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ABSTRACT Recommender Systems are widely adopted in nowadays services such as e-commercewebsites,
multimedia streaming platforms, and many others. They help users to find what they are looking for by
suggesting relevant items leveraging their past preferences. Deep Learning models are very effective in
solving the recommendation problem; as a matter of fact, many deep learning architectures have been
proposed over the years. Even if deep learningmodels outperformmany state-of-the-art algorithms, the worst
disadvantage is about their interpretability: explaining the reason a specific item has been recommended to a
user is quite a difficult task since the model is not interpretable. Accuracy in the recommendation is no more
enough since users are also expecting a useful explanation for the suggested items. Users, on the other hand,
want to know why. In this paper, we present SemAuto, a novel approach based on an Autoencoder Neural
Network that makes it possible to semantically label neurons in hidden layers, thus paving the way to the
model’s interpretability and consequently to the explanation of a recommendation. We tested our semantics-
aware approach with respect to other state-of-the-art algorithms to prove the recommendation’s accuracy.
Furthermore, we performed an extensive A/B test with real users to evaluate the explanation we generate.

INDEX TERMS Autoencoder neural network, cold start problem, deep learning, explanation, knowledge
graph, recommender system.

I. INTRODUCTION
Recommender Systems (RSs) have become pervasive tools
we experience in our everyday life. While browsing a catalog
of items, RSs exploit users’ past preferences to suggest new
items they might be interested in. In a digital world where
we, as users, are overwhelmed by multiple possibilities and
choices, they result in a valid tool to help us finding informa-
tion that fits our needs, tastes, and preferences. Many online
services heavily rely on the usage of recommender systems
to suggest new movies to watch, new books to read, or new
songs to listen to.

Over the years, different strategies have been proposed to
tackle the recommendation problem; among them, collabora-
tive filtering (CF) has shown to be very effective in predicting
the relevance of unrated items, especially if much data about
users-items interactions are available. CF approaches use
item ratings1 provided by the users in a system to suggest, in a
personalized way, new and unknown items to interact with.
Differently from CF RS, content-based (CB) approaches
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1Here, with ratings we refer to whatever user interaction, both implicit and

explicit, from which we can infer a like or dislike behavior.

exploit descriptive metadata to find items that are similar
to those already available in a user profile and recommend
them accordingly. CF approaches suffer from the cold start
problem: when a new item is added to the catalog, it has no
ratings; therefore, the recommendation engine would not be
able to recommend it even if it might be of interest to some
users. This problem could bemitigated by combining both CF
and CB approaches into a single one, this results in a Hybrid
Recommender System.

A rich and useful (free) source of content description
for items is given by Knowledge Graphs, which have been
recently adopted to represent items, compute their similarity
and relatedness [1] as well as to feed CB and hybrid recom-
mendation engines [2]. The publication and spread of freely
available Knowledge Graphs in the form of Linked Open
Data datasets, such as DBpedia [3], has paved the way to the
development of knowledge-aware recommendation engines
in many application domains and, still, gives the possibility
to easily switch from a domain to another one by just feeding
the system with a different subset of the original graph.

Over the last years, we have seen at the rising of Deep
Learning models in many fields such as Computer Vision,
Speech Recognition, Natural Language Processing, and more
recently, few attempts have also been made to solve the
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recommendation problem [4]. Deep Learning techniques
have proven their strength, thus gaining the attention of both
researchers and companies, and they are widely deployed in
nowadays recommender systems. While research has mainly
focused on improving accuracy metrics in recommenders,
under the hood, their algorithms are becomingmore andmore
complex, thus making it extremely hard to understand the
reasons behind model predictions for a particular input. Lack
of interpretability recently led both researchers and compa-
nies to pay more attention to explainable models. Indeed,
it has been proven that showing to users an explanation for
the provided recommendation leads to better interaction with
the system [5], [6]. Moreover, when users understand how
the system works, they can refine their preferences to get a
better recommendation according to their tastes. However,
in many popular recommenders such as Amazon or Netflix,
the explanation provided is still feeble, as it is mainly based
on a popularity basis: it just tells that users with similar tastes
have enjoyed the suggested items. It turns out that this kind
of explanation is not perceived as a valid justification of
the reason why the system is recommending certain items,
and it hardly improves users’ loyalty in the system. On the
other hand, a content-based explanation proves to be more
engaging from the users’ point of view because it makes users
aware of the item’s attributes that might be relevant to them.

