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ABSTRACT In this paper, we propose an efficient onlinemulti-object trackingmethod based on theGaussian
mixture probability hypothesis density (GMPHD) filter and occlusion group management scheme where
a hierarchical data association is utilized for the GMPHD filter to reduce the false negatives caused by
missed detection. The hierarchical data association consisting of two modules, detection-to-track and track-
to-track associations, can recover the lost tracks and their switched IDs. In addition, the proposed grouping
management scheme handles occlusion problems with two main parts. The first part, ‘‘track merging’’
can merge the false positive tracks caused by false positive detections from occlusions. The occlusion of
the false positive tracks is usually measured with some metric. In this research, we define the occlusion
measure between visual objects, as sum-of-intersection-over-each-area (SIOA) instead of the commonly
used intersection-over-union (IOU). The second part, ‘‘occlusion group energy minimization (OGEM)’’
prevents the occluded true positive tracks from false ‘‘track merging’’. Each group of the occluded objects is
expressed with an energy function and an optimal hypothesis will be obtained by minimizing the energy. We
evaluate the proposed tracker in benchmarks such asMOT15 andMOT17which are public datasets for multi-
person tracking. An ablation study in training dataset reveals not only that ‘‘track merging’’ and ‘‘OGEM’’
complement each other, but also that the proposed tracking method shows more robust performance and
less sensitiveness than baseline methods. Also, the tracking performance with SIOA is better than that with
IOU for various sizes of false positives. Experimental results show that the proposed tracker efficiently
handles occlusion situations and achieves competitive performance compared to the state-of-the-art methods.
In fact, our method shows the best multi-object tracking accuracy among the online and real-time executable
methods.

INDEX TERMS Multiple object tracking, GMPHD filter, hierarchical data association, occlusion handling,
energy minimization.

I. INTRODUCTION
Multi-object Tracking (MOT) has become one of key
techniques for intelligent video surveillance [5], [6] and
autonomous vehicle systems [7] in the last decade.

In the view of the processing pipeline, many state-
of-the-art MOT methods [13]–[52] have exploited the

The associate editor coordinating the review of this manuscript and
approving it for publication was John See.

tracking-by-detection paradigm because of its representative
advantages (utility and modularity) that developers only need
to implement a tracking module and make it receive detection
modules’ results as inputs. However, object detectors are still
imperfect in the presence of various illumination conditions
(too bright or dark), occlusions between objects, and high
similarity between foregrounds (objects) and backgrounds
as described in Figure 1(b), although deep neural networks
(DNN) based detectors such as FRCNN [10], SDP [11],
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FIGURE 1. Examples for comparing observations (detection) and states (tracking) between (a) radar/sonar and (b) video system. The radar/sonar sensors
receive a lot of clutter (false positive errors) but rarely miss objects (false negative errors), whereas the detector in video data tends to receive a few
clutter around the objects and misses more objects than the radar/sonar sensors do. In (b), we used MOT17-01-FRCNN sequences.

and YOLO [12] have achieved better performance than
hand-crafted features based detectors such as ACF [8] and
DPM [9] did. Thus, these complex situations generate false
positive and missed detections resulting in false positive and
missed tracks in 2D video data.

The methods based on tracking-by-detection are catego-
rized into two approaches: offline and online processes.
The most different point between two approaches is that
whereas the offline process can see the whole time sequences,
i.e., whole detection results, at once, the online process can
see only the frames from initial time 1 to the current process-
ing time k . In other words, from the system user’s perspective,
whereas the offline method is suitable for post-processing,
the online process is needed for real-time application.

Thus, many offline methods [29], [30], [32], [35], [37],
[48] take advantage of the global optimization models. [30],
[37], [48] exploit graphical models to solve MOT tasks.
Pirsiavash et al. [37] designed a min-cost flow network where
the nodes and the directed edges indicating observations
(detections) and tracklets’ hypotheses respectively, form a
directed acyclic graph (DAG). The DAG’s shortest (min-
cost) path can be found with Dijkstra’s algorithm. Choi [30]
divided the tracking problem into subgraphs and solved each
subgraph as conditional random field inferences in parallel.
Keuper et al. [48] applied vision-based perspective to the
proposed graph optimization model. Feature points’ trajec-
tories and bounding boxes build low-level and high-level
graph models, respectively, and then they find the optimal
association results between the two levels’ graph models.
Rezatofighi et al. [32] and Kim et al. [29] considered all pos-
sible hypotheses for data association. Reference [32] assumed
m-best solutions and [29] pruned out invalid hypotheses
using their own rule, because it involves the exponentially
increasing complexity with a tree structure. In addition,
Milan et al. [35] proposed a sophisticated energy minimiza-
tion technique considering detection, appearance, dynamic

model, mutual exclusion, and target persistence forMOT task
in video. Those offlinemethods have strengths to generate the
accurate and refined tracking results but are not suitable for
practical real-time applications.

On the other hand, since the online approaches cannot
apply the global optimization models, intensive motion anal-
ysis and appearance feature learning have been popularly
utilized with a hierarchical data association framework and
an online Bayesian model [14], [15], [18], [22], [24], [26],
[38], [44]. Yoon et al. [24] proposed a relativemotion analysis
model between all objects in a frame, and then improved
the work [24] by adding the cost optimization function using
context constraints in [22]. Bae and Yoon [26] exploited the
incremental linear discriminant analysis (LDA) for appear-
ance learning and presented a tracklet confidence based data
association framework. Also, in [14], they improved their pre-
vious work [26] by using the DNN based appearance learn-
ing instead of the incremental LDA. As DNN has achieved
breakthroughs in object classification and detection, some
online MOT algorithms have focused on how to adopt the
DNN for appearance learning and apply it into their tracking
frameworks. Yoon et al. [15] exploited the siamese con-
volutional neural networks (CNN) [53] to train appearance
models. They trained the deep appearance networks selec-
tively where only detection responses matched with high
confidence between the historical objects are queued in the
recent few frames. Then, they combined the trained net-
works to a simple Bayesian tracking model with a Kalman
filter [61]. Chen et al. [38] employed a re-identification
(Re-ID) model [54] to their tracking framework. They mea-
sured the similarity between detection and tracking by cal-
culating the distance between Re-ID feature vectors of the
objects. Then, they associated the pairs of detections and
tracking objects which madethe sum of the distances mini-
mal. Both approaches [15] and [38] proposed online Bayesian
tracking models with conventional DNN models to measure
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the similarity between the visual objects. These online MOT
methods had proposed successful solutions with excellent
tracking accuracy but their intensive analysis and learning
processes took heavy computing resources and time. Also,
even if they just employ conventional DNN models through
state-of-the-art GPU processing techniques, the requirement
for a lot of computing resources are still inevitable and
it makes the trackers difficult to achieve real-time speed.
Recently, In a different online MOT research direction,
the probability hypothesis density (PHD) filter [2], [3] have
been employed as an emerging theory for many online MOT
methods [16]–[18], [23], [39], [43]–[45]. That is because
Vo et al. [2] and Vo and Ma [3] provided not only an
online multi-target Bayesian filtering framework but had
also approximated the original PHD recursions [1] involving
multiple integrals to a closed-form implementation, which
alleviated the computational intractability. However, the PHD
filter was originally designed for multi-target tracking in
radar/sonar systems [4], [64] which have a relatively more
false positives and less false negatives detections, while
detections in image data (video) systems [8]–[10] have a
relatively less false positives and more false negatives detec-
tions. Figure 1 describes the different characteristics between
the two domains. To handle tracking problems caused by
false detections in video data, the online tracking algorithms
based on the PHD filter employed appearance learning [18],
[44], hierarchical data association [16], [17], [23], and fusing
multiple detectors [39], [43], [45]. These PHD filter based
online MOT methods are most relevant to our proposal so we
will address them in Section II in detail.

