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ABSTRACT A cognition learning algorithm based on a deep belief network and inertia weight Particle
Swarm Optimization (PSO) is presented and examined in a humanoid robot. The psychology concepts were
adopted from Thinking, Fast and Slow by Daniel Kahneman. The human brain comprises two systems,
System 1 and System 2. Based on their characteristics, System 1 and System 2 handle different tasks during
cerebration. In this study, Deep Belief Network (DBN) is trained to construct the function of System 1 for
the rapid reaction. On the other hand, PSO is applied to build System 2 for the slow and complicated brain
behavior. Through the cooperation of System 1 and System 2, the proposed cognition learning algorithm
can apply the psychology theories to allow the humanoid robot for learning the suitable pitching postures
autonomously. In the experiments conducted in this study, the robot was trained for only five selected points
and was then asked to throw precisely to nine points. The proposed algorithm provided 100% accuracy in
the robot pitching game. The feasibility of the proposed algorithm was thus verified.

INDEX TERMS Deep belief network, humanoid robot, machine learning, particle swarm optimization.

I. INTRODUCTION

There are several types of robots, such as humanoid
robots [1], [2], mobile robots [3], and swarm robots [4].
They use biological mechanisms, perception, and artificial
intelligence to emulate the behaviors, thoughts, feelings,
and actions of human beings or other organisms. Because
of the rapid development of computer technology and arti-
ficial intelligence technology, robots have been consider-
ably improved at the functional and technical level. These
improvements have allowed the realization of mobile robots,
robot vision, and speech recognition technology. Develop-
ments in these technologies have allowed us to use these
concepts for robots. These concepts have not only guided the
research and application of robotic technology but also pro-
vided a great opportunity for robotic technology to develop
on a wide scale; thus, many dreams have become a reality.

The associate editor coordinating the review of this manuscript and
approving it for publication was Anandakumar Haldorai.
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In the previous research, a basic cognition learning algo-
rithm framework for a humanoid robot [5] is also proposed.
Advantages of the rapid progression of the processing ability
of computers and the reduction in the size and weight of
hardware devices allowed us to design a teen-sized humanoid
robot that has a more multifunctional body and has a more
intelligent brain compared with previous robots.

In the field of computer science, optimization and problem-
solving can be achieved using many algorithms. These algo-
rithms include the latest algorithms such as the grey wolf
optimizer [6] and the whale optimization algorithm [7] as
well as the most widely known algorithms such as ant colony
optimization [8], genetic algorithms [9], PSO [10], artifi-
cial neural networks [11], and artificial bee colonies [12].
These algorithms are used in the fields of navigation [13]
and scheduling [14] among other applications. Interestingly,
many of these intelligent learning algorithms have been
developed by analyzing biological effects related to the
distinctive behaviors of animals. Different algorithms have
their own advantages and disadvantages because of their
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different characteristics. Therefore, in this study, the concept
of cognitive psychology used was derived from the concept
of the book Thinking, Fast and Slow by Daniel Kahneman,
the 2002 winner of the Nobel Memorial Prize in Economic
Science [15], to develop a novel learning method known as
a cognition learning algorithm. The aim of this study was to
design and apply a cognition learning algorithm that allows a
humanoid robot to simulate human cerebration behavior for
learning the postures of pitching a baseball.

Scholars [16] reported a robot that applied a Petri Net-
Based Wireless Sensor Node Architecture (PN-WSNA)
model; that robot was able to grab a ball from the ground
and then throw it to a basket, but that paper did not report
much research on optimization. The performance of that
PN-WSNA robot was 70%-80% for 50 continuous throws.
Researchers [17] applied a visual feedback system to a robot,
which enabled it to achieve an accuracy of 99% in a throwing
task. The problem was that the basket center was defined by
the square on the board, but the relationship between basket
and board tends to change when different baskets are used.
Our work presents a method that can complete the task and
still deliver high accuracy by applying the cognitive styles
of System 1 and System 2; therefore, our work outperforms
competitors in the field of robot pitching.