In this paper, we present SemAuto, and we show how
autoencoders technology can benefit from the existence of
a Knowledge Graph to create a representation of a user
profile that can be eventually exploited to predict ratings
for unknown items. The rationale behind the approach is
that both Knowledge Graphs and Artificial Neural Networks
(ANNs) behind Deep Learning expose a graph-based struc-
ture. Hence, we may imagine building the topology of the
hidden layers in the ANN by mimicking that of a Knowledge
Graph.

Here we show how the model built by SemAuto, although
very effective in computing accurate recommendations, can
also be adopted to compute content-based explanations to
recommended items. We evaluated the effectiveness of our
approach through an A/B testing platform and compared its
results with respect to two baselines. We tested both a point-
wise and a pairwise explanation style by exploiting different
kinds of the available information in DBpedia2 (categorical
and factual), in order to investigate how the effectiveness of
the proposed explanation changes according to the selected
knowledge adopted to feed SemAuto.
This paper presents more comprehensively the contribu-

tions presented in [7]–[9] and extends them by adding an
evaluation in the cold start scenario and a more detailed result
discussion.

The remainder of this paper is structured as follows:
in the next section, we discuss related works about rec-
ommender systems exploiting deep learning, Knowledge
Graphs, and Linked Open Data. Then, the basic notions of the

2http://dbpedia.org

technologies we adopted are introduced in Section III. The
proposed recommendation model, the experimental settings
and evaluation are described in Sections IV and V. Conclu-
sions and Future Work close the paper.

II. RELATED WORKS
A. AUTOENCODERS AND DEEP LEARNING FOR RS
The adoption of deep learning techniques is undoubtedly
one of the main advances of the last years in the field of
recommender systems. In [10], the authors propose the usage
of a denoising autoencoder performing a top-N recommenda-
tion task by exploiting a corrupted version of the input data.
A pure Collaborative-Filtering (CF) model based on autoen-
coders is described in [11], in which the authors develop both
user-based and item-based autoencoders to tackle the recom-
mendation task. Stacked Denoising Autoencoders are com-
binedwith collaborative filtering techniques in [12] where the
authors leverage autoencoders to get a smaller and non-linear
representation of the users-items interactions. This represen-
tation is eventually used to feed a deep neural network, which
can alleviate the cold-start problem thanks to the integration
of side information. A hybrid recommender system is finally
built. Moreover, in [13], it is suggested how to apply deep
learning methods with side information to reduce the sparsity
of the rating matrix in collaborative approaches. In [14] the
authors propose a deep learning approach to build a high-
dimensional semantic space based on the substitutability of
items; then, a user-specific transformation is learned to get a
ranking of items from such a space. Analysis of the impact
of deep learning on both recommendation quality and sys-
tem scalability are presented in [15], where the authors first
represent users and items through a rich feature set made
on different domains and then map them to a latent space.
Finally, a content-based recommender system is built.

All the approaches based on deep learningmodels that have
been proposed over the years turned out to barely leverage
latent factors to which no meaning can be attached. Among
them, Autoencoder Neural Networks have proven their effec-
tiveness in CF settings, as shown in [11], in which the authors
use an Autoencoder fed with user ratings to predict the
missing value for users’ unseen items. In other works such
as [13], a stacked architecture made of Autoencoders is pro-
posed to perform a generalization over a higher set of latent
features that every stacked autoencoder is able to learn. More
recently, in [16] the authors propose a hybrid architecture
for Autoencoders to incorporate both users’ feedbacks and
content description about items. A similar approach has been
proposed in [17], in which they exploit side information in a
CF setting by using Stacked Autoencoders to overcome the
cold start problem and data sparsity.

B. KNOWLEDGE GRAPHS AND LINKED OPEN
DATA FOR RS
Several works have been proposed exploiting side informa-
tion coming from Knowledge Graphs (KGs) and Linked
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Open Data (LOD) to enhance the performance of recom-
mender systems. Most of them rely on the usage of DBpedia
as KG. By leveraging the knowledge encoded in DBpedia,
it is possible to build an accurate content-based recommender
system [18]. In [19], for the very first time, a LOD-based
recommender system is proposed to alleviate some of the
major problems that affect collaborative techniques, mainly
the high sparsity of the user-item matrix. The effectiveness of
such an approach seems to be confirmed by a large number
of methods that have been proposed afterward. A detailed
review of LOD-based recommender systems is presented
in [20].