These latest MOT research trends motivated our work in
terms of three main contributions that we will describe later
in this section. Also, they reminded us of the requirements
for practical MOT applications that indicated real-time speed
especially. Thus, in this paper, we propose an online multi-
object tracking method to resolve the practical tracking prob-
lems which are false positives and false negatives (missed)
detections caused by occlusions and similarity between back-
grounds and interested objects (persons) in video data system.
Our main contributions are described as follows:

1) To apply the GMPHD filter in video data system,
we extended the conventional GMPHD filter based tracking
process with a hierarchical data associations (HDA) strategy.
Also, we revised the equations of the GMPHD filter as a
new cost function for HDA. HDA consists of detection-
to-track associations (D2TA) and track-to-track associations
(T2TA). The cost matrix of each association stage is solved
by using the Hungarian method [60] with linear complexity
O(n3) (assignment problem). These D2TA and T2TA can
recover lost tracks caused by missed detections. Furthermore,
we did not use image information except bounding boxes
with detection confidence scores in HDA because the usage
of image information (visual features) involves additional
learning steps and makes it hard to achieve real-time speed.

2) To handle occlusions in video-based tracking sys-
tems, we devised ‘‘tracking merging’’ and ‘‘occlusion group

energy minimization (OGEM)’’ which complements each
other. ‘‘Tracking merging’’ relieves false positive tracks
and ‘‘OGEM’’ recovers false ‘‘track merging’’ by using
the occluded objects’ group energy minimization. ‘‘Track-
ing merging’’ runs in tracking-level so it is different from
detection-level merging such as non-maximum-suppression.
To measure overlapping ratios between occluded objects,
we devised a new metric named sum-of-intersection-over-
each-area (SIOA) and use this metric instead of the exten-
sively used intersection-over-union (IOU). For ‘‘OGEM’’,
we devised a new energy function to find the optimal
energy state having in a group of occluded objects. ‘‘Track-
ing merging’’ and ‘‘OGEM’’ follow D2TA and T2TA,
respectively. We name both techniques as occlusion group
management (OGM).

3) Consequently, we proposed an online multi-object
tracking method with GMPHD filter and occlusion group
management (GMPHD-OGM). In regards to optimization
techniques, the first and second contributions locally opti-
mize tracking processes which minimizes the association
cost matrix and the occlusion group energy. We evalu-
ated the proposed tracking method on the MOT15 [5] and
MOT17 [6] benchmarks. The ablation study on the training
set showed that our method is more robust than the given
baseline method. The qualitative and quantitative evaluation
results also showed that GMPHD-OGM efficiently handled
the defined tracking problems caused by occlusion. More-
over, the proposed method achieved competitive tracking
performance against state-of-the-art online MOT algorithms
in terms of CLEARMOTmetrics [56] and themetrics defined
in [57], especially in value of ‘‘tracking accuracy (MOTA)
versus speed (FPS)’’.

The related works are described in Section II. In Sec-
tions III and IV, we elaborate the GMPHD filter based
tracking method with HDA and OGM. In Section V, our
method is evaluated against baseline method and state-of-
the-art methods on the popular benchmarks MOT15 [5] and
MOT17 [6]. We conclude this paper with proposal for future
work in Section VI. Some preliminary results of this work
were presented in Song and Jeon [16] and Song et al. [17].

II. RELATED WORKS
Our proposed tracking method is influenced from PHD filter
based online multi-object tracking, and grouping approaches
(topology and relative motion analysis).

A. PHD FILTERING THEORY
The PHD filter [1]–[3] was originally designed to deal with
radar/sonar data based multi-object tracking (MOT) systems.
Mahler [1] proposed a recursive Bayes filter equations for the
PHD filter which optimizes MOT processes in radar/sonar
systems with a random-finite set (RFS) of states and obser-
vations. Following this PHD filtering theory, Vo et al. [2]
proposed a sequential Monte Carlo (SMC) implementation
of the PHD filter by using particle filtering and cluster-
ing, named as the SMCPHD filter. In [3], Vo et al. [3]
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implemented the governing equations by using the Gaussian
mixture model as a closed-form recursion, named as the
Gaussian mixture probability hypothesis density (GMPHD)
filter. The SMCPHD filter is the first implementation of the
PHD filter but requires relatively large amount of computa-
tion in the clustering processes for particle filtering, so the
GMPHDfilter has been more widely exploited for extensions
and applications. The Gaussian mixture cardinalized PHD
(GMCPHD) filter [62] is one of representative extensions
of the GMPHD recursion and jointly propagates the poste-
rior intensity and the posterior cardinality distribution, while
the GMPHD filter propagates only the posterior intensity of
objects. In their numerical experiments, even if theGMCPHD
filter showed the better performance in terms of tracking
accuracy and the cardinality (the number of objects) estima-
tion, those improvements involved about three times slower
speed than the GMPHDfilter. Besides, in the scenario that the
number of objects was changed drastically, tracking accuracy
and speed became worse than that of the GMPHD filter. Most
recently, an implementation of the generalized labeled multi-
Bernoulli (GLMB) [63] filter was presented. Unlike the PHD
and GMCPHD recursions [2], [3], [62], the GLMBfilter does
not need data associations by using a multi-Bernoulli RFS
approximation, so it contains much more complex equations
than other RFS based multi-object Bayes filters. In addition,
the GMCPHD filter and the GLMB filter calculate the pos-
terior cardinality distribution that theoretically assumes up to
infinity but constrains to a finite value, e.g., 100 or 200 for
a practical implementation. Especially in scenarios with a
small number of objects, both filters are inefficient compared
to the simplest implementation [3]. Thus, for the practical
purpose (online approachwith real-time speed), we employed
the GMPHD filter as a base model among many RFS-based
online Bayes filters.