In the reinforcement learning (RL) field, a prioritized
replay can be an example of System 2. Cases with high
reward are highly likely to be sampled. In aspect of the
proposed cognition learning algorithm, the highly reasonable
pitching motions, which are determined by System 2, will
be prioritized for the training basis of System 1. Moreover,
several researches that incorporate intrinsic reward or explicit
model can also work as System 2. Some recent studies in
RL might be adopted to build System 2 agents that guide
System 1 agents. For the deep curriculum reinforcement
learning (DCRL) paradigm proposed in [18], the researchers
controlled the complexity of transitions by manipulating two
criteria, namely self-paced priority and coverage penalty.
In the same study, the researchers compared DCRL to a Deep
Q Network (DQN) and Prioritized Experience Replay (PER)
on the Arcade Learning Environment (ALE) platform, and
the study results indicated that DCRL outperformed the DQN
and PER. At the same time, the application of the proposed
DCRL training paradigm in a double DQN and dual net-
works can result in even higher performance. In [19], an
off-policy adaptive Q-learning algorithm was proposed.
Specifically, an off-policy learning method was used for
simultaneously introducing the Q-function and learning the
optimal Q-function. For the algorithm used in [19], an adap-
tive parameter was used to achieve tradeoff between the cur-
rent and future Q-functions. The employment of this type of
experience replay in the learning process facilitates the imple-
mentation of the adaptive Q-Learning algorithm. In [20], the
researchers introduced the reinforcement learning algorithm
to solve the problem of controlling traffic signals control
at multiple intersections. More importantly, the algorithm
proposed in [20] can be expanded to more intersections
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without being restricted by the problem of dimensionality
or intersection structures. The reinforcement learning algo-
rithms used in [18]-[20] can all be applied in the proposed
System 2 code; they each have their respective advantages
in terms of various performance indicators and actual appli-
cations. The algorithm proposed in the current study was
inspired by the reaction and thinking modes of the human
mind. When we decided the algorithm should be used for
System 2 thinking, we believed that PSO approximates the
logic of the human mind more closely than other algorithms
do. As an algorithm that is used extensively, its achievement
in various performance indicators is unquestionable. Addi-
tionally, the characteristics (i.e., the ability to simultaneously
handle gradually converging large-scale searches by particle
swarms with high particle counts) of PSO make it similar to
the decision-making processes of human beings (i.e., reach-
ing a decision through reflection and comparison of relevant
experiences). Therefore, the PSO algorithm presented in the
current paper was inspired by the logic of human thinking.

The major contributions of this study are as follows. 1) Psy-
chology theories were applied, 2) DBN model and PSO
method were combined to construct the proposed cognitive
learning algorithm, 3) a humanoid robot was designed for the
experiment, and 4) the feasibility of the proposed algorithm
was demonstrated in a robot pitching game.

This paper is organized as follows. In Section II, cogni-
tive psychology is introduced. The proposed cognition learn-
ing algorithm is introduced in Section III. In Section IV,
the experimental results are presented to verify the feasibility
of the proposed algorithm. Some corresponding topics are
discussed in Section V. Finally, the conclusions are presented
in Section VI.

Il. COGNITIVE PSYCHOLOGY
Cognitive psychology is the study of mental processes
involved in attention, memory, perception, language process-
ing, problem-solving, learning, and cerebration [21]. The
primary focus of cognitive psychology is on mental actions
or processes by which knowledge is acquired. In other words,
cognitive psychology deals mainly with the processes that
mediate between the input of a stimulus and the output of
a response. Some theories in cognitive science coupled with
evidence from neuropsychology and computational modeling
are the main foundations of cognitive neuroscience [22], [23].
Cognitive science addresses many questions of how cognitive
functions are produced by neural circuits in the brain. For
example, some advanced brain imaging systems are used to
obtain deeper knowledge of the division of labor within the
brain. The study of cognitive neuroscience can help people
to obtain further information on why others have difficulty in
demonstrating empathy. Computers have allowed psycholo-
gists to try to understand the complexity of human cognition.
From this viewpoint, in psychology, cerebration behavior
can be divided into two modes—fast and slow. Psychologists
have been intensely interested in these modes for several
decades. Daniel Kahneman, the author of Thinking, Fast and
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Slow, described mental life using a metaphor of two agents,
System 1 and System 2, that play distinct roles in the human
brain [21]. If we consider these two modes of cerebration
as two characters in a psychodrama, the two agents have
individual abilities, limitations, and functions. They use their
dissimilar properties to deal with miscellaneous problems.
Then, they give our minds an intuition that dominates our
cerebration behaviors.

The System 1 and the System 2 operate continuously in
our brains, and we construct a coherent interpretation of what
is going on at any instant. Let us consider students as an
example. To be a good student, we must go to class, sit on
our seats, and listen to the teacher with undivided attention.
In an actual situation, we might concentrate on a lecture
from the beginning. System 2 causes us to pay attention in
class. However, after a while, we might become distracted
from the lesson. We might free our thoughts and emotions
unconsciously and just fix our eyes on the blackboard. In this
case, System 1 overtakes System 2. A question that arises is
how can System 1 be in charge of our mind alternately? The
primary reason is that System 2 is slow. System 1 and Sys-
tem 2 are both active when we are conscious. System 1 runs
automatically, whereas System 2 operates in a comfortable
and effortless manner in which only a fraction of its capacity
is engaged. The highly diverse operations of System 2 all
require attention and will be ignored only when the attention
is disrupted. In contrast to System 1, System 2 is more diligent
in its work. System 1 continuously gives System 2 sug-
gestions, including impressions, intuitions, intentions, and
feelings. When all operations run smoothly, System 2 adopts
the suggestions of System 1 with little or no modification.
Thus, if we become inattentive in class, we might be easily
led by System 1. Thus, our teachers and parents ask us to
pay attention to the teacher in the class as children. If we
concentrate and pay undivided attention in class, we can
obtain wisdom from our teachers and absorb new knowledge.