It is worth noticing howKGs are recently being used in lots
of applications; they freely offer a large amount of structured
data, which proved to be very useful also in recommendation
scenarios [18], [21], [22]. In particular, in [7], the authors
introduce the idea of a Semantics-Aware Autoencoder, which
paves the way to compute explanations by leveraging deep
learning techniques.

C. EXPLANATION FOR RS
A fundamental design principle for an Explainable RS is the
interpretability of its model, which leads to a recommender
system transparent to users. Explainable RSs are gettingmore
and more relevance since they may lead to users retain,
as investigated in [23]. Different studies [5], [24] have pointed
out that introducing transparency in the recommendation pro-
cess may have lots of advantages because users appear to be
more satisfied with the recommendation if they are aware of
the reasons why certain items are suggested. Furthermore,
the provided explanation may also convince users to try
items they would have usually ignored, thus improving users’
confidence in the system.

Since the explanation may be decoupled from the recom-
mendation process, a distinction between transparency and
justification has to be made [25]. The explanation brings
transparency to the system if it makes users aware of how the
recommender engine works, explaining somehow the under-
lying algorithm behind the proposed suggestions. This is usu-
ally the case of those explanations computed along with the
recommendation. On the other hand, justification implies an
explanation that is not directly related to the recommendation
algorithm; thus, it can be generated without any constraint.
Such kind of explanations may be preferred to transparency
because of algorithms that are difficult to explain or have not
to be disclosed.

The main advantages users may get from the explana-
tion are described in [26] and they include: transparency,
scrutability, trust, effectiveness, persuasiveness, efficiency
and satisfaction. In [27], the authors show how they can
be exploited as evaluation metrics for explanatory services.
However, providing adequate explanations is not always a
trivial task; RSs have undoubtedly proven to be very accu-
rate in accomplishing their tasks, but they usually work just
like black boxes, being not transparent at all. To overcome
this issue, new methods have been developed to generate

an explainable recommendation ( [24] provides an overview
of the most successful approaches proposed over the years)
such as MoviExplain [28], which exploits movies metadata
to justify its recommendation lists. Other interesting works
include: a RS based on Restricted Boltzmann Machines
which looks at the rating distribution to identify the most
explainable items [29]; a Latent Factor Model leveraging
users reviews to compute more transparent recommenda-
tions [30]; finally, a novel approach based on movies infor-
mation encoded in the LOD cloud which generates natural
language explanation for the computed recommendation is
presented in [31].

III. BACKGROUND
In this section, we briefly present the main technologies on
which we base our model.

A. KNOWLEDGE GRAPHS
In 2012, Google announced its KG3 as a new tool to improve
the identification and retrieval of entities in return to a search
query.

Since graph data are versatile so that they can model enti-
ties with connections among them, they can represent almost
anything in the real world. For this reason, several big tech
companies, such as Facebook,4 are spending resources on the
development of their KG. Furthermore, the main advantage
of the usage of graph data is that side information is easy
to attach to the current graph, and this allows a company
to enrich their knowledge base about a domain of interest
progressively.

Even though top tech companies have started to use KGs
as knowledge bases in their products, the boost for this tech-
nology is given by some communities that began to develop
KGs as well-structured graph data encoding the human
knowledge.

Some prominent examples of KGs are DBpedia and
Wikidata, which are community-driven projects that lever-
age on Wikipedia pages to automatically parse structured
data. Wikipedia pages are very rich sources of informa-
tion, but, unfortunately, they are human-readable documents,
i.e., unstructured data that computer agents cannot easily
understand. Making this information structured allows com-
puter agents to exploit this source of information. Starting
from Wikipedia infoboxes, which summarize human-
readable documents in tabular form, automatic tools extract
entities and their relationships, which are lately stored as
RDF triples.5

Mainly, we may identify two kinds of information
in DBpedia: semantics-aware and factual one. The for-
mer can be divided into categorical and ontological
data. Categorical information is encoded through the
dct:subject predicate and represents items categories

3https://googleblog.blogspot.it/2012/05/introducing-knowledge-graph-
things-not.html