B. ONLINE MOT USING THE PHD FILTER IN VIDEO DATA
As demand increases on online and real-time tracker in video-
based tracking system [13], the GMPHD filter have been an
emerging tracking model, recently. However, in the original
domains the tracking algorithm should estimate true tracks
(states) from a lot of detections (observations) as shown
in Figure 1(a). While the radar/sonar sensors received mas-
sive number of false positives but rarely missed any obser-
vations, visual object detectors on the other hand generate
much less false positives and also more missed detections
as shown in Figure 1(b). That is because many additional
techniques have been exploited in video-based tracking. Song
and Jeon [16] extended theGMPHDfilter based trackingwith
a two-stage hierarchical data association strategy to recover
fragmented and lost tracks. They defined the affinity in the
track-to-track association stage by using the tracks’ linear
motion and color histogram appearance. This approach is
an intuitive implementation of the GMPHD filter to han-
dle tracking problems, but it cannot correct the false asso-
ciations already made in the detection-to-track association.
Sanchez-Matilla and Cavallaro [23] proposed a detection

confidence based data association schemes with the PHD
filter. Strong (high confidence) detections initiate and prop-
agate tracks but is weak (low confidence) detections only
propagate existing tracks. This strategy works well when the
detection results are reliable. However, the tracking perfor-
mance is dependent on the detection performance, and is
especially weak to long-term missed detections. There have
been more intensive solutions [18], [40], [44] using appear-
ance learning or motion modeling. Kutschbach et al. [44]
added the kernelized correlation filters (KCF) [55] for
online appearance update to overcome occlusion in the naive
GMPHDfiltering process. They demonstrated a robust online
appearance learning to re-find the IDs of the lost tracks.
However, the updating of appearance information of every
object in every frame is a process that requires heavy com-
puting resources. Fu et al. [18] added an adaptive gating
technique and an online group-structured dictionary (appear-
ance) learning strategy into the GMPHD filter. They made
the GMPHD filter into a sophisticated tracking process that
is fit for video-based MOT. Sanchez-Matilla et al. [40] pro-
posed a global motion model based tracking by using long
short-term memory models. Some methods [39], [43], [45]
proposed fusion models to complement the false detections.
Kutschbach et al. [45] designed a fusion model of blob
detector [66] and head detector [67] in the GMPHD filter
based tracking framework. Fu et al. [39] utilized full-body
detector [9] and body-part detector [65] in their tracking-by-
detection method. Baisa and Wallace [43] proposed another
type of fusion model which tracks different types of multiple
objects (persons and cars) simultaneously by using the object
detector and classifier such as FRCNN [10] in parallel pro-
cesses. These MOT methods with the detector fusion models
and appearance learning increased tracking accuracies but
inevitably reduced processing speeds, even if the GMPHD
filter provided a fast online MOT framework. Besides the
extensions of the GMPHD filter, in the rare case that other
RFS based tracking theory was employed, Kim et al. [20]
extended the GLMB filter [63] for MOT applications in
video data. They designed a hybrid multi-object measure-
ment likelihood using appearance learning for missed detec-
tions and groupings for occlusions. They devised a graceful
extension of the GLMB filter based online MOT for video
data, it still had the constraint on the number of objects like
the original GLMB. Although the GMCPHD filter and the
GLMB filter not only showed better accuracies in the pre-
liminary researches [62], [63] than the GMPHD filter, since
both filters involved the constrained assumption on the car-
dinality up to 100 or 200 and additional mathematical tech-
niques such as divergence estimation for implementations.
Grouping approach e.g., using relative motion and topolog-
ical models, have already been exploited in [24] and [22].
The key difference between their methods and ours is
that [24] and [22] consider the relations between all objects in
a scene while we only consider topological information in the
group of occluded objects. Grouping the occluded objects can
exclude unnecessary associations and focus on the solving
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of sub-problems, and also it reduces computing time. Thus,
we employed theGMPHDfilter as a basemodel and extended
the baseline method by using our proposed hierarchical data
associations and occlusion group management scheme for a
highly practical applications (online and real-time) without
using image information except bounding boxes.

III. PROPOSED ONLINE MULTI-OBJECT TRACKING
METHOD
In this section, we briefly introduce the general tracking pro-
cess of the Gaussian mixture probability hypothesis density
(GMPHD) filter in Subsection III-A. In III-B, we will address
how to extend the GMPHD filter with a hierarchical data
association strategy in video-based online MOT systems.

A. THE GMPHD FILTER
The Gaussian mixture model (GMM) of the GMPHD filter
contains means, covariances, and weights which are propa-
gated at every time step as follows: Initialization, Prediction,
Update, and Pruning. We employ this basic process of the
GMPHD filter but revise it to fit the video-based MOT sys-
tem. The states and observations in the GMPHD filter are
represented by

Xk = {x1k , . . . , x
Ik
k }, (1)

Zk = {z1k , . . . , z
Jk
k }, (2)

where Xk and Ik denote a set of objects’ states and the number
of them at time k , respectively. A state vector xk is composed
of (cx , cy, vx , vy), where cx , cy are the center coordinates of
the bounding box, and vx and vy are the velocities of x- and
y-directions of the object, respectively. Likewise, Zk and Jk
denote a set of observations (detection responses) and the
number of them at time k , respectively. An observation zk is
represented with (cx , cy). Equations (3) and (4) describe the
basic notations of state and observation.

x ik = {cx,k , cy,k , vx,k , vy,k}
T , (3)

zjk = {cx,k , cy,k}
T . (4)

The four steps of the tracking process of the GM-PHD fil-
ter are: Initialization, Prediction, Update, and Pruning as
follows.
Initialization:

v0(x) =
I0∑
i=1

wi0N (x;mi0,P
i
0), (5)

where the GMM is initialized by the initial observations from
the detection responses. Besides, when an observation fails
to find the association pair, i.e., failed to update the object
state, the observation will initialize a new Gaussian model
(a new state). TheGaussian probability functionN represents
tracking objects with weight w, mean vector m, object state
vector x, and covariance matrix P. In this step, we set the
initial velocities of the mean vector to zeros. Each weight is
set to the normalized confidence value of the corresponding
detection response.

Prediction:

vk−1(x) =
Ik−1∑
i=1

wik−1N (x;mik−1,P
i
k−1), (6)

mik|k−1 = Fmik−1, (7)

Pik|k−1 = Q+ FPik−1(F)
T , (8)

where we assume that the GMM representing the objects’
states was initialized or active at the previous frame k − 1
in (6). In (7) and (8), we can predict the state at time k using
the Kalman filtering based on the state at time k − 1. F is the
state transition matrix and Q is the process noise covariance
matrix where both F andQ are constants in our tracker. In (7),
mik|k−1 is derived by using the velocity of mik−1. Covariance
Pik|k−1 is also predicted by the Kalman filtering in (8).
Update:

vk|k (x) =
Ik|k∑
i=1

wik (z)N (x;mik|k ,P
i
k|k ), (9)

qik (z) = N (z;Hmik|k−1,R+ HP
i
k|k−1(H )T ), (10)

wik (z) =
wik|k−1q

i
k (z)∑Ik|k−1

l=1 wlk|k−1q
l
k (z)

, (11)

mik|k (z) = mik|k−1 + K
i
k (z− Hm

i
k|k−1), (12)

Pik|k = [I − Kk iH ]Pik|k−1, (13)

K i
k = Pik|k−1(H )T (HPik|k−1(H )T + R)−1. (14)

Update step is to update a state x represented by a Gaussian
model with a mean vector m and a covariance matrix P.
An optimal z is found by data association which will be
presented in III-B in detail. In the perspective of tracker,
the update step follows after the data association. After find-
ing the set of z, the GMM is updated from (6) to (9). R denotes
the observation noise covariance. H denotes the observation
matrix to transit a state vector to an observation vector. Both
R and H are constants in our tracker.
Pruning:

X̃k = {mik : w
i
k ≥ θw, i = 1, . . . , Ik}, (15)

W̃k = {wik : m
i
k ∈ X̃k , i = 1, . . . , Ik}, (16)

W̃k = { ˜wk,1, . . . , w̃k,Ĩk }, Ĩk = |W̃k |, (17)

wik =
w̃ik∑Ĩk
l=1 w̃

l
k

. (18)

Xk = X̃k . (19)

Pruning step handles the false positive tracks caused by the
false positive detections. The states with the weights under
threshold θw are pruned as in (15). We experimentally set θw
to 0.1 and the weights of the surviving states are normalized
as shown in (18).

B. HIERARCHICAL DATA ASSOCIATION
Video-based tracking systems have inherent problems as
shown in Figure 1(b). Generally, when objects are not
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Algorithm 1 Proposed Online MOT Algorithm
F k : the current frame number

F Xk−1 : a set of states at time k − 1
F Zk : a set of observations at time k
F σm : threshold for track merging

F τT2T : the minimum track length for T2TA
F θT2T : the maximum frame interval for T2TA

F T live : a {key:id,value:tracklet} set of live tracklets
F T lost : a {key:id,value:tracklet} set of lost tracklets

1: procedure GMPHD_OGM(k ,Xk−1,Zk ,σm,τT2T ,θT2T ,
T live,T lost )

2: l = |Xk−1|; // the number of states
3: m = |Zk |; // the number of observations
4: Gk−1,Gk ; // a set of occlusion groups at time
k-1 and k.

5: if k = 1 or l = 0 then
6: Initialize states X ′k with Zk ;
7: Gk−1 = Gk ;
8: Xk = MERGE(X ′k , σm,Gk );
9: return Xk ;

10: end if
/* 1. Detection-to-Track Association (D2TA) */

11: CD2T [1 . . . l][1 . . .m]; // for cost matrix
12: PD2T [1 . . . l]; // for pairing observations’ indices

/*predict states Xk−1 to be Xk|k−1*/
13: for i = 1 to l do
14: Xk|k−1[i] = PREDICT (Xk−1[i]);
15: end for

/*calculate the GMPHD filter cost matrix CD2T */
16: for i = 1 to l do
17: for j = 1 to m do
18: CD2T [i][j] = COSTD2T (Xk|k−1[i],Zk [j]);
19: end for
20: end for

/*find min-cost pairs by the Hungarian method*/
21: PD2T = HungrianMethod(CD2T );

/*update and birth states*/
/*update Xk|k−1 with the min-costly observations*/

22: for i = 1 to l do
23: X ′k [i] = UPDATE(Xk|k−1[i],Zk [PD2T [i]]);
24: end for

/*prune Xk|k−1 with the weight under 0.1*/
25: for i = 1 to l do
26: X ′k [i] = PRUNE(Xk|k−1[i]);
27: end for
28: for j = 1 to m do
29: if Zk [j] is not assigned to update any state then
30: Initialize newly birth state x with Zk [j];
31: X ′k = X

′
k ∪ {x};

32: end if
33: end for

/* 2. Merge States and Find Occlusion Groups */
34: Gk−1 = Gk ;
35: Xk = MERGE(X ′k , σm,Gk );

/*manage tracklet pool after D2TA and MERGE*/

36: for i = 1 to |Xk | do
37: if Xk [i] is active then
38: update T live[Xk [i].id] with Xk [i];
39: delete T lost [Xk [i].id];
40: else
41: update T lost [Xk [i].id] with Xk [i];
42: delete T live[Xk [i].id];
43: end if
44: end for

/* 3. Track-to-Track Association (T2TA) */
45: t1 = |T lost |; // the number of lost tracklets
46: t2 = |T live|; // the number of live tracklets
47: CT2T [1 . . . t1][1 . . . t2]; // for cost matrix
48: PT2T [1 . . . t1]; // for pairing observations’ indices

/*calculate the GMPHD filter cost matrix CT2T */
49: for i = 1 to t1 do
50: for j = 1 to t2 do
51: CT2T [i][j] =

COSTT2T (T lost [i],T live[j], τT2T , θT2T );
52: end for
53: end for

/*find min-cost pairs by the Hungarian method*/
54: PT2T = HungrianMethod(CT2T );

/*update tracklets and manage tracklet pool after
T2TA*/

55: for i = 1 to l do
56: X ′k [i] = UPDATE(Xk|k−1[i],Zk [PD2T ]);
57: end for
58: for i = 1 to |Xk | do
59: if Xk [i] is active then
60: update T live[Xk [i].id] with Xk [i];
61: delete T lost [Xk [i].id];
62: else
63: update T lost [Xk [i].id] with Xk [i];
64: delete T live[Xk [i].id];
65: end if
66: end for

/* 4. Occlusion Group Energy Minimization (OGEM) */
67: if k > 1 and |GK−1| > 0 then
68: OGEM (k,Gk−1,Xk );

/*manage tracklet pool after OGEM*/
69: for i = 1 to |Xk | do
70: if Xk [i] is active then
71: update T live[Xk [i].id] with Xk [i];
72: delete T lost [Xk [i].id];
73: else
74: update T lost [Xk [i].id] with Xk [i];
75: delete T live[Xk [i].id];
76: end if
77: end for
78: end if
79: return Xk ; // return final states Xk
80: end procedure
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detected, the objects’ IDs are frequently changed and the
tracks are fragmented if only detection-to-track association
is employed. To prevent these problems, we take advan-
tage of the hierarchical data association (HDA) strategy that
has been widely used in many online multi-object tracking
methods [14], [16], [17], [23], [26]. Thus, in this paper,
we propose a simple HDA scheme with just two stages,
a detection-to-track (D2T) association stage, followed by a
and track-to-track (T2T) association stage. We implement the
both association methods with the two individual GMPHD
filtering processed as shown in 2. In each stage, the tracking
process follows the GMPHD filter as given in Section III-A
but utilizes two different observations and states. With them,
we derive a cost function based on the weight wk from (11)
as follows:

Cost(x ik|k−1, z
j
k ) = − lnwik (z

j
k ), (20)

where wik indicate the weight value, assuming that observa-
tion zjk updates state x ik|k−1. We use − lnwik (z

j
k ) as a cost

between x ik|k−1 and z
j
k . Then, cost matrix C can be built from

every pair of values in the state set Xk|k−1 and observation set
Zk as follows:

C[i, j] = Cost(Xk|k−1[i],Zk [j]). (21)

After the cost matrix C is built, the Hungarian method [60]
is used to solve it. Then, the optimal pairs between
observations and states are found, and consequently state
xk|k−1 is updated to xk in D2T and T2T associations.
In III-Band III-B, we introduce the definition of observations
and states in each association stage with more detailed usage
of the cost function.
Stage 1. Detection-to-Track Association (D2TA). Obser-
vation set Zk is filled with detection responses at time k .
We assume that state set Xk−1 already exists from time k−1,
and then Xk|k−1 is predicted by using the Kalman filtering
as shown in (6)-(8). Thus, the cost matrix CD2T is easily
calculated with these sets Xk|k−1 and Zk .
Stage 2. Detection-to-Track Association (D2TA). A simple
temporal analysis of tracklet is introduced. A tracklet means
a fragment of the track, and becomes a calculation unit.
Before T2TA, all tracklets are categorized into two types,
according to success or failure of tracking at the present time
k as follows:

T lostk = {τ lost1,k , . . . , τ
lost
i,k }, (22)

τ losti,k = {a
i
s, .., a

i
t }, 0 ≤ s < t < k, (23)

T livek = {τ live1,k , . . . , τ
live
j,k }, (24)

τ livej,k = {a
j
s, .., a

j
t }, 0 ≤ s < t, t = k, (25)

ais = {cx,s, cy,s, vx,s, vy,s}
T , (26)

ait = {cx,t , cy,t , vx,t , vy,t }
T , (27)

where T indicates a set of tracks, and ‘‘live’’ indicates that
tracking succeeds at time k . ‘‘lost’’ indicates that tracking
fails at time k . The two attributes are not compatible then

T lostk ∪ T livek = T allk and T lostk ∩ T livek = φ are satisfied. Then,
for the T2TA, observation set Zk is filled with the first (oldest)
elements ajss of ‘‘live’’ tracklets. However, the state set Xk|k−1
is not filled with the last (most recent) elements aits of ‘‘lost’’
tracklets. One prediction step is needed as follows:

x it = {cx,t , cy,t ,
cx,t − cx,s
t − s

,
cy,t − cy,s
t − s

}
T , (28)

x ik|k−1 = FT2T x it , (29)

FT2T =


1 0 df 0
0 1 0 df
0 0 1 0
0 0 0 1

 , (30)

df (i, j) = frame difference between ait and ajs. (31)

In (30) cx,t−cx,s
t−s and cy,t−cy,s

t−s are the averaged velocities in
the directions of the x-axis and y-axis, respectively. The
velocities are calculated by subtracting the center position
of the first object state ais from that of the last state ait , and
dividing it by the frame difference t − s which is equivalent
to the length of ‘‘lost’’ tracklet τ losti,k . D2TA has the iden-
tical time interval ‘‘1’’ between states and observations in
transition matrix F , whereas in T2TA, each cost of matrix
CT2T has different time interval (frame difference) between
states and observations. Variable df depends onwhich state of
‘‘lost’’ tracklet and observation of ‘‘live’’ tracklet are paired.
(29) means the prediction process of state with linear motion
analysis. Finally, the cost matrix CT2T is filled by (29) and
the oldest element ajs of live tracklet τ livej,k .

The pseudo-code in Algorithm 1 includes the proce-
dures presented in this section. Initialization, Prediction,
Cost-minimization, Update, and Pruning in D2TA corre-
spond to each of line 5-10, 13-15, 16-21, 22-24, and 25-27
in Algorithm 1. Tracklet-categorization, Cost-minimization,
Update in T2TA correspond to line 36-44, 49-54, and 55-66 in
Algorithm 1, respectively.

IV. OCCLUSION GROUP MANAGEMENT SCHEME
In Section III, we pointed out that the proposed online multi-
object tracking method is based on the GMPHD filtering the-
ory with a two-stage hierarchical data association. However,
the tracking results from that method still has uncertainties,
even if we effectively extend the conventional GMPHD fil-
ter to be suitable for video-based tracking. To improve the
tracking performance, we focused on handling occlusions
which can generate false positive detections. The false pos-
itive detections inevitably generate false positive tracks as
shown in Figure 3 and the second row (D2TA) of Figure 5.
To resolve the tracking problems, we design a new occlu-
sion group management (OGM) scheme. OGM consists of
‘‘Track Merging’’ and ‘‘Occlusion Group Energy Minimiza-
tion (OGEM)’’ routines which execute just after D2TA and
T2TA, respectively. Figure 2 shows the tracking pipeline
with those two components of OGM. Not only is our OGM
technique able to decrease false positive tracking results , it is
also able to prevent occluded tracks from falsely performing
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FIGURE 2. Flow chart of the proposed online multi-object tracking method. The red dotted line divides the proposed hierarchical data association into
two stages (stage 1 and 2). Each stage has an individual GMPHD filtering based tracking process. The states and observations of each stage are marked
as blue and red, i.e., D2TA and T2TA, respectively. The meanings and usages of those states and observations are described in Section III-B.

FIGURE 3. Case study about ‘‘Track Merging’’ and the qualitative results on MOT17-05-DPM training sequence at frame 254. The overlapping ratios
between the occluded objects can be measured with the IOU and SIOA metrics. When the sizes of A and B differ largely (more than twice size) such as
case 4 and 5, IOU does not distinguish between not only Case 2 and 4 but also Case 3 and 5. For the same detection results with true and false positives,
under the different merging thresholds σm values 0.4 and 0.5, SIOA is less sensitive to merge size variant false positive bounding boxes than IOU.

‘‘track merging’’. The effectiveness of the proposed OGM
method is discussed in our experimental results in Section V
in more details.

A. TRACK MERGING
Merging neighboring objects when the distances between
them is under a threshold is proposed in [3] already. How-
ever, it uses only point-to-point distances without considering
regional information e.g., overlapping ratio between visual
objects (bounding boxes). To measure the overlapping ratio,
the intersection-over-union (IOU) metric, which was origi-
nally designed to measure mAP in object detection research
fields [58], [59], is used. However, the IOU metric is good
for refining the detection bounding boxes but is not flexible
enough tomeasure overlapping ratios for merging the objects.

Figure 3 explains that reason by a case study. The case
study mainly assumes that the number of detection responses
(observations) is larger than the number of real objects in
occlusions. When the observations most likely include false
positive detections, the object states paired those observations
are also most likely the false positive states. So, to handle
and consider the characteristics of those observations with the
false positive errors, we propose a new metric named sum-
of-intersection-over-each-area (SIOA). The IOU and SIOA
metrics are formulated as follows:

IOUAB=
area(A) ∩ area(B)
area(A)∪area(B)

, (32)

SIOAAB= (
area(A) ∩ area(B)

area(A)
+
area(A) ∩ area(B)

area(B)
)/2,

(33)
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Algorithm 2 Track Merging using the SIOA Metric
F Xk : a set of states at time k
F σm : threshold for merging

F Gk : a set {key:id,value:states} of occlusion groups at time
k
1: functionMerge(Xk ,σm,Gk )
2: l = |Xk |; // l : the number of states Xk
3: Let M [1 . . . l][1 . . . l] be the array set to all false;

/* measure occlusion ratio between all states
4: by using the SIOA metric */
5: for i = 1 to l do
6: for j = i+ 1 to l do
7: rocc = SIOAXk [i],Xk [j];// SIOA occlusion ratio.
8: if rocc > σm then
9: M [i][j] = true; // check to be merged

10: M [j][i] = true; // double check
11: else if rocc ≤ σm and rocc > 0 then
12: idi = Xk [i].id, idj = Xk [j].id ;
13: if idi < idj then
14: Gk [idi] = Gk [idi] ∪ {Xk [i],Xk [j]};
15: else
16: Gk [idj] = Gk [idj] ∪ {Xk [i],Xk [j]};
17: end if
18: end if
19: end for
20: end for

/* merge the states where SIOA value > σm */
21: for i = 1 to l do
22: for j = i+ 1 to l do
23: if M [i][j] = true then
24: if Xk [i].id < Xk [j].id then
25: Xk [i] = 0.9 ∗ Xk [i]+ 0.1 ∗ Xk [j];
26: Deactivate state Xk [j];
27: else
28: Xk [j] = 0.9 ∗ Xk [j]+ 0.1 ∗ Xk [i];
29: Deactivate state Xk [i];
30: end if
31: end if
32: end for
33: end for
34: return Xk ;
35: end function

where A and B indicate two different objects. area represent
a bounding box (x, y,width, height). Algorithm 2 describes
the proposed track merging method. Track merging with the
SIOA metric follows after the D2T association as presented
in Subsection III-B and Figure 2.

B. OCCLUSION GROUP ENERGY MINIMIZATION
The occlusion group energy minimization method is devised
to prevent the true objects which are occluded to others from
false merging. In other words, track merging may merge
occluded objects with correct number of observations into the

Algorithm 3 Occlusion Group Energy Minimization
F k : the current frame number

F Gk−1 : a set of occlusion groups at time k − 1
F Xk : a set of states at time k

1: function OGEM(k ,Gk−1,Xk )
2: l = |Gk−1|; // l : the number of the groups Gk−1.
3: n = |Xk |; // n : the number of the states Xk .

/*build the GMMs for all occlusion groups at time
k-1*/

/*a GMM is used for the defined energy function
in (34)*/

4: for i = 1 to l do
5: pi =|Gk−1[i]| P2 //the number of topological
vectors.

6: GMM [1 . . . pi]; //the Gaussian mixture for a
group.

7: for j = 1 to pi do //iterate topologies in a group.
8: Initialize a Gaussian mixture GMM [j] with
9: the mean vectors m having topological info

and
10: the covariance matrix R as defined in (34)
11: end for
12: Emin = DBL_MAX ; //variable for the

min-energy.
13: hmin = 0; //index to the optimal hypothesis.
14: for h = 1 to |H | do //iterate topological

hypotheses.
15: if E(h) < Emin then //find the optimal

hypothesis.
16: hmin = h;
17: Emin = E(h);
18: end if
19: end for
20: Update Gk−1[i] with hmin;
21: for g in Gk−1[i] do //iterate group Gk−1[i].
22: Find the state x with g.id in Xk ;
23: if x is in Xk then
24: Xk [g.id] = g;
25: else
26: Xk = Xk ∪ {g};
27: end if
28: end for
29: end for
30: return Xk ;
31: end function

states with less number of real objects. That causes tracking
errors such as false negatives and fragmented tracks.

Thus, we propose a new energy minimization model to
prevent false merging, named ‘‘Occlusion Group Energy
Minimization (OGEM)’’. Each group of occluded objects has
an energy function represented by a Gaussian mixture model
(GMM) as follows:

E(h) = − ln
∑

N (t|µ,R), (34)
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FIGURE 4. Illustration of the proposed occlusion group energy
minimization represented by the Gaussian mixture model.
Six hypotheses exist in the case of three occluded objects.

where h, t , µ, and R indicate hypothesis, topological vector,
mean vector, and Gaussian covariance matrix (noise), respec-
tively. A Gaussian probability function N , i.e., component
of the GMM, indicates a topological position vector between
two objects in an occlusion group, which is given at time k−1.
The Gaussian function has a mean vector m which denotes
the topological position, i.e., relative position between the
predicted center positions at time k of the objects in the group.
Those objects are denoted by xk|k−1 and the notation k|k − 1
indicates the prediction at time k from position and velocity
at time k − 1. If there are three occluded objects in a group,
six hypotheses exists as shown in Figure 4. One hypothesis
is a set of six topological vectors {t1, t2, t3, t4, t5, t6}. For
example, µ1 is calculated by x2k|k−1 − x

1
k|k−1 and t1 is calcu-

lated by x2k − x
1
k . In the case that an object state xdk becomes

‘‘lost’’ (inactive) by falsely performing ‘‘track merging’’ in
occlusion, we build a new hypothesis using a xdk|k−1as a
dummy. Then the dummy added hypothesis recovers the false
merged object. If there are n occluded objects in a group,
n(n − 1) hypotheses exists with the condition 1 < n < 4.
Then with these topological models, we can find an optimal
one among all hypotheses making the group cost minimal.

While track merging runs after D2TA, the proposed
occlusion group energy minimization follows Track-to-Track
Association (T2TA) as described in Figure 2. Figure 5
includes some examples to illustrate that the proposed group
energy minimization complements track merging step. The
tracking process from detection responses to tracking results
at frame 42 shows it.

In summary, both ‘‘TrackMerging’’ and ‘‘OcclusionGroup
Energy Minimization’’ assume occlusion situations, and the
GMPHD filtering is adopted as the base algorithm. The
pseudo-code of the proposed occlusion group management
scheme are described in Algorithms 2 and 3. Also, both
methods correspond to lines 8, 35 and 67-78 in Algorithm 1.
From now on we will use GMPHD-OGM as the abbreviation
for the proposed method, which is the online multi-object
tracking algorithm with the GMPHD filter and occlusion
group management.

V. EXPERIMENTS
In this section, we present the development environ-
ment used in this study including parameter settings,
and also discuss evaluation results of the GMPHD-OGM
tracker which include an ablation study with baselines
and comparisons to state-of-the-art MOT methods. The
GMPHD-OGM tracker is implemented in Visual C++ with
OpenCV3.4.1 and boost1.61.0 libraries, and without any
GPU-accelerated libraries such as CUDA. All experiments
are conducted on Windows 10 with an Intel i7-7700K
CPU@ 4.20GHz and DDR4 32.0GB RAM. The source code
of the GMPHD-OGM tracker is available at https://github.
com/SonginCV/GMPHD-OGM.

A. PARAMETER SETTING
Our proposed tracking method involves several parameter
settings. The key parameters are summarized in Table 1.
Parameter σm indicates the threshold for ‘‘Track Merging’’
which is set to 0.5 in terms of the SIOA metric. 0.5 is set
not only empirically but also by considering the occlusion
cases between the detected object’s bounding boxes that are
of different sizes as shown in Case 4 and 5 of Figure 3.
τT2T and θT2T are related to track-to-track association
(T2TA) of the hierarchical data association, whose param-
eters are selected adaptively, scene-by-scene. The optimal
values of τT2T and θT2T are gained from the ablation study
presented in Figure 8. We use the optimal parameter set-
tings obtained from the study in both the training and test
sequences.

The GMPHD filtering process has a set of static parame-
ters. ThematricesF ,Q,P,R, andH are used inPrediction and
Update. Also, θw is used in Pruning. Based on experimenta-
tion, we set the parameters for the GMPHD filter’s tracking
process as follows:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Q=
1
2


52 0 0 0
0 102 0 0
0 0 52 0
0 0 0 102

,

P=


52 0 0 0
0 102 0 0
0 0 52 0
0 0 0 102

, R=
(
52 0
0 102

)
,

H =
(
1 0 0 0
0 1 0 0

)
, θw = 0.1,
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FIGURE 5. Illustration of the proposed multi-object tracking process with the qualitative results on MOT17-08-DPM test sequence. The whole process
consists of four components which are D2TA, Merge, T2TA, and OGEM. Qualitative tracking results at frame 42, 66, 184, and 190 present that all
components are complementary to each other for handling tracking problems.

TABLE 1. Parameter settings for ‘‘Track Merging’’ and track-to-track
association (T2TA).

B. EVALUATION RESULTS
In this section, we evaluate the proposed method against
state-of-the-art online ( [14]–[16], [18]–[26], [38]–[45] ) and
offline ( [27]–[37], [46]–[52] ) MOT methods in terms of the
comprehensive MOT metrics [56], [57]. The metrics grace-
fully measure multi-object tracking performance from the
detailed perspectives such as multi-object tracking accuracy
(MOTA), multi-object tracking precision (MOTP), mostly
tracked objects (MT), mostly lost objects (ML), total number
of false positives (FP), total number of false negatives (FN,
i.e., missed tracks), total number of identity switches (IDS),
total number of times that a trajectory is fragmented (Frag),
and processing speed (FPS, i.e., frames per second). Among

these metrics, MOTA is normally proposed as a key metric,
because it considers three error sources including FP, FN,
and IDS, comprehensively. More details of the metrics are
described in Table 3. The evaluation results contain not only
the tracking results on the MOT15 and MOT17 test datasets
but also an ablation study on the MOT15 training dataset.

In the ablation study, we employ one baseline and two
proposed methods, to find optimal parameters settings and to
prove the effectiveness of the proposed method. The baseline
method is the GMPHD filter based tracker with hierarchical
data association (HDA) but without the occlusion group
management (OGM). The first and second proposed methods
are the GMPHD filter based tracker with the HDA and OGM
by using the IOU metric and the SIOA metric for measuring
occlusion ratio. We name these three methods as GMPHD-
HDA, p1:GMPHD-OGM (w/ IOU), and p2:GMPHD-OGM
(w/ SIOA). The evaluation results are shown in Table 4 and
Figure 8. The scene-by-scene optimal parameter settings of
those three methods are obtained from the results of the
ablation study as shown in Figure 8. The same τT2T and θT2T
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TABLE 2. Datasets specifications. The average object density (the average
number of objects in a frame) of MOT17-test is three times that of
MOT15-test.

settings are applied to the whole training sequences with the
range {1, 2, 3} and {5, 10, 20, 30, 50, 70, 100}, respectively.
p1 is an improvement over the GMPHD-HDA in terms of the
upper bound of tracking accuracy (the maximum MOTA).
p2, on the other hand, shows that the upper bound and lower
bound of tracking accuracy increases more than p1. Besides,
with θT2T over 20, the maximum and minimum values of
MOTA increase. Figure 3 shows the comparison results of
‘‘Track Merging’’ between using the IOU metric and the
SIOA metric when the detection results contain a lot of
false positives. Also, through the case study on occlusion,
we observe that the IOU metric cannot consider size-variant
detections with false positives and too sensitive to be used for
merging as shown in Figure 3. On the other hand, the SIOA
metric can cope with the detections of varying sizes. Table 4
provides the quantitative results on the MOT15 training
dataset with the merging threshold σm values. p1 and p2
show the improved MOTA, ML, FP, IDS, Speed compared
to GMPHD-HDA. p1 and p2 achieved the best MOTA scores
with the different merging thresholds σm which are 0.3 and
0.5, respectively. Comparing p1 and p2, p1 has more sensitive
results depending on the σm value but also p2 shows the
more overall improvements withMT,ML. The ablation study
proves that p2 is not only the best in MOTA performance
overall but it is also more robust and less sensitive in param-
eters than the baseline method and p1. Thus, we selected
p2:GMPHD-OGM (w/ SIOA) as our final tracking
model.

Figure 5 shows some qualitative results of our track-
ing method in stages of the overall process. Detection
results (observations) initialize tracking objects (states). Sub-
sequently, the states are associated with the proper obser-
vations by the detection-to-track association (D2TA) using
the GMPHD filtering process, frame-by-frame. Then ‘‘Track

FIGURE 6. Comparisons of tracking accuracy against speed with the
state-of-the-art methods on the (a) MOT15 and (b) MOT17 test sequences.
We assumed that at least 30 FPS is required for real-time speed.

Merging’’ merges false positive tracks having the SIOA value
≥ themerging threshold σm = 0.5, which aremost likely gen-
erated from false positive detections. If objects are occluded
(0 < SIOA < σm), their IDs can be switched or changed.
The track-to-track association (T2TA) can recover their IDs.
The occlusion group energy minimization (OGEM) pro-
cess can recover false merging, i.e., the case that ‘‘Track
Merging’’ merges true tracks, by calculating the probability
hypothesis of the Gaussian mixture model and optimizing
the energy of the groups of occluded objects, as described
in Subsection IV-B.

Table 5 and 6 show the quantitative results on MOT15 and
MOT17 test dataset, respectively. Those benchmark datasets
have two crucial differences. First, MOT15 provides the
detection results of ACF [8] and MOT17 provides three types
of detections: DPM [9], FRCNN [10], and SDP [11]. Since
ACF and DPM exploit hand-crafted features learning and
models, they show relatively poor performance compared to
the DNN based detectors FRCNN and SDP. In other words,
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FIGURE 7. Speed comparison of the proposed tracking method on
MOT17 test dataset which provides three types of detection results for
each scene, including DPM [9], FRCNN [10], and SDP [11].

DPM generates more false positives than FRCNN and SDP
do, and especially ACFmisses muchmore objects than others
do. Thus, in MOT15, state-of-the-art trackers shows wider
range of MOTA distribution than that in MOT17. Among
online methods, our final proposed method p2 with σm = 0.5
achieves the second best MOTA 30.7 vs. the best speed
169.5 fps in MOT15 and the second best MOTA 49.9 vs.
the second best speed 30.7 fps in MOT17. The trackers with
DNN [14], [38] shows the top MOTA scores in MOT15 and
MOT17 but we think that our proposed method achieves
competitive performance and efficiency to consider real-time
application. In Figure 6(a), the proposed method is located in
a spot well to the right of the graph, which indicates the effec-
tiveness of our occlusion group based object analysis (OGM),
compared to other relation analysis between all objects in the
scene [22], [24]. However, in MOT17, the speed of our pro-
posed method decreases to 30.7 fps. This speed still belongs
to real-time processing time but is not outstanding compared
to other online methods. The decrease in speed is caused by
the second different point between MOT15 and MOT17 as

TABLE 3. Evaluation metrics. MOTA has been mainly used for measuring
tracking performance as a key metric.

described in Table 2. MOT15 includes 5,783 frames with
721 tracks, 61,440 bounding boxes, and an object density
of 10.6 i.e., the average number of objects in a frame,
whereas MOT17 includes 17,757 frames with 2355 tracks,
564,228 bounding boxes, and an object density of 31.8. Due
to the fact that MOT17 has scenes with much higher density
but also accurate detection results so tracking accuracy and
processing time increase. Figure 6(b) shows the increase in
number of detected points also the performances of state-
of-the-art methods are saturated on the spot with MOTA
around 50 and speed under 5 fps. Figure 7 explains the
drastic decrease of speed. In MOT17-03, the speed is around
10 fps since many objects appear in the scene with an object
density of 69.8. That makes the number of track-to-track
association (T2TA) greatly increase. However, the proposed
method is still comparable to state-of-the-art methods and is
positioned in a spot for real-time application as shown in Fig-
ure 6(b). Besides our tracking algorithm (GMPHD-OGM),
there are many PHD filter based online approaches [16],

TABLE 4. Quantitative evaluation results on MOT15 training dataset. The proposed methods namely p1: GMPHD-OGM (w/ IOU) and p2: GMPHD-OGM
(w/ SIOA) are compared to one baseline method GMPHD-HDA. GMPHD-HDA employs the GMPHD filtering with hierarchical data association (HDA).
GMPHD-OGM is equal to GMPHD-HDA with the proposed occlusion group management (OGM). The IOU and SIOA metrics are used for ‘‘Track Merging’’ in
p1 and p2, respectively. The optimal values of the merging threshold σm are underlined and the best scores are in bold in terms of the MOTA metric.
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TABLE 5. Quantitative evaluation results on MOT15 test dataset. The proposed method is compared to state-of-the-art in terms of the MOT metrics. For
each mode, i.e, online and offline, the first and the second best scores are highlighted in red and blue in terms of each metric.

TABLE 6. Quantitative evaluation results on MOT17 test dataset. The proposed method is compared to state-of-the-art in terms of the MOT metrics. For
each mode, i.e, online and offline, the first and the second best scores are highlighted in red and blue in terms of each metric. Only our method and [51]
does not utilized any complex visual features except bounding boxes.

[18], [23], [39], [40], [43]–[45] that have been proposed
in the past decade. Tables 5 and 6 include them in the
comparison against them, GMPHD-OGM achieves not only
the best MOTA, MOTP, MT, ML, FN, and speed scores
in MOT15 but also the best MOTA, MT, and Frag scores
(and second best in MOTA and speed) in MOT17. Our pro-
posed method is distinguished in terms of tracking accuracy
(MOTA) vs. speed (FPS), even though we did not utilize any
complex visual features except bounding boxes as described
in Figure 6.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed an efficient online multi-object
tracking method with a Gaussian mixture probability hypoth-
esis density (GMPHD) filter and an occlusion group man-
agement (OGM) named GMPHD-OGM. In our proposed
method, the GMPHD filter is exploited for the implemen-
tation of an online and real-time MOT method. Since the
GMPHD filter is originally designed to handle MOT in
radar/sonar systems, we revised the filter to fit to video
data system. To resolve missed tracks problems of MOT in
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FIGURE 8. Ablation study with one baseline method GMPHD-HDA and two proposed methods p1:GMPHD-OGM (with IOU) and
p2:GMPHD-OGM (with SIOA). The final proposed method is p2. Three graphs indicates the MOTA scores’ distributions against (a) the
minimum track length for T2TA (τT 2T ) and the maximum frame interval for T2TA (θT 2T ), (b) τT 2T , and (c) θT 2T . p2 shows overall
improvements in upper and lower bound of MOTA score.

video, we extended the conventional GMPHD filtering pro-
cess with a hierarchical data association (HDA) strategy.
Next, to solve the occlusion problems, we proposed an

occlusion group management (OGM) scheme that is com-
posed of ‘‘Track Merging’’ and ‘‘Occlusion Group Energy
Minimization (OGEM)’’. ‘‘Track Merging’’ reduced the
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FIGURE 9. Examples of the qualitative tracking results on the four test sequences: (a) MOT17-01-DPM, (b) MOT17-01-FRCNN, (c) MOT15: ETH-Linthescher,
and (d) MOT17-06-SDP. In (a), our tracker estimated a true track (ID 98) from the false positive detections by using our Merging technique. In (b), our
hierarchical data association (HDA) successfully preserved ID 22 from the false negative detections resulting in occlusions while the proposed occlusion
group energy minimization (OGEM) prevented the false Merging in occlusions. (c) and (d) share the same image sequence but have two different
detections which are ACF [8] and SDP [11], respectively. In (c), despite false negative detections, HDA recovered ID 1 and ID 3 when the objects were
detected again. On the other hand, in (d) SDP detected most of pedestrians even in crowd situation (occlusions), OGEM prevented false Merging and HDA
recovered the reappearing objects ID 26, ID 99, and ID 107 after the occlusions.

number of false positives by merging them, while the OGEM
prevented false ‘‘Track Merging’’ between true tracks. Also
instead of using the IOU metric, we designed a new
metric named sum-of-intersection-over-each-area (SIOA) to

measure the occlusion ratio between visual objects. The
effectiveness of our tracker (GMPHD-OGM) was verified
by the ablation study and also by the evaluation results on
the MOT15 [5] and MOT17 [6] benchmarks. The ablation
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study shows that the GMPHD-OGM (w/ SIOA) is more
efficient at solving the defined problems than other methods
such as GMPHD-HDA and GMPHD-OGM (w/ IOU). The
GMPHD-OGM (w/ SIOA) achieves the best MOTA scores in
theMOT15 andMOT17 datasets, respectively, in comparison
with other PHD filter based online trackers [16], [18], [23],
[39], [40], [43]–[45] but also our proposed method shows the
competitive value in ‘‘MOTA versus speed’’ against state-
of-the-art online MOT methods. As a future work, we will
extend the proposed tracking model in terms of scalability
and modularity considering not only when the number of
objects is over a hundred but also various environments such
as aerial views from drones, underwater scenes, and weather
conditions (rain, fog, and snow), simultaneously achieving
state-of-the-art level tracking accuracy and real-time speed.
We expect that our tracker will be extended for a universal
online and real-time MOT framework.

APPENDIX. QUALITATIVE RESULTS IN THE TEST DATA
In appendix, we present a tracking diagram based on the
test sequences of MOT15 and MOT17 datasets as shown
in Figure 9 which includes the qualitative results based on the
four representative test sequences to show the effectiveness of
our proposed tracker.
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