In general, System 1 has the characteristic of intuitive cere-
bration, and System 2 has the characteristic of peculiar logical
cerebration. At first, System 2 seems to be much more reliable
than System 1. However, human beings almost entirely use
System 1 while cerebration in their daily lives. For instance,
normally, both System 1 and System 2 operate when a person
goes to a famous dessert shop. If the person has a sweet tooth,
the person will be attracted by the cake cabinet immediately
after entering the store. This action is generated by System 1,
which tells the person of the love for those desserts and
suggest trying them. While the person eats the dessert, some
of the following thoughts usually come to mind. Does it have
too many calories? Is the price of the dessert too high? Does
the dessert really taste good? Some of these questions were
generated by System 2 to review the behaviors generated by
System 1. System 2 has some ability to change the ideas
produced from System 1 by continuously monitoring our own
behaviors. In this example, one of the tasks of System 2 was
to overcome the impulses or weaknesses of System 1. Thus,
System 2 is in charge of self-control.
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IIl. PROPOSED COGNITION LEARNING ALGORITHM

Deep learning is a type of machine learning that constructs a
model of multiple layers with a complex structure or mul-
tiple nonlinear transformations. One of the advantages of
deep learning is that it recognizes and extracts hierarchi-
cal features using efficient algorithms for semisupervised or
unsupervised learning. This advantage of deep learning is
beneficial because most of the training data are unlabeled.
However, deep learning allows computers to learn to repre-
sent high-level concepts with low-level data. Deep learning
can be regarded as a method of expressing information, and
an artificial neural network is the most suitable technology
to achieve this type of expression. There are various artificial
neural networks of deep learning architectures such as recur-
rent neural networks (RNNs) [24], DBNs [25], and convo-
lutional neural networks (CNNs) [26]. These deep learning
algorithms have been applied to a wide variety of fields and
have exhibited high performance in applications. Deep learn-
ing architectures involving artificial neural networks have
become the subject of a number of recent studies.

A. DBNs

A DBN [25] is a type of a deep neural network that is stacked
with a multilayer structure of restricted Boltzmann machines
(RBMs). The structure of an RBM includes a visible layer and
a hidden layer that have visible neurons and hidden neurons,
respectively. Visible neurons fully connect with hidden neu-
rons, and there is no intralayer within the visible or hidden
layer. There are two main learning methods in a DBN—
unsupervised and supervised learning. An RBM performs
unsupervised learning, whereas a back-propagation network
(BPN) performs supervised learning. After conducting RBM
operations, hidden neurons are conditionally independent
when the visible states are given. Thus, we can quickly take
an unbiased sample from the posterior distribution when an
input vector is given. An RBM is a probabilistic model.
Two main functions can be used to represent this model—
the energy function and probability distribution function. The
weights and biases of an RBM determine the energy of a joint
configuration of visible and hidden neurons.

n m n m
EW, hi0) == viljwj— Y viai— Y _hib; (1)

i=1 j=1 i=1 j=1
where E represents energy with configuration v on the visible
neurons and % on the hidden neurons, v; denotes the binary
state of the visible neuron i, #; denotes the binary state of
the hidden neuron j, and w;; represents the weight between
neurons i and j. For the model parameter 6 of {W, b, a} and v;,
h;j € {0, 1}. Here, W is the symmetric weight with dimensions
of n x m, a represents the biases of visible neurons, and b
represents the biases of hidden neurons. The energy of a joint
configuration of visible and hidden neurons determines the
probability of the configuration.

e~ EWi.h))
pWvi, hj) = W 2
Vi,hj
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The denominator in (2) is defined as a partition function
and is obtained by summing all possible pairs of visible
and hidden vectors. Based on the probability distribution
function, the conditional probability distribution functions
are derived and represented as follows:

hj = sigmoid(z viWi; + b)) 3)
i

v = sigmoid(z th,-jT +a;) “
J

where h; represents the probability distribution when v; is
given and v; represents the probability distribution when 5;
is given.

A DBN employs pretraining, fine tuning, and prediction.
Pretraining and fine tuning allow this model to predict an
accurate output given an input. In the pretraining process,
a set of initial parameters are obtained from the input vectors
using an RBM.

B. PSO

In this section, a brief description of PSO is provided.
PSO is a population-based intelligent optimization algorithm
first proposed by Kennedy and Eberhart [10] by simulat-
ing social behavior models such as bird flocking and fish
schooling. In PSO, the potential solutions are known as par-
ticles, and these particles move in a D-dimensional search
space. Each particle’s movement is influenced by its local
best known position and best known position in a search
space. This action is expected to move the swarm toward
the best solutions. The position and velocity of particles for
trying to improve the solutions are presented in the following
equations.

vfﬂ = v;‘ + Cy x rand(0, 1) x (Pl,jest —xl(‘)
+Cy x rand(0, 1) x (GX ., — xF) 5)
xzk+l =xf + Vf+1 (6)

where vi.‘ and xf represent the velocity and position of the
present particle, vi.‘ 1 and xlﬁ_ | represent the velocity and posi-
tion of the next generation particle, and rand(0, 1) denotes a
random number in the range of O to 1. Here, P”g o5 FEPrEsents a
particle’s best known position, and G’g o5 TEPTESENtS @ swarm’s
best known position; C| and C; are constants.