4https://developers.facebook.com/docs/opengraph
5http://www.w3.org/TR/rdf11-concepts/
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FIGURE 1. Part of a KG related to the movie domain.

parsed from Wikipedia infoboxes, such as Detective
films6 or Ghost films.7 Categories in Wikipedia are
collaboratively maintained by community editors, thus lead-
ing to a rich set of categories that reflects a human clas-
sification by encoding knowledge about classes, attributes,
and other semantic relations [32]. Ontological data capture
entities types (classes) and their hierarchy; it does not only
represent their taxonomy but extends it by using restrictions
on its relationships to other classes or on the properties a
particular class is allowed to possess. Finally, factual knowl-
edge is merely made of facts; it identifies items’ attributes,
as it can be in the movie domain that the actor Harrison
Ford starred in the movie Blade Runner, as depicted
in Figure 1. Differently from categorical information, factual
one is identified via different attributes/predicates connecting
an item to different entities as in the case of director,
starring, etc..
In DBpedia, the quantity of categorical information is

higher than the factual one. The former is more distributed
over the items than the latter; if we consider movies, we see
that they are more connected with each other via categories
than via other entities. Hence, in this work, we focus on
categorical information.

B. AUTOENCODER NEURAL NETWORKS
Autoencoders are a special kind of unsupervised learning
ANNs that try to set the output values equal to the input
ones, modeling an approximation of the identity function
yyy = f (xxx) = xxx. Roughly, they are forced to predict the same
values they are fed with. Therefore, the number of output
units and that of input nodes is the same, i.e., |xxx| = |yyy|. Such
a task aims to obtain a new representation of the original
data based on the values of the hidden layer neurons. Each
of these layers projects the input data in a new Euclidean
space whose dimensions depend on the number of the nodes
in the hidden layer. Please notice that the actual meaning
of each dimension in the new space is unknown since it
encodes the implicit knowledge behind the original data.

6https://en.wikipedia.org/wiki/Category:Detective_films
7https://en.wikipedia.org/wiki/Category:Ghost_films

FIGURE 2. Architecture of a Semantics-Aware Autoencoder.

Hence, autoencoders are usually exploited to perform the so-
called feature representation task.

IV. SEMANTICS-AWARE AUTOENCODER
Both knowledge graphs and autoencoder neural networks
share a common structure: they are directed graphs. Actually,
there are also differences between the two representations.
In fact, in a neural network, nodes are structured in layers
where two following ones are fully connected with each
other; in a knowledge graph, instead, we cannot identify such
a structure as each node (entity) is semantically connected
to other ones. Moreover, while in a KG the semantics of
connections as well as that of each node is explicit and well-
defined; after the training of an autoencoder, the hidden layers
encode some latent representation of the interaction between
the input nodes whose meaning remains unknown.

In a Semantics-Aware Autoencoder (SemAuto), the hid-
den layers and their connections are substituted by nodes and
labeled connections of a KG, thus having an explicit repre-
sentation of the meaning associated both to hidden nodes and
to their mutual connections [7]. This means that each neuron
represents an entity in the adopted KG, and the edge between
two autoencoder nodes exist if the corresponding KG entities
are connected with a predicate (labeled edge).

Inspired by fully-connected Autoencoders, Semantics-
Aware ones [9] try to solve the interpretability issue by
labeling neurons in hidden layers, thus assigning an attribute
in the explicit feature space to each of them. Considering
that every hidden neuron represents a feature, it has to be
stimulated only if it describes - and thus it belongs to - the
associated item. Therefore a generic neuron representing an
explicit feature results to be connected to those input or output
neurons that describe the item. Hence, the resulting neural
network is not fully-connected, as depicted in Figure 2.

While DBpedia encodes different kinds of information,
factual and semantics, in this work, we used only the latter
for what concerns the recommendation since we found that
categorical information (semantics) is better distributed
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among entities in the KG with respect to the factual one.
A uniform distribution of item’s attributes allows us to
explore better the recommendation space since the user pro-
files we are able to generate contain features shared across
several items on which our recommendation algorithm gen-
eralizes the better.

Hence, the resulting autoencoder has three layers: an input
layer, hidden layer, and output layer, where the input and
output layers represent items in the catalog while the middle
hidden layer contains their DBpedia categories.

Considering that the aforementioned autoencoder relies on
a not fully-connected architecture and item’s attributes are
connected only with items they belong to, user ratings are
propagating only through those hidden neurons that repre-
sent attributes related to rated items. Due to the nature of
Autoencoder Neural Networks, they learn how to reconstruct
input data by using a latent representation they encode in the
hidden layer. Analogously, Semantics-Aware Autoencoders
learn a function to reconstruct the input data by using a
semantic representation of the user ratings; therefore, they
reconstruct the user ratings they are fed with by using an
explicit representation in terms of features.

It turns out that features belonging to positively rated
items tend to have a higher weight, differently from those of
negatively rated items. This behavior is quite understandable
considering that a rating feeding an input node (representing
an item in the catalog) flows throughout the neural network
by crossing only features/nodes connected to it in the KG.
We want to stress here that, although each autoencoder is
trained over a not huge number of samples, in [9] we prove
that recommendation results have very good performance in
terms of accuracy and diversity also compared to state-of-the-
art algorithms.8

To train such kinds of autoencoder, we inhibit the feedfor-
ward and backpropagation step for those neurons which result
to be not connected in the KG by using a masking multiplier
matrix M where rows and columns represent respectively
items and features.

M =

a1,1 a1,2 · · · a1,n
...

...
. . .

...

am,1 am,2 · · · am,n

 (1)

The matrix in Equation (1) represents the adjacency matrix
of the KG where a generic entry is a binary value indicating
whether a connection among entities exists in it. In other
words, we have

ai,j ∈ M =

{
1, if item i is connected to entity j
0, otherwise

Hence, hidden (h) and output (o) layers are computed by
the following two equations:

h = g(X × (W1 ◦M ))

o = g(h× (W2 ◦MT )) (2)

8The code implementing SemAuto has been developed by using Tensor-
Flow and is available at https://github.com/sisinflab/SEMAUTO-2.0.

TABLE 1. Datasets.

During the backpropagation step, gradients are computed
as usually forW1 andW2 with respect to a mean squared error
loss E = 1

2

∑
i ‖ xi − yi ‖2 being xi and yi the elements of

the input and output vector respectively.
The weights update step in SGD (Stochastic Gradient

Descent) backpropagation has been modified according to
Equations (3) in order to take into account the masking
matrix M :

W1 = (W1 ◦M )− r ·
∂E
∂W1

W2 = (W2 ◦MT )− r ·
∂E
∂W2

(3)

where E is the mean squared error loss while W1 and W2
represent the weight matrices for the connections between
the input and hidden layer (W1) and between the hidden
layer and the output layer (W2). They are both initialized
randomly usingXavier initialization [33]. In our experiments,
we trained the model for 1000 epochs with a learning rate
r = 0.03 and we used the well-known sigmoid σ (z) = 1

1+e−z
as activation function. Since we train one autoencoder per
user, and we want it to overfit on user ratings, we did not use
any form of regularization. According to equations (2), bias
terms are missing since, in this model, they do not represent
any information from the KG.
Computing User Profiles: After training the autoencoder

for each user u, we extract the weights of the hidden neurons
and use them to build a user profile P(u):

P(u) = {〈fu1,wu1〉, . . . , 〈fum,wum〉} (4)

being fu the label associated to the neuron and wu its
corresponding weight for u. Indeed, as each hidden neuron
represents an entity in DBpedia, we may assume that its
weight after the training is an indicator of the importance of
the corresponding entity for u.

V. EXPERIMENTS
Here, we describe the experimental settings we used to test
our approach. In this work, we focused on three main aspects:
the recommendation accuracy and diversity, the cold start
problem, and finally, the explanation, which is a direct conse-
quence of our method since it is based upon an interpretable
model that leads to explainability of the recommendation.

In order to validate our approach we performed experi-
ments on the three datasets summarized in Table 1.

In our experiments, we referred to the freely available KG
of DBpedia.9 Themapping contains 22,959mapped items for

9https://dbpedia.org

166126 VOLUME 7, 2019



V. Bellini et al.: Semantics-Aware Autoencoder

MovieLens 20M,10 4,077 items mapped for Amazon Digital
Music11 and 9,926 items mapped for LibraryThing.12 For
our experiments, we removed from the datasets all the items
without a mapping in DBpedia.

A. RECOMMENDATION
In this section, we show how we used our approach to gener-
ate accurate top-N recommendations (which also turn to be
easily explainable as we will demonstrate in Section V-D).

Since the datasets used in the experimental settings are
very sparse, the resulting user profiles (see Equation 4) are
still sparse because users rated a few items with respect to
all the items in the catalog. To reduce the sparsity of user
profiles, inspired by [34], we use aword2vec based approach,
which lets us infer a score for missing features. Word2vec is
an efficient technique originally conceived to compute word
embeddings (i.e., numerical representations of words) by
capturing the semantic distribution of textual words in a latent
space starting from their distribution within the sentences
composing the original text. Given a corpus, e.g., an excerpt
from a book, it projects each word in a multidimensional
space such that words which are similar from a semantic
point of view result close to each other. In this way, we can
evaluate the semantic similarity between two words even if
they never appear in the same sentence. Given a sequence
of words [x1, . . . , xn] within a window, word2vec compute
the probability for a new word x ′ to be the next one in the
sequence. More formally, it computes p(x ′ | [x1, . . . , xn]).

1) UserProfile2Vec
In our scenario, we may imagine replacing sentences repre-
sented by sequences of words with user profiles represented
by sequences of features; given Fu = {fu1, . . . , fum} as the
set of categories belonging to all the items rated by u, we use
the word2vec approach to compute the weight of missing
feature f 6∈ Fu.
Starting from P(u), we first generate a corpus made of

sequences of ordered features sorted by ω. Sorting each user
profile is meant to give a pattern among features in different
user profiles as they should appear nearby in word2vec’s
window according to their features ranking. This process lets
the learned pattern to infer the mostly like missing features
within the word2vec window for each user since a feature
f ∈ Fu results coherently for all u ∈ U .
Then, for each 〈f , ω〉 ∈ P(u) we create a corresponding

pair 〈f , norm(ω)〉 with norm being the mapping function

norm : [0, 1] 7→ {0.1, 0.2, 0.3, . . . , 1}

that linearly maps13 a value in the interval [0, 1] to a discrete
value in the set {0.1, 0.2, 0.3, . . . , 1}. The new pairs we obtain

10https://grouplens.org/datasets/movielens/20m/
11http://jmcauley.ucsd.edu/data/amazon/
12https://www.librarything.com
13In our current implementation we use a standard minmax

normalization.

from this discretization process form the normalized set

Pnorm(u) = {〈f , norm(ω)〉 | 〈f , ω〉 ∈ P(u)}

For each normalized user profile set Pnorm(u) we then build
the corresponding sequence sorted in descending order

s(u) = [. . . , 〈fi, norm(ωui )〉, . . . 〈fj, norm(ω
u
j )〉, . . .]

with ωui ≥ ω
u
j .

Once we have the set S = {s(u) | u ∈ U} we can feed
the word2vec algorithm with this corpus to find patterns of
features according to their distribution across all users. In the
prediction phase, by using each user’s sequence of features
s(u) as input for the trained word2vecmodel, we estimate the
probability of 〈f ′, norm(ω′)〉 ∈

⋃
v∈U P

norm(v) − Pnorm(u)
to belong to the given context, or rather to be relevant for u.
In other words, we compute p(〈f ′, norm(ω′)〉 | s(u)).
It is worth noticing that given f ′ ∈ Fu we may have multi-

ple pairs with f ′ as first element in
⋃

v∈U P
norm(v)−Pnorm(u).

For instance, given the feature dbc:Ghost_films
we may have both 〈dbc : Ghost_films, 0.2〉 and
〈dbc : Ghost_films, 0.5〉, with the corresponding prob-
abilities:

p(〈dbc : Ghost_films, 0.2〉 | s(u))

p(〈dbc : Ghost_films, 0.5〉 | s(u))

As we want to add the feature dbc:Ghost_films and its
corresponding weight only once in the user profile, we select
the pair with the highest probability. The new user profile is
then

P̂(u) = P(u) ∪ {〈f , ω〉 |

argmax
ω∈{0.1,...,1}

p(〈f , ω〉 | s(u)) and 〈f , ω〉 6∈ Pnorm(u)}

We point out that while the original P(u) is built by
exploiting only content-based information, the enhanced user
profile P̂(u) also considers collaborative information as it is
based on the set S containing a representation for the profiles
of all the users in U .

2) RECOMMENDATIONS
Given the user profiles represented as vectors of weighted
features, recommendations are then computed by using a
well-known k-nearest neighbors approach [35]. User vectors
are projected into a Vector Space Model to find user similar-
ities, which are later exploited to compute, for each user, her
neighborhood. Therefore, for each pair of users u and v we
calculate their cosine similarity.

Given the users’ similarity matrix, for each user u we find
her top-k similar neighbors to infer the rate r for the item i as
the weighted average rate that the neighborhood gave to it:

r(u, i) =

∑k
j=1 sim(u, vj) · r(vj, i)∑k

j=1 sim(u, vj)
(5)

where r(vj, i) is the rating assigned to i by the user vj. We use
then ratings from Equation (5) to provide top-N recommen-
dation for each user.
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TABLE 2. Optimal hyperparameters adopted for each method.

B. EVALUATION PROTOCOL
In this section, we show how we evaluated the performances
of our methods in recommending items. For the evaluation
of our approach we adopted the ‘‘all unrated items’’ protocol
described in [36]: for each user u, a top-N recommendation
list is provided by computing a score for every item i not rated
by u, whether i appears in the user test set or not. Using the
Hold-Out 80/20 split protocol, we assure that every user has
80% of their ratings in the training set and the remaining 20%
in the test set. Then, recommendation lists are compared with
the test set by computing both accuracy and diversity [37]
metrics. More specifically, we evaluate Precision, Recall,
F-1 score, nDCG [38], and aggregate diversity as a measure
of how much diversified the recommendations we are able to
generate are.

In our investigations, we compared our method with three
different states of the art techniques widely used in recom-
mendation scenarios: BPRMF [39], WRMF [40], [41] and
a single-layer autoencoder for rating prediction. BPRMF is
a Matrix Factorization algorithm that leverages Bayesian
Personalized Ranking as the objective function. WRMF is
a Weighted Regularized Matrix Factorization method that
exploits users’ implicit feedback to provide recommenda-
tions. In their basic version, both strategies rely exclusively
on the User-Item matrix in a pure CF approach. Since our
approach relies on hybrid techniques, we exploited side infor-
mation (additional data associated with items) within the
aforementioned baselines. In our experiments, we leveraged
categorical information found on the DBpedia KG as side
information and used the implementations of BPRMF and

WRMF available in MyMediaLite14 and implemented the
autoencoder in TensorFlow.15 Moreover, we did not limit to
run the baselines with their default values, but we performed
a hyperparameters optimization to find the best parameters
for each baseline; the corresponding values are reported
in Table 2. For what concerns our method, we tuned some
hyperparameters such as the ones related to the word2vec
approach (window and embedding sizes), and we gathered
different results by varying the number k for the neighbor-
hood size. We found that our method works better with a
window size of 500 and an embedding size of 50.

C. COLD START
The cold start problem affects every CF-based RSwhen a new
item is added since, in that case, it has not received any ratings
yet; hence, CF algorithms are unable to recommend a fresh
item. On the other hand, when a user is new to the system,
she has no ratings; therefore, both CF and CB techniques
are unable to accurately predict any interesting item since
the system knows nothing about the user’s preferences. As a
consequence, in RSs, we may identify cold-item and cold-
user problems.

To evaluate the effectiveness of our approach in such situ-
ations, we simulated the cold start scenario by preprocessing
the datasets using the following protocol inspired by [42].
We made the candidate users cold by removing their ratings
from the training set. We tested our approach with profiles
reduced to 2, 5 and 10 ratings.

14http://mymedialite.net
15https://www.tensorflow.org
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The procedure we adopted during the evaluation is detailed
in the following.

1) Setup the cold start user scenario
• Randomly choose at most 25% of users (whether
they exist) from cold candidates and put them into
set Uc

• ∀u ∈ Uc move out their ratings from the training
set to Fc

2) Evaluate the cold start user scenario
• Create an empty set Rc
• For n ∈ {2, 5, 10} do
– ∀u ∈ Uc do:
∗ randomly pick up n of his ratings from Fc and

move them to the training set
– Train the model
– ∀u ∈ Uc generate recommendation for all

unrated items
– Evaluate recommendations for cold-users only

The method we propose is evaluated against all the base-
lines with respect to the same cold start splits. Hence it eval-
uated on the same users we sampled as cold start candidates.

D. EXPLANATION
The strength of SemAuto is its explainability since the
model, as previously said, is interpretable. To validate the
explanation we are able to furnish users, we set up an online
experiment leveraging on an A/B test platform we built
ad-hoc [8]; thanks to 892 volunteers, we evaluated the effec-
tiveness of our approach and compared its results to two base-
lines. Hence, we primarily focus on the following research
questions:

RQ1 Can we assume that the information encoded in
the hidden layer of the SemAuto autoencoder is
representative of user preferences?

RQ2 Given a content-based explanation built upon the
SemAuto model, is a pairwise explanation better
than a simple pointwise one for the user?

In our experimental setting, we build the structure of
the SemAuto autoencoder by using those KG entities that
are reachable through the predicate dbo:subject as item
categories. To select the top-3 factual movie properties we
used the approach originally proposed in [43], retaining the
following properties: dbo:starring, dbo:director,
dct:writer.16

Explaining the provided recommendation to users is not
only a matter of model’s interpretability: it allows us to
catch the user’s attention, hence, an appropriate style should
have been taken into account. For this reason, in this work,
we evaluate different explanation styles we generate through
user profiles we compute with SemAuto.

16We selected only the top-3 properties to reduce the dimension of the
feature space and then minimize the noise in the provided explanation.
Finding the best number of properties to compute explanations is not in the
scope of this paper and is part of our future work.

In order to formulate a human-understandable explana-
tion for the provided results, we rely on the weights asso-
ciated with features in the user profile, which also appear
in the description of the recommended items. In particu-
lar, given a user u and a recommendation list rec(u) =
[〈i1, r̃u1 〉, . . . , 〈in, r̃

u
n 〉], with r̃

u
k being a score/rating computed

for the item ik by a recommendation engine, wemay compute
a pointwise and a pairwise personalized explanation.
pointwise personalized. Given an item i = {f1i, f2i, . . . , fni}

described by a set of features fi, the pointwise explana-
tion e1k (i) is computed by considering the set of top-k
highest weighted features in P(u) which also appear
in i.

pairwise personalized. Given two items i and j such that
r̃ui > r̃uj , the pairwise explanation e2

k (i, j) is computed
by evaluating both e1k (i) and e1k (j). In casem features
are in common between e1k (i) and e1k (j), we compute
e1k+m(j) and leave them only in e1k (i) thus avoiding
any overlap between the explanation for i and that
for j.

To verify that the explanation generated through a
Semantics-Aware Autoencoder is able to satisfy the main
explanatory criteria of transparency, persuasiveness, effec-
tiveness, trust and satisfaction, we built a web platform that
returns the top-5 recommendations and then asks for users’
feedback about the provided explanation.

E. EXPLANATION STYLES
We provided our platform with four different explanation
styles: as in [31], we used a popularity-based explanation
and a non-personalized one as baselines [27] while as third
and fourth style we provide our pointwise and pairwise
approaches. While a user interacts with the platform, we ran-
domly select one of the four styles and show the associated
explanation generated for the top-2 recommended items in
a pairwise fashion. Hence, the user may receive one of the
following explanations:
popularity-basedWe suggest these items since they are very

popular among people who like the same movies as
you.

(non-/pointwise) personalizedWe guess you would like to
watch i and j since they are about f̃u1, . . . f̃uk

pairwise personalized We guess you would like to watch
i more than j because you may prefer e1k (i) over
e1k+m(j) (Example 1)

Example 1: In order to show the difference between a
pointwise and a pairwise personalized explanation, hereafter
we report the two explanation styles with reference to a
recommendation having Terminator 2: Judgment Day and
Transformers: Revenge of the fallen as the first two items in
the recommendation list. The pointwise personalized expla-
nation may look like:
We guess you would like to watch Terminator 2: Judgment

Day (1991) and Transformers: Revenge of the Fallen (2009)
because you may prefer:
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• (subject) 1990s science fiction films
• (subject) Science fiction adventure films
• (subject) Drone films
• (subject) Cyberpunk films

and:

• (subject) Science fiction adventure films
• (subject) Films set in Egypt
• (subject) Robot films
• (subject) Films shot in Arizona
• