z∗sP4zsds

+

∫ t

t−τ
eε(s+τ )f ∗(zs)P5f (zs)ds.

Taking Itô formula to V (t), then we can get

dV (t) = LV (t)dt + eεt (z∗t P1σ (zt , zt−τ (t))

+ σ ∗(zt , zt−τ (t))P1zt )dWt , (12)

where

LV (t) = εeεtz∗t P1zt
+ eεt trace[σ ∗(zt , zt−τ (t))P1σ (zt , zt−τ (t))]

+ eεt [−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]∗P1zt
+ eεtz∗t P1[−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]

+ eε(t+τ )z∗t P2zt + e
ε(t+τ )f ∗(zt )P3f (zt )

− (1− ˙τ (t))eε[t+τ−τ (t)]z∗t−τ (t)P2zt−τ (t)

− (1− ˙τ (t))eε[t+τ−τ (t)]f ∗(zt−τ (t))P3f (zt−τ (t))

+ eε(t+τ )z∗t P4zt − e
εtz∗t−τP4zt−τ + e

ε(t+τ )

× f ∗(zt )P5f (zt )− eεt f ∗(zt−τ )P5f (zt−τ ).

Based on (3), (6) and (10)

LV (t) ≤ eεt {z∗t [εP1 + e
ετ (P2 + P4)− (D∗P1 + P1D)

+ ρQ1]zt + z∗t−τ (t)[ρQ2 − (1− d)P2]zt−τ (t)
+ z∗t−τ (−P4)zt−τ + f

∗(zt )[eετ (P3 + P5)]f (zt )

+ f ∗(zt−τ (t))(d − 1)P3f (zt−τ (t))+ f ∗(zt−τ (−P5)

× f (zt−τ )+ [(f ∗(zt )A∗P1zt + (z∗t P1Af (zt ))

+ (f ∗(zt−τ (t))B∗P1zt + (z∗t P1Bf (zt−τ (t)))

+ (u∗t P1zt + z
∗
t P1ut )]}. (13)

According to (4), for any j = 1, 2, . . . , n, we have

|fj(zj(t))| ≤ lj|zj(t)|.

Let G = diag(g1, g2, . . . , gn) > 0, we can write

gjf ∗j (zj(t))fj(zj(t))− gjl
2
j z
∗
j (t)zj(t) ≤ 0,

for all j = 1, 2, . . . , n. Also we define L̂ = L>L, thus

f ∗(zt )Gf (zt )− z∗t GL̂zt ≤ 0. (14)

Similarly, for diagonal matrices H > 0 and J > 0, we can
obtain

f ∗(zt−τ (t))Hf (zt−τ (t))− z∗t−τ (t)HL̂zt−τ (t) ≤ 0,

f ∗(zt−τ )Jf (zt−τ )− z∗t−τ J L̂zt−τ ≤ 0. (15)

Consider the Newton-Leibniz formulation

zt − zt−τ (t) =
∫ t

t−τ (t)
dzs,

then we have

2eεt [zt − zt−τ (t) −
∫ t

t−τ (t)
dzs]∗[M1zt

+M2zt−τ (t) +M3

∫ t

t−τ (t)
dzs)] = 0. (16)

From the inequalities (14)− (16),

− f ∗(zt )Gf (zt )+ z∗t GL̂zt − f
∗(zt−τ (t))Hf (zt−τ (t))

+ z∗t−τ (t)HL̂zt−τ (t) − f
∗(zt−τ )Jf (zt−τ )

+ z∗t−τ J L̂zt−τ + 2eεt [zt − zt−τ (t) −
∫ t

t−τ (t)
dzs]∗[M1zt

+M2zt−τ (t) +M3

∫ t

t−τ (t)
dzs)] ≥ 0. (17)

Then, substituting (17) into (13), we can get

LV (t)

≤ eεt {z∗t [εP1 + e
ετ (P2 + P4)− (D∗P1 + P1D)

+ ρQ1+GL̂ + 2M1 + 2N ]zt + z∗t−τ (t)[(d − 1)P2 + ρQ2

− 2M2 + HL̂]zt−τ (t) + z∗t−τ (−P4 + J L̂)zt−τ + f
∗(zt )

× [eετ (P3+P5)− G]f (zt )+ f ∗(zt−τ (t))[(d − 1)P3 − H ]

× f (zt−τ (t))+ f ∗(zt−τ )[−P5 − G]f (zt−τ )+ (
∫ t

t−τ (t)
dzs)∗

× [−M3](
∫ t

t−τ (t)
dzs)+ [f ∗(zt )A∗P1zt + z∗t P1Af (zt )

+ f ∗(zt−τ (t)B∗P1zt + z∗t P1Bf (zt−τ (t))+ 2z∗tM2zt−τ (t)

+ 2z∗tM3

∫ t

t−τ (t)
dzs − 2z∗t−τ (t)M1zt

− 2(
∫ t

t−τ (t)
dzs)∗M1zt − 2z∗t−τ (t)M3

∫ t

t−τ (t)
dzs

− 2(
∫ t

t−τ (t)
dzs)∗M2zt−τ (t)} + eεt [u∗t P1zt

+ z∗t P1ut − 2z∗t Nzt ]. (18)

Denote that

η∗ =
{
z∗t , z

∗

t−τ (t), z
∗
t−τ , f

∗(zt ), f ∗(zt−τ (t)), f ∗(zt−τ ),

(
∫ t

t−τ (t)
dzs)∗

}
.
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Thus, taking the expectation to (12), and from (18), we have

EdV (t) = E(LV (t)dt)

≤ Eeεtη∗8̃η + Eeεt [−2z∗t Nzt + u
∗
t P1zt + z

∗
t P1ut ]

≤ Eeεt [−2z∗t Nzt + u
∗
t P1zt + z

∗
t P1ut ]

≤ eεt [−2λmin(N )‖Ezt‖2 + 2‖Ezt‖‖u∗t P1‖]

≤ 0, (19)

where Ezt ∈ Cn
\ S and

8̃ =



811 812 0 P1A P1B 0 817
∗ 822 0 0 0 0 827
∗ ∗ 833 0 0 0 0
∗ ∗ ∗ 844 0 0 0
∗ ∗ ∗ ∗ 855 0 0
∗ ∗ ∗ ∗ ∗ 866 0
∗ ∗ ∗ ∗ ∗ ∗ 877


833 = −P4 − J L̂, 866 = −P5 − J .

From (9), obviously, 8̃ < 0, then, integrating two sides of the
inequality (19) from 0 to an arbitrary t > 0, we have

EV (z(t)) = EV (z(0))+
∫ t

0
ELV (z(s))ds

≤ EV (z(0)). (20)

On the other hand, from the definition of V (z(t)), it is easy
to know that

V (z(t)) ≥ eεtz∗(t)P1z(t).

Then we can get

EV (z(0)) ≥ eεtEz∗t P1zt .

By using Lemma 2,

EV (z(0)) ≥ eεtλmin(P1)‖Ezt‖2,

also

‖Ezt‖ ≤ [eεtλmin(P1)]
−1
2 [EV (z(0))]

1
2 ,

therefore, by Definition 1, the CVSNNs (1) are global expo-
nential dissipative in mean square and S is an attractive set.
This completes the proof.
Remark 3: The complex-valued LMI cannot be tested

straightly by LMI tool box. In the following corollary, we pro-
vide the equivalent LMIs in real number domain which can
be solved with the help of standard available numerical.
Corollary 1. Suppose that Assumptions 1, 2 and 3 hold.

If there exist positive Hermitian matrices Pj1 + iPj2(j =
1, . . . , 5),NR

+ iN I, diagonal matricesG > 0,H > 0, J > 0,
a positive real constant ρ, and any appropriate dimension
matrices Ml1 + iMl2(l = 1, 2, 3), such that the following
LMIs hold: [

8R
−8I

8I 8R

]
< 0, (21)[

P11 − ρI −P12
P12 P11 − ρI

]
< 0, (22)

where

8R
=



8R
11 8R

12 8R
14 8R

15 8R
17

∗ 8R
22 0 0 8R

27
∗ ∗ 8R

44 0 0
∗ ∗ ∗ 8R

55 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 8R

77

 ,

8I
=


8I

11 8I
12 8I

14 8I
15 8I

17

8I
21 8I

22 0 0 8I
27

8I
41 0 8I

44 0 0

8I
51 0 0 8I

55 0

8I
71 8I

72 0 0 8I
77

 ,

with

8R
11 = εP11 − (D∗P11 + P11D)+ eετ (P21 + P41)

+ ρQ11 + 2NR
+ GL̂ + 2M11,

8R
12 = M21 −M>11, 8

R
14 = P11AR − P12AI ,

8R
15 = P11BR − P12BI , 8R

17 = M31 −M>11,

8R
27 = −M31 −M>21, 8

R
55 = (d − 1)P31 − H ,

8R
22 = (d − 1)P21 + ρQ21 − 2M21 + HL̂,

8R
44 = eετ (P31 + P51)− G, 8R

77 = −2M31,

8I
11 = εP12 − (D∗P12 + P12D)+ eετ (P22 + P42)

+ ρQ12 + 2N I
+ 2M12,

8I
12 = M22 +M>12, 8

I
14 = P11AI + P12AR,

8I
15 = P11BI + P12BR, 8I

17 = M32 +M>12,

8I
21 = −M

>

22 −M12, 8
I
27 = −M32 +M>22,

8I
22 = (d − 1)P22 + ρQ22 − 2M22,

8I
41 = −(A

R)>(P12)> − (AI )>(P11)>,

8I
51 = (BR)>P12 − (BI )>P11,

8I
44 = eετ (P32 + P52)− G,

8I
55 = (d − 1)P32, 8I

71 = −M
>

32 −M12,

8I
72 = M>32 −M22, 8

I
77 = −2M32,

then the CVSNNs (1) are said to be a globally exponentially
dissipative system and the set S1 = {Re(z) : E‖Re(z)‖ =

1
λmin(NR)

‖uRP11 − uIP12‖}, S2 = {Im(z) : E‖Im(z)‖ =
1

λmin(N I)
‖uRP12+uIP11‖} are the positive invariant and glob-

ally attractive sets.
Proof: Using Lemma 3, if 8 < 0 in Theorem 1 is

equivalent to
[
8R
−8I

8I 8R

]
< 0 in (21). Moreover,

from (19) and (21), we can write

EdV (t) = ELV (t)dt

≤ Eeεtη∗8η + 2Eeεt [−z∗t (N
R
+ iN I)zt

+ z∗t (P11 + iP12)(u
R
t + iu

I
t )]

165080 VOLUME 7, 2019



M. Liu et al.: Dissipativity Analysis of CVSNNs With Time-Varying Delays

≤ 2eεt‖Ezt‖[−λmin(NR)‖Ezt‖ + (P11uRt − P12u
I
t )]

+ i2eεt‖Ezt‖[−λmin(N I)‖Ezt‖+(P11uIt+P12u
R
t )]

≤ 2eεt‖Ezt‖{[−λmin(NR)‖ERe(zt )‖ + (P11uRt
−P12uIt )]+ i[−λmin(N I)‖EIm(zt )‖

+ (P11uIt + P12u
R
t )]} ≤ 0. (23)

Then, we can say that the CVSNNs (1) are said to be globally
exponentially dissipative and S1 = {Re(z) : E‖Re(z)‖ =

1
λmin(NR)

‖uRP11 − uIP12‖}, S2 = {Im(z) : E‖Im(z)‖ =
1

λmin(N I)
‖uRP12 + uIP11‖} are positive invariant and globally

attractive sets. This completes the proof.
In the following Theorem 2, we will give a new result for

stochastic neural networks system (1) from another point of
view.
Theorem 2. Suppose that Assumptions 1, 2 and 3 hold.

If there exist positive scalars α, ρ1, ρ2, ρ3, Hermitian matri-
ces P̄j > 0(j = 1, . . . , 7), and diagonal matrices
G > 0,H > 0, such that the following LMIs hold:

9 < 0, 3 < 0, 1 < 0, (24)

P̄1 ≤ ρ1I , P̄6 ≤ ρ2I , P̄7 ≤ ρ3I , (25)

where

9 =


911 P̄1A P̄1B 917
∗ 944 0 0
∗ 0 955 0
∗ 0 0 977

 ,
3 = ρ1Q̄2 + ρ2τ

2Q̄2 + ρ3
1
4
τ 2Q̄2 − (1− d)P̄4 + HL̂,

1 = τ 2P̄7 − P̄6

with

911 = −(DP̄1 + P̄1D)+ ρ1Q̄1 + ρ2τ
2Q̄1

+ ρ3
1
4
τ 2Q̄1 + P̄4 + GL̂ −Q,

914 = P̄1A, 915 = P̄1B, 917 = P̄1 − S,
944 = P̄3 + P̄5 − G, 955 = (d − 1)P̄5 − H ,

977 = αI −R,

then the CVSNNs (1) are strictly (Q,S,R)-dissipative.
Proof: Consider the following Lyapunov function as

V (t) = V1(t)+ V2(t)+ V3(t)+ V4(t)+ V5(t), (26)

where

V1(t) = z∗(t)P̄1z(t),

V2(t) =
∫ t

t−τ (t)
z∗(s)P̄2z(s)ds

+

∫ t

t−τ (t)
f ∗(z(s))P̄3f (z(s))ds,

V3(t) =
∫ t

t−τ
z∗(s)P̄4z(s)ds

+

∫ t

t−τ
f ∗(z(s))P̄5f (z(s))ds,

V4 = τ
∫ 0

−τ

∫ t

t+θ
dz∗(s)P̄6dz(s)dθ

V5 =
1
2
τ 2
∫ 0

−τ

∫ 0

θ

∫ t

t+λ
dz∗(s)P̄6dz(s)dλdθ.

Using Itô formula to (26), one can get that dV (t) =
LV (t)dt + eεt (z∗t P̄1σ (zt , z

τ
t )+ σ

∗(zt , zτt )P̄1zt )dWt , where

LV (t)

= trace[σ ∗(zt , zt−τ (t))P̄1σ (zt , zt−τ (t))]

+ [−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]∗P̄1zt
+ z∗t P̄1[−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]+ z

∗
t P̄2zt

+ f ∗(zt )P̄3f (zt )− (1− τ̇ (t))z∗t−τ (t)P̄2zt−τ (t)
− (1− τ̇ (t))f ∗(zt−τ (t))P̄3f (zt−τ (t))+ z∗t P̄4zt
− z∗t−τ P̄4zt−τ + f

∗(zt )P̄5f (zt )− f ∗(zt−τ )

× P̄5f (zt−τ )+ τ 2trace[σ ∗(zt , zt−τ (t))P̄6σ (zt , zt−τ (t))]

− τ (
∫ t

t−τ
trace[σ ∗(zs, zs−τ (s))P̄6σ (zs, zs−τ (s))ds)]

+
1
4
τ 4trace[σ ∗(zt , zt−τ (t))P̄7σ (zt , zt−τ (t))]

−
1
2
τ 2
∫ 0

−τ

∫ 0

θ

dz∗(t + λ)P̄7dz(t + λ)dλdθ. (27)

According to (3) and (25),

LV (t)

≤ z∗t ρ1Q̄1zt + z∗t−τ (t)ρ1Q̄2zt−τ (t)
+ [−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]∗P̄1zt
+ z∗t P̄1[−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]

+ z∗t P̄2zt + f
∗(zt )P̄3f (zt )− z∗t−τ (t)P̄4zt−τ (t) + z

∗
t P̄4zt

− f ∗(zt−τ (t))P̄5f (zt−τ (t))− (1− d)z∗t−τ (t)P̄2zt−τ (t)
+ f ∗(zt )P̄5f (zt )− (1− d)f ∗(zt−τ (t))P̄3f (zt−τ (t))

− τ (
∫ t

t−τ
trace[σ ∗(zs, zs−τ (s))P̄6σ (zs, zs−τ (s)))]ds

+ τ 2z∗t ρ2Q̄1zt + τ 2z∗t−τ (t)ρ2Q̄2zt−τ (t) +
1
4
τ 2[z∗t ρ3Q̄1zt

+ τ 2z∗t−τ (t)ρ3Q̄2zt−τ (t)]+ τ 2[
∫ t

t−τ
σ (zs, zs−τ (s))ds]∗

× P̄7[
∫ t

t−τ
σ (zs, zs−τ (s))ds]. (28)

Substituting (6) into (28), and using Lemma 1, one has

LV (t)+ αu∗t ut − [z∗tQzt + 2z∗t Sut + u∗tQut ]
≤ z∗t ρ1Q̄1zt + z∗t−τ (t)ρ1Q̄2zt−τ (t)
+ [−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]∗P̄1zt
+ z∗t P̄1[−Dzt + Af (zt )+ Bf (zt−τ (t))+ ut ]+ z

∗
t P̄2zt

+ f ∗(zt )P̄3f (zt )− z∗t−τ (t)P̄4zt−τ (t) − f
∗(zt−τ (t))P̄5

× f (zt−τ (t))+ z∗t P̄4zt − (1− d)z∗t−τ (t)P̄2zt−τ (t)
+ f ∗(zt )P̄5f (zt )− (1− d)f ∗(zt−τ (t))P̄3f (zt−τ (t))

+ τ 2z∗t ρ2Q̄1zt + τ 2z∗t−τ (t)ρ2Q̄2zt−τ (t)
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− (
∫ t

t−τ
σ (zs, zs−τ (s))ds)∗P̄6(

∫ t

t−τ
σ (zs, zs−τ (s)))ds)

+
1
4
τ 2[z∗t ρ3Q̄1zt + τ 2z∗t−τ (t)ρ3Q̄2zt−τ (t)]

+ τ 2[
∫ t

t−τ
σ (zs, zs−τ (s))ds]∗P̄7[

∫ t

t−τ
σ (zs, zs−τ (s))ds]

+αu∗t ut − [z∗tQzt + 2z∗t Sut + u∗tQut ]. (29)

On the basis of (14) and (15), we can get

LV (t)+ αu∗t ut − [z∗tQzt + 2z∗t Sut + u∗tQut ]
≤ z∗t (−DP̄1 − P̄1D+ ρ1Q̄1 + P̄2 + P̄4 + ρ2τ 2Q̄1

+ ρ3
1
4
τ 2Q̄1 + GL̂)zt + z∗t−τ (t)(ρ1Q̄2 + ρ2τ

2Q̄2

+ ρ3
1
4
τ 2Q̄2)z∗t−τ (t) + z

∗
t−τ (−P̄4)zt−τ + f

∗(zt )

× (P̄3 + P̄5 − G)f (zt )+ f ∗(zt−τ (t))[(d − 1)P̄5 − H ]

× f (zt−τ (t))+ f ∗(zt−τ )(−P̄5)f (zt−τ )+ αu∗t ut

+ [
∫ t

t−τ
σ (zs, zs−τ (s))ds]∗(τ 2P̄7 − P̄6)

×

∫ t

t−τ
σ (zs, zs−τ (s))ds+ [f ∗(zt )A∗P̄1zt + z∗t P̄1Af (zt )

+ f ∗(zt )B∗P̄1zt + z∗t P̄1Bf (zt )+ u
∗
t P̄1zt + z

∗
t P̄1ut ]

− [z∗tQzt + u∗tRut + 2z∗t Sut ]. (30)

Let η∗ =
{
z∗t , z

∗

t−τ (t), z
∗
t−τ , f

∗(zt ), f ∗(zt−τ (t)),

f ∗(zt−τ ), u∗t , [
∫ t
t−τ σ (zs, zt−τ (s))]

∗

}
,

then, (30) can be expressed as

LV (t)+ αu∗t ut − [z∗tQzt + 2z∗t Sut + u∗tQut ]
≤ η∗9̂η, (31)

where

9̂ =



911 0 0 P̄1A P̄1B 0 917 0
0 3 0 0 0 0 0 0
0 0 933 0 0 0 0 0
∗ 0 0 944 0 0 0 0
∗ 0 0 0 955 0 0 0
0 0 0 0 0 966 0 0
∗ 0 0 0 0 0 977 0
0 0 0 0 0 0 0 1


,

933 = −P̄4, 966 = −P̄3.

Because of the equivalence of 9̂ < 0 and (24), from the
inequality (31), we have

LV (t)+ αu∗t ut ≤ z
∗
tQzt + 2z∗t Sut + u∗tQut . (32)

Both integrating (32) from 0 to T , and then taking the expec-
tation, under the initial conditions, we can obtain

E{G(u, z,T )} = E{〈z,Qz〉} + 2E{〈z,Su〉}
+E{〈u,Ru〉}, T ≥ 0. (33)

Therefore, based on Definition 2, the CVSNNs (1) are strictly
(Q,S,R)-dissipative system. The proof is completed.

Remark 4: In practice, the influence of stochastic interfer-
ence on the stability of the system has been paid more and
more attention. In real-valued models, some related results
have arisen, such as the global dissipativity, exponential dissi-
pativity and strictly (Q,S,R)-dissipativity about real-valued
stochastic discrete-time neural networks [19], [21], [23], [31].
But, in complex domain, there has been few information on
this issue. Further, the result for the dissipativity of complex-
valued neural networks with stochastic interference has been
not reported. In Theorems 1 and 2, we study exponential
dissipativity and strictly (Q,S,R)-dissipativity and derive
the corresponding sufficient conditions.
Remark 5: Sufficient conditions that guarantee (Q,S,R)

dissipativity of the CVSNNs (1) are derived in terms of
complex-valued LMIs. Similar to Theorem 1, based on
Lemma 3, the sufficient conditions for strictly (Q,S,R)-
dissipativity of the CVSNNs (1) can be verified by the fol-
lowing Corollary 2 in terms of real-valued LMIs. These LMIs
can be solved with the help of standard available numerical.
Corollary 2: Suppose that Assumptions 1, 2, 3 hold, and

Q = Q1+ iQ2, S = S1+ iS2,R = R1+ iR2. If there exist
positive scalars α, ρ1, ρ2, ρ3, Hermitian matrices P̄j1+iP̄j2 >
0(j = 1, . . . , 7), and diagonal matrices G > 0,H > 0, such
that the following LMIs hold:[

oR −oI

oI oR

]
< 0, (34)[

P̄11 − ρ1I −P̄12
P̄12 P̄11 − ρI

]
< 0, (35)[

P̄61 − ρ2I −P̄62
P̄62 P̄61 − ρI

]
< 0, (36)[

P̄71 − ρ3I −P̄72
P̄72 P̄71 − ρI

]
< 0, (37)

for o = 9,3,1, where

9R
=


9R

11 9R
14 9R

15 9R
17

∗ 9R
44 0 0

∗ 0 9R
55 0

∗ 0 0 9R
77

 ,

9I
=


9I

11 9I
14 9I

15 9I
17

9I
41 9I

44 0 0
9I

51 0 9I
55 0

9I
71 0 0 9I

77

 ,
with

9R
11 = −(D

∗P̄11 + P̄11D)+ (P̄21 + P̄41)+ ρ1Q̄11

+ ρ2τ
2Q̄11 +

1
4
ρ3τ

2Q̄11 + GL̂ −Q1,

9R
44 = P̄31 + P̄51 − G, 9R

55 = (d − 1)P̄51 − H ,

9R
77 = αI −R1, 9

R
14 = P̄11AR − P̄12AI ,

9R
15 = P̄11BR − P̄12BI , 9R

17 = P̄11 − S1,

9I
11 = −(D

∗P̄12 + P̄12D)+ (P̄22 + P̄42)+ ρ1Q̄12

+ ρ2τ
2Q̄12 +

1
4
ρ3τ

2Q̄12 −Q2,
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9I
44 = P̄32 + P̄52, 9I

55 = (d − 1)P̄52, 9I
77 = −R2,

9I
14 = P̄11AI + P̄12AR, 9I

15 = P̄11BI + P̄12BR,

9I
17 = P̄12 − S2, 9

I
41 = −A

RTP̄T12 − A
ITP̄T11,

9I
71 = −P̄

T
12 + ST2 , 9

I
51 = −B

RTP̄T12 − B
ITP̄T11,

and

3R
= ρ1Q̄21 + ρ2τ

2Q̄21 +
1
4
ρ3τ

2Q̄21

+ (d − 1)P̄41 + HL̂,

3I
= ρ1Q̄22 + ρ2τ

2Q̄22 +
1
4
ρ3τ

2Q̄22 + (d − 1)P̄42,

1R
= τ 2P̄71 − P̄61, 1I

= τ 2P̄72 − P̄62,

then the CVSNNs (1) are strictly (Q,S,R)-dissipative.
Remark 6: Indeed, in the existing literatures, the stochastic

interference on stochastic neural network always is always
treated as Brownian motion for propose of obtaining the
appropriate conclusion. We would like to point out that it is
possible to extend our main results to more neural networks
with more general stochastic process, such as Markov jump
process and Levy jump process, and the corresponding work
will be done in the near future.

IV. NUMERICAL EXAMPLES
In this section, we will give two examples to show the effec-
tiveness of our results.
Example 1: Consider a two-dimensional CVSNNs as

follows:

dz(t) = [−Dz(t)+ Af (z(t))+ Bf (z(t − τ (t)))

+ u(t)]dt + σ (t, z(t), z(t − τ (t)))dw(t), (38)

with the following parameter values

D =
[
5.0 0
0 5.0

]
, L =

[ 1
2.45 0
0 1

2.45

]
,

A =
[
−0.3− 0.2i 0.8+ 0.5i
−0.3− 0.15i 0.7+ 0.8i

]
,

B =
[
0.9+ 0.5i −0.3+ 0.9i
0.8− 0.3i −0.3+ 0.9i

]
.

For this system, the activation functions are the form
as f (z(·)) = tanh(z(·)), the diffusion coefficient function
σ (z(t), z(t − τ (t))) = 0.01 ∗ [0.2z(t) + 0.2z(t − τ (t))] and
τ (t) = 0.1 + 0.1 ∗ sint , τ = 0.2, d = 0.1, ε = 0.0262.
According to Corollary 1, it can be verified that this system
is dissipative. We take u = [4 + 2i, 4 + 2i]∗ and the initial
conditions z1 = 0.5− 0.25i, z2 = 0.3− 0.2i.

Then using standard available numerical packages to solve
the LMIs (21) and (22), we can obtain the following feasible
solution such as

P1 =
[

11.3876 −10.3522− 3.1006i
−10.3522+ 3.1006i 13.2917i

]
,

P2 =
[

22.2466 −12.3579+ 1.8329i
−12.3579− 1.8329i 26.8132

]
,

FIGURE 1. The trajectories of real and imaginary parts of variables z1 for
the stochastic neural network system without external energy inputs in
example 1.

P3 =
[

0.5690 0.0878− 0.005i
0.0878+ 0.005ii 0.1885

]
,

P4 =
[

20.0304 −13.1818+ 1.1003i
−13.1818− 1.1003i 23.611

]
,

P5 =
[

0.5966 0.0816+ 0.003i
0.0816− 0.003i 0.1923

]
,

N =
[

58.1933 −60.3428+ 5.338i
−60.3428− 5.338i 75.0341

]
,

M1 =
[

126+ 0.1138i 469.18+ 7.2188i
−4716.1− 7.2253i 15.5− 0.0721i

]
,

M2 =
[
−20.8− 0.0735i 4724.4− 1.8932i
−4683.6− 1.7335i −24.8+ 0.2743i

]
,

M3 =
[

16.1− 0.3929i 7328.8− 2.6072
−7357.2+ 2.4465i 19.2− 0.3441i

]
,

G =
[
1.6752 0

0 1.6752

]
, ρ = 55.6489

H =
[
1.7274 0

0 1.7274

]
, J =

[
0.7477 0

0 0.7477

]
.

Therefore, by Corollary 1, we know that the CVSNNs (38)
with the above given parameters is globally exponentially
dissipative. And it is easy to compute that the positive invari-
ant and global attractive set are S = {z : E‖zt‖ ≤
0.3368}. The Figs.3 and 4 depict the state response of the
CVSNNs (38).
Example 2: Consider a two-dimensional CVSNNs as

follows:

dz(t) = [−Dz(t)+ Af (z(t))+ Bf (z(t − τ (t)))

+ u(t)]dt + σ (t, z(t), z(t − τ (t)))dw(t), (39)

with the following parameter values

A =
[
2.5− 2.5i 2.5− 3.8i
−4− 2.7i 3.8+ 2.5i

]
,
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FIGURE 2. The trajectories of real and imaginary parts of variables z2 for
the stochastic neural network system without external energy inputs in
example 1.

FIGURE 3. The trajectories of real and imaginary parts of variables z1 for
the stochastic neural network system under external energy inputs with
random initial conditions in example 1.

B =
[
−3.8+ 4.5i −1.5+ 2.8i
−0.4+ 3.8i −2.8− 1.1i

]
,

D =
[
5.5 0
0 5.5

]
, u =

[
−4+ 4i
−4+ 2i

]
,

and f (z(·)), τ (t), σ (z(t), z(t− τ (t))) are chosen as the same in
Example 1. Moreover, choosing

Q =
[
−3.8+ 4.5i −1.5+ 2.8i
−0.4+ 3.8i −2.8− 1.1i

]
,

S =
[
0.3+ 0.5i −0.6− 0.2i
0.4− 0.6i 0.5+ 0.3i

]
,

R =
[

4.5 −0.5− i
−0.5+ i 2.5

]
, u =

[
1− i
1− i

]
,

Q1 =
[
4.2 2.3
2.3 2.0

]
,Q1 =

[
4.7 2.6
2.6 2.2

]
,

Then using standard available numerical packages to solve
the LMIs (34)-(37), we can obtain the following feasible

FIGURE 4. The trajectories of real and imaginary parts of variables z2 for
the stochastic neural network system under external energy inputs with
random initial conditions in example 1.

FIGURE 5. The trajectories of real and imaginary parts of variables z1 for
the stochastic neural network system without external energy inputs in
example 2.

FIGURE 6. The trajectories of real and imaginary parts of variables z2 for
the stochastic neural network system without external energy inputs in
example 2.

solution such as

P̄1 = 10−4 ∗
[

29 −5− 1.288i
−5+ 1.288i 23

]
,
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FIGURE 7. The trajectories of real and imaginary parts of variables z1 for
the stochastic neural network system under external energy inputs with
random initial conditions in example 2.

FIGURE 8. The trajectories of real and imaginary parts of variables z2 for
the stochastic neural network system under external energy inputs with
random initial conditions in example 2.

P̄2 =
[

0.2727 0.1617+ 0.0299i
0.1617− 0.0299i 0.1241

]
,

P̄3 =
[
0.0722 0.107
0.107 0.0664

]
,

P̄4 =
[

0.4959 0.2810+ 0.0724i
0.2810− 0.0724i 0.2352

]
,

P̄5 =
[

0.0566 0.007− 10−5 ∗ 6.07i
0.007+ 10−5 ∗ 6.07i 0.0603

]
,

P̄6 =
[
0.0437 0

0 0.0437

]
, P̄7 =

[
0.0163 0

0 0.0163

]
,

G =
[
0.1959 0

0 0.1959

]
, H =

[
0.0368 0

0 0.0368

]
,

and ρ1 = 0.0047, ρ2 = 0.0607, ρ3 = 0.05554, α =
0.0084. Therefore, the stochastic neural network system (39)
is strictly (Q,S,R)-dissipative, and the Figs.7 and 8 depict
the state response of the CVSNNs (39) with the initial condi-
tions z1 = −0.5+ 0.15i, z2 = 0.3− 0.2i.

Remark 7. The different choices of the diffusion coefficient
function ratio can make the stability of dissipative system
very different. Any change in external stochastic interference
can make the dissipative system very unstable. Therefore,
we choose 0.01 as the diffusion coefficient function ratio in
contrast to the big ones.

V. CONCLUSION
In this paper, the problem of exponential dissipativity and
(Q,S,R)-dissipativity for complex-value stochastic neural
networks with time-varying delays have been investigated.
By using the inequality techniques and stochastic analysis
techniques, some sufficient conditions for exponential dissi-
pativity and (Q,S,R)-dissipativity of CVSNNs have been
derived in terms of LMIs. Moreover, the global attractive
sets are obtained which are positive invariant sets. Complex-
valued LMIs can be checked numerically by using the effec-
tive LMI toolbox in MATLAB. Two numerical examples
were provided to illustrate the effectiveness of the proposed
results.
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