A variant of PSO is introduced in this section. The inertia
weight w [27], [28] is considered while updating the veloc-
ity presented in (7), and the following velocity equation is
obtained:

vﬁ_l = a),-vi-C + Ci x rand(0, 1) x (Plgest —xlk)
+Cy x rand(0, 1) x (GX,.. — x5y (D)
Shi and Eberhart in [27] indicated that inertia weight is
crucial for balancing local and global search. Local exploita-
tion is facilitated by a smaller inertia weight, whereas global

exploration is facilitated by a larger inertia weight [28].
Therefore, a parameter for @ is implemented that contributes
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to improve global exploration in the initial phases and local
exploitation when the swarm is near the optimal solution.
C1 = Cy = 2 s be set, as suggested in [29]. To set w with
a parameter, a coefficient A, = 0.95 [30] is introduced for
making the parameter more efficient. Therefore, the pitching
parameters are implemented in every iteration.

wit] = hywj, in which A, = 0.95 )
C. COGNITION LEARNING ALGORITHM
A cognition learning algorithm is designed for our robot to
learn the postures of pitching baseballs at a 3 x 3 square target.
Understanding that the architecture of the cognition learning
algorithm is divided into two systems, the cognition learning
algorithm framework is established using DBN and PSO
algorithms that represent System 1 and System 2, respec-
tively. The relationship of System 1 and System 2 is shown
in Fig. 1. The solid arrows belong to the information flow
of System 1, and the dotted line belongs to System 2. In the
whole process, System 2 can be treated as the supervisor of
System 1, and System 1 is also initially set up by System 2.
Either System 1 or System 2 will make the decision to handle
the problems. Basically, the action is made by System 1.
However, if the action made by System 1 is unreasonable,
System 2 will take over the process and try to make the correct
decision. The procedures of the proposed cognition learning
method are illustrated in the Fig. 2. Algorithmic details of
each block are provided in this paper.

Environment

System 1

Supervise

FIGURE 1. The relationship of system 1 and system 2.

First, a square area as the pitching target is selected.
System 1 generates a set of outputs corresponding to the
target point. The robot pitches using these outputs for the
parameters of the motors in the robot. Then, the trajectory
and location of the ball on the square are obtained.

The turning angle of the waist of the robot is a parameter
that can influence the direction of the ball. If the waist of the
robot turns to the right, then the ball moves to the right. If the
turning angle of the waist and the direction of the target point
are the same, then the pitching data are regarded as reasonable
and accepted for training. The data are then trained using the
DBN. The more data trained by the DBN, the more robust it
becomes.
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Decide the Target
Point for Training

Have all
target points
been trained?

System 1 Generate
a set of output for
Pitch

@ [

Execute the
Decision

. s Waist Angle
M"d‘sfystce)g?’z“‘ by Determined by DBN
4 Reasonable?
Yes No

Is the error
acceptable?

Train System 1
(DBN)

FIGURE 2. Flowchart of the proposed cognition learning method.

Then, based on this procedure, the accuracy error was
checked. Accuracy error was defined as the distance between
the location of a ball and the target point. If the error is smaller
than a threshold, which is obtained from the experiment,
then high accuracy is obtained. Once accuracy was achieved,
the training of this target point was regarded as completed.
Then, the next target points were trained.

Conversely, if the waist of the robot turned away from the
target point or if the accuracy error was larger than 0.015,
the procedure of System 2 would be conducted to modify the
parameters for the same target point. System 2 supersedes
System 1 and can perform more detailed and specific pro-
cessing to solve the aforementioned problem. The procedure
of System 2 is described in the following section.

D. DBN IN COGNITION LEARNING ALGORITHM
A DBN is developed to build an intuitive and reflexive cere-
bration model for the robot. The trajectory and location of the
ball were influenced by four parameters of the motors on the
robot during every pitch. Fig. 3 illustrates the information of
the pitching process. After pitching, the location of the ball
was obtained by a camera and transformed into a coordinate
system. Four motors influence the pitching posture of the
robot. The parameters of these motors are velocity, angle 1,
angle 2, and angle 3, as shown in Fig. 3.

The width and height of a 3 x 3 square grid were normal-
ized to 1, and the location of ball was transformed into the
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FIGURE 3. Location of the ball and corresponding parameters of the
motors during the pitching process.

coordinate system. In the proposed method, we set five target
points for training the DBN model.

Images of the experiment are shown in Fig. 4. In the
images, the 3 x 3 square is marked by a purple rectangle;
blue lines represent the trajectories of the ball, and green balls
represent the locations of the ball on the square. Fig. 4 (a)
presents the width of the square, and the location of the ball on
the x axis can be determined using the width value. Fig. 4 (b)
displays the height of the square, and the location of the ball
on the y axis can be determined using the height value. When
the width and height of the square are normalized to 1, the x
coordinate and y coordinate can be obtained proportionally.

Top Boundary

Bottom Boundary
(a) (b)

FIGURE 4. Images from the (a) top camera and (b) side camera in the
experiment.

The position information was represented by the pixels in
the image. The width of the image, which was captured using
a camera, was 320 pixels, and the height was 240 pixels. The
boundary conditions also had a corresponding pixel position,
and the width and height of the square could be obtained
using the boundary conditions. Then, the width and height
of the grid could be normalized to one. The full range of the
square could be transformed into the coordinate system, and
the location of ball was the intersection of the square and
trajectory. Consequently, the location of the ball on the square
could be accurately determined.

As previously mentioned, there are three stages in a DBN:
pretraining, fine tuning, and prediction. The trained weights
and biases were obtained by conducting the pretraining pro-
cess. First, the structure of an RBM in a DBN is defined.
Fig. 5 presents the RBMs stacked to create a structure with
three layers.
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FIGURE 5. Stacking RBMs to create a DBN.

input layer output layer

'——— hidden layer —_|

velocity

anglel

angle2

angle3

FIGURE 6. Topology of the DBN in the proposed method.

The configuration of neurons is illustrated in Fig. 6. We can
clearly observe that there are two inputs, four outputs, and
3 x 3 hidden neurons. The input data include an x coordinate
and a y coordinate. The four outputs correspond to the four
parameters of the motors that decide the pitching posture.

In the pretraining process, the locations of balls from
accurate pitches were used as the training data. Each train-
ing datum contains two numbers that represent the x and y
coordinates in the range between 0 and 1. The iterations of
pretraining were set to 100, the learning rate of pretraining
was set to 0.5, and the amount of training data was based
on the number of accurate pitches. The pretraining process
is executed using these parameters to obtain the initial value
of v; from the input data. Note that #*, v*, and h were obtained
from v; using the RBMs in sequence. Moreover, W, a, and b
were updated in the contrastive divergence process. As the
number of iteration increases, W, a, and b become more
useful to the prediction model. In this study, the number of
Gibbs sampling iterations k was set to 1.
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In the fine-tuning process, the initial weights were used
for the BPN. The input and output information of the BPN
was obtained after pitching; the locations of the ball on the
coordinate system represented the input, and the correspond-
ing parameters of the motors were the outputs. The BPN per-
formed a forward pass using this information and generated a
set of outputs corresponding to the location of the ball. Based
on the output from the forward pass, the cost function could
be obtained. Then, the BPN performed a backward pass to
tune the weights and biases. As the number of training data
increases, the weights and biases become more beneficial to
the set of data that approximates the desired output.

The aim of the cognition learning algorithm is that the
DBN generates a set of outputs to predict the pitching param-
eters of the robot. In the prediction process, a forward pass of
the BPN is performed to obtain outputs corresponding to the
inputs.

The DBN performed unsupervised learning in the pre-
training stage and supervised learning at the fine-tuning and
prediction stages with the data of accurate pitches. The train-
ing was considered completed when all target points were
trained. If no accurate pitches were thrown, System 2 would
take over to help System 1 to become robust.

E. INERTIA WEIGHT PSO IN COGNITION

LEARNING ALGORITHM

In this subsection, the procedure of System 2 is introduced in
detail. The flowchart of System 2 is shown in Fig. 7. When
System 1 could not give an output that enables the robot to
pitch accurately, System 2 took over System 1 to modify the
output data generated by System 1. The main algorithm of
System 2 was PSO with inertia weight. First, three sets of data
are generated in the vicinity of the output from System 1 as
the first-generation particles. A set of data represented a parti-
cle in System 2. A swarm was formed using three particles to
conduct optimization. Then, the robot pitched using the data
of the three particles in the first iteration. The three locations
of the ball corresponded to the three times when pitching was
conducted. The fitness value of three pitching times could be
estimated. However, the turning angle of the waist of a robot
must be considered.

If the turning angles of the waist and direction of the target
point were the same, then the pitching data were considered
to reflect an accurate pitch and were used as training data.
Subsequently, the data is trained using a DBN. If the pitch
was not accurate, the pitch parameters will not be recorded for
the DBN training. To estimate the modification performance,
the distance between the target point and the location of a ball
must be considered. Fig. 8 illustrates the distance between the
target point and the location of a ball.

A fitness function f is designed that is represented by the
following equation:

ki ky

= 9

f 0.14d 14w ©)

where d denotes the distance between the target point and
the location of the ball, w denotes the turning angle of the
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of All Particle

Is Waist Angle
Determined by PSO
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Train System 1

(DBN)

Get Fitness Value
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END
(Decide Next Target
Point for Training

FIGURE 7. Flowchart of system 2.

1
1
I Location offball
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A= 0y — ) Hx -

target point

FIGURE 8. Distance between the target point and the location of the ball.

waist of the robot, and k| and & are constants. The influence
of d and w must be considered. To balance the influence
of d and w, k; and k» were set to 1 and 200, respectively.
The values of k; and k; are determined by heuristic method.
Based on the definition of the fitness function, we inferred
that the robot could hit the target point accurately with a low
turning angle of its waist. After PSO with inertia weight,
the velocity and position of the particle were updated. The
iteration of PSO continued until the fitness value was suffi-
ciently large or until the value did not change anymore. Then,
the modification conducted by System 2 was considered
complete.
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IV. EXPERIMENTAL RESULTS

In this section, the experimental environment setting is intro-
duced and the results of the cognition learning method are
demonstrated.

A. EXPERIMENTAL ENVIRONMENT SETTING

The designed humanoid robot that possesses a human-like
appearance with a head, a torso, and limbs. Furthermore, the
strategy system of the robot behaves like the brain of a human
being, and the control system of the robot behaves like a
spinal cord. In this section, the mechanism, hardware, and the
control system are explained.

The teen-sized humanoid robot has 26 degrees of freedom,
weighs 9.6 kg, and is 95 cm tall. The material is composed of
Al-Mg alloys, such as A7075 and A6061, and plastics, such
as acrylonitrile butadiene styrene and polyoxy methylene
resin. Photographs are presented in Fig. 9.

FIGURE 9. Structure of the humanoid robot.

A 3 x 3 square is constructed using steel angles. A red cloth
covered the frame of the square to promptly extract color
features using the top and side IP cameras. The arrangements
for capturing images in this experiment are presented in
Fig. 10.

FIGURE 10. Environment of the experiment.

The plastic boards were undecorated during the training
process for expediency. The size and weight of different balls
were determined. The results revealed that a tennis ball was
the most suitable for the humanoid robot in the pitching game.
To expedite the training process, the humanoid robot will get
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a ball after every pitch. Another web camera recorded the
experimental procedure. The distance between the humanoid
robot and the grid was set to 140 cm because of the hardware
constraints of the humanoid robot. The entire environment of
the experiment is displayed in Fig. 10.

B. RESULTS OF COGNITION LEARNING ALGORITHM

To verify the proposed cognition learning algorithm used
for learning the posture in the pitching game, the training
processes and the final test are described in this section.

As previously mentioned, the proposed cognition learn-
ing algorithm was trained during a pitching game. The data
of accurate pitches were the training data for System 1 of
the proposed method. Simultaneously, System 2 helped Sys-
tem 1 become more robust. The target points were the num-
bers 1, 3, 5,7, and 9 on the 3 x 3 square board.

The comparisons of ANN and DBN are shown in Fig. 11.
It shows average learning curves and error bars of ANN and
DBN, which are the average of ten runs in 1500 epochs
to ensure the results are objective. In Fig. 11(b), there are
some outliers on the box plot when the epoch is 200, but
this problem does not appear in Fig. 11(c). In conclusion,
the performance and the convergence speed of DBN is faster
than ANN based on the presented learning curve in terms of
Root-Mean-Square Error (RMSE) and boxplots, so DBN can
usefully be applied to the on-line training experiment. In this
experiment, the iteration of RBM is set to 100, the learning
rate of RBM is set to 0.5, and the learning rate of the back
propagation network is set to 0.5.

On the other hand, once System 2 supersedes System 1,
the output motion, which is generated by System 1, will
be modified by the inertia weight PSO. In the process of
System 2, the fitness value denotes the quality of the pitching
result. According to the definition of the fitness function,
the larger fitness value represents the higher accuracy of
the corresponding pitching motion. Fig. 12 demonstrates the
trends of the PSO algorithm’s fitness values in five training
targets, numbers 1, 3, 5, 7, and 9, and it also shows that the
fitness values are all increased in six iterations in five training
targets. In conclusion, based on the PSO algorithm, the fitness
values can be obviously increased in all the tests, thus prov-
ing that the PSO algorithm can improve the performance of
pitching.

We should confirm whether the five target points were
sufficient for appropriately training the proposed algorithm.
To train the proposed algorithm efficiently, we did not train
every target point on the square. By considering all points that
a ball may hit, the target points were set on the corners and
center of the square. After training was completed, the final
test was performed. The aim of the final test was to determine
whether the humanoid robot could pitch the ball and hit the
board accurately. The results of the final test are presented in
Fig. 13, where nine numbered plastic boards were arranged
in a grid, and the humanoid robot pitched a ball at each
of the nine boards in order. Thus, the trained DBN model
generated nine outputs that the humanoid robot could use
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FIGURE 11. Comparisons of ANN and DBN. (a) The average learning
curves of ANN and DBN. (b) The learning curve of ANN with error bar.
(c) The learning curve of DBN with error bar.

as data to hit the corresponding targets. Fig. 13 depicts a
series of photographs in which the humanoid robot hits the
corresponding targets in sequence to demonstrate the result
of applying the algorithm to the robot.
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FIGURE 12. The fitness values in five training targets.

The aim of the experiment is for the robot to accurately
pitch the ball to a selected target point on a 3 x 3 grid.
Therefore, the location of the target point must be set as the
reference input. In other words, the coordinates of the center
of the boards must be keyed into the DBN. Through DBN
computations, the arm parameters (i.e., the four parameters of
the four motors that influence the posture of pitching) needed
for the robot to accurately hit the target are obtained. Using
these outputs, the humanoid robot could hit all nine boards
without any missed shots. In this work, many intelligent algo-
rithms might be applied for System 1 and System 2. However,
the performances of DBN and PSO have been validated in
many literatures [25], [27]. The experiments show that the
combination of DBN and PSO gives good results in the robot
pitching game. It also indicates that these two algorithms are
suitable for the implementation of the proposed cognition
learning algorithm. The whole experimental video can also
be accessed in [31].

V. DISCUSSIONS

In the experiments conducted in [5], basketball shooting
was performed using a fixed location as the target. Thus,
learning was only required for a single target point; this can
be achieved in System 1 using curve fitting. What makes
the current study different is that the targets in the current
study are points within a plane. Therefore, learning in the
current study must be performed using multiple points across
the plane; this can only be achieved by using a more com-
plex algorithm. Therefore, for System 1, we replaced the
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FIGURE 13. Final test of the cognition learning algorithm.

curve fitting computational method with DBN. As for Sys-
tem 2, we also used a relatively complex inertial-weight PSO
method to replace the conventional arm parameter adjustment
model, eliminating the need for manual adjustment of the
arm parameter. System 2 could automatically recalibrate the
arm parameters when System 1 could not make a reasonable
judgement. Accordingly, the algorithm framework proposed
in the current study is relatively comprehensive and refined.

In the past, we were obliged to adjust each robot manu-
ally. Now, we can achieve fully automated training of any
robot and ultimately achieve the goal of intelligent learning
through the application of appropriate algorithms. Addition-
ally, we incorporated certain psychological concepts into the
training paradigm to make the algorithm a closer approxima-
tion of the actual thinking framework of a human mind; the
System 1 coded in the algorithm can also be utilized to save
computational time. These characteristics of the algorithm
offer a huge range of future possibilities for robot learning
frameworks. The theory proposed in the current study could
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be applied in various fields in the future. A possible area of
application would be the automated training of mechanical
arms in factories. During working hours, System 2 can be
used in conjunction with System 1 to perform the parameter
training of mechanical arms. When System 1 is not per-
forming as intended, System 2 can be used to complement
the computational process. Then, System 2 can propagate
the relevant experience obtained back to System 1 to aid the
establishment of a more comprehensive rapid reaction model.

The emphasis of this study is the framework constructed on
the basis of psychological concepts: System 1 represents the
rapid intuitive reaction mechanism, whereas System 2 repre-
sents the slower analytical thinking mechanism. Therefore,
System 1 and System 2 complement each other, and together
they can enhance the computational ability of an algorithm.
To verify the effectiveness of the proposed algorithm, we
conducted a robot pitching experiment on a 3 x 3 target grid.
However, this is not the only field of application for this
algorithm and its underlying concepts; they could be applied
in various fields in real life. For example, to achieve the goal
of rapid training, we could use System 1 to handle routine
computations and establish a database of frequently used
knowledge, and we could use System 2 in complicated com-
putational situations where interventions are needed. In terms
of the application of System 1 and System 2 in industrial
mechanical arms, the rapid computations of System 1 enable
it to handle most routine computational tasks. However, when
the industrial mechanical arms encounter tricky training sit-
uations, System 2 could then intervene and perform comple-
mentary computations accordingly. Therefore, utilizing both
systems to conduct training would be more beneficial than
using a single system.

In this study, we performed trajectory tracking of the ball
pitched by the robot (illustrated in Fig. 4); this was achieved
by first capturing the trajectories of the target ball, followed
by performing curve fitting using the captured trajectory
coordinates. In terms of vibration suppression, the motors
of the robot were operating at a high speed when the robot
was pitching the ball. The effects of slight vibrations on
motors that were operating at a high speed were negligible.
Accordingly, slight vibrations would also not have a great
influence on the ball pitching action of the robot. In terms
of the robot’s mechanical design, because the torque at the
moment of pitching is quite large, the supporting motors of
the motor need to sustain a higher level of loading at the
instance of pitching. If the robot’s body is not supported
by a good mechanical design, excessive vibrations would
be generated at the instance of pitching, and this would in
turn lead to unstable pitching or even damage to motors.
Therefore, a refined mechanical design would be helpful
for maintaining good stabilization and suppressing vibrations
during the pitching action.

In the current study, the tennis ball pitched by the robot in
the pitching experiment was approximately 58 g in weight;
the maximum weight that the robot can grab is approximately
200 g, which is dependent on the mechanical design and
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construction materials of the robot. Given an appropriate
design, the maximum loading that the robot’s hand could sus-
tain could be effectively enhanced, allowing the robot to grab
heavier objects and enabling its application in various fields.
Therefore, there remains a large space for improvement in
this aspect.

From the psychology perspective, System 1 represents
rapid intuitive reaction, whereas System 2 represents ratio-
nal and logical thinking; therefore, System 2 is more time
consuming than System 1. After the training for System 1 is
completed, the user can quickly obtain relevant feedback by
entering the required information into the DBN. Therefore,
System 1 represents the more rapid intuitive reaction. As for
System 2, it can only produce a solution after a lengthy period
of trial-and-error learning. Therefore, the training of Sys-
tem 2 could be achieved using an optimization algorithm such
as PSO. Therefore, at the learning stage, performing pitching
training at the same grid constitutes the training process for
System 2 (PSO). Of course, such training processes have
been assumed to constitute the past experience of the robot,
and therefore the information about these training processes
would be propagated back to System 1. Hence, DBN would
definitely perform the adjustment of weights using back-
propagation. However, once the training of System 1 (DBN)
is complete, the trained System 1 can straightaway be used
to estimate the pitching posture appropriate for the selected
target location. At this stage, System 1 could readily infer
the appropriate pitching posture on the basis of the infor-
mation regarding the target location. Hence, the reaction at
this stage is rapid and intuitive (as illustrated in Fig. 11).
Such operations are reasonable and feasible, and they are
close to the actual operational modes of the human mind.
Therefore, we can assume that human thinking can be divided
into two parts—rapid intuitive reaction and deliberation of
past experience—and that humans change their instantaneous
reactions using their deliberative process. The proposed DBN
is suitable for expressing intuitive reactions not only because
a trained DBN could produce timely outputs based on given
inputs but also because it constantly adjusts and improves
the next behavioral reaction using the back propagation of
its fine-tuning process. Because PSO is a rapid and highly
accurate algorithm, using it to express the human thinking
process is highly appropriate. Although the thinking oper-
ations of PSO are not instantaneous, the required execu-
tion time is reasonable given typical human thinking speed.
The researchers combined PSO and DBN in the learning
algorithm; specifically, the researchers consistently used the
thinking processes of PSO to adjust and improve the next
reaction until the reactions exhibited by DBN reached a cer-
tain level of accuracy.

In the cognition learning algorithm proposed in the cur-
rent study, System 1 and System 2 are trained alternatively
during the training stage until System 1 (DBN) attained the
predetermined accuracy rate. Such a design of the system can
be clearly explained using human lived experience. When we
are facing with the occurrence of an event, it is natural for
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TABLE 1. Nominal definition list.

The humanoid robot exhibited 100% accuracy of pitching
a tennis ball to the 3 x 3 grid. The experiment results
demonstrated that the proposed cognition learning algorithm
implemented in the robot has powerful and robust capability
for autonomous learning. The proposed method also verifies
that the cerebration model of a human being can be realized

Jargon Nominal Definition
nouns
ANNs Mathematical models that imitate biological neural
structure
CNNs Neural networks with convolution, pooling layers, and
fully connected layers
DBNs Neural networks with hidden RBM layers that can model
data
PSO An algorithm that uses features of social models to reach
optimization
RBM A pretraining process for DBNs with a visible layer and a
hidden layer that can extract the features of data
RNNs Recurrent ANNSs that can access internal states to solve
time-series problems
System 1 A basic cognitive system that does intuitive tasks
System2 A cognitive system that can think rationally and overcome

the impulses or weaknesses of System 1

us to exhibit an intuitive reaction or for our brain to make an
immediate decision; this is represented by System 1 in the
learning algorithm. After the occurrence of an event, people
reflect on the outcomes of the event and deliberate whether
they could have performed better. Such a thinking process
enables us to improve our intuitive reactions in the case of a
similar event in the future, and this part of human thinking is
represented by System 2 in the learning algorithm. Therefore,
we tend to continually repeat the aforementioned alternate
thinking processes until we feel that our intuitive reaction is
good enough. In other words, we tend to repeat the alternate
thinking process until our intuitive reaction (System 1) is
sufficient for handling the demand of the event and the after-
the-fact reflection of System 2 is not required. Therefore,
in the experiment illustrated in Fig. 13, the intervention of
System 2 was not available; only System 1 was in operation
during the experiment. At the training stage, System 2 only
intervened in 5 training target points. However, in the experi-
ments, we observed that even when only DBN (System 1) was
used, the robot could infer the reasonable pitching posture
using System 1 and subsequently achieve 100% accuracy in
throwing balls at all nine target points.

VI. CONCLUSION

In this study, a cognition learning algorithm is designed and
implemented to enable a humanoid robot to learn the posture
for pitching in baseball style to a 3 x 3 target grid. The
inspiration for the proposed cognition algorithm was obtained
from the book Thinking, Fast and Slow by Daniel Kahneman.
The book mainly explains the human cerebration model from
the perspective of cognitive psychology.

In this paper, the proposed cognition learning algorithm
is introduced in detail. The algorithms used in the proposed
method were a DBN and PSO. The procedure of the proposed
method is explained in detail and illustrated using flowcharts.
The cooperation between System 1 and System 2 of the
proposed method are presented.

Additionally, experimental results are demonstrated.
The training process and final verification are recounted.

VOLUME 7, 2019

in a robot.

APPENDIX
In this paper, the nominal definition list is given in Table 1.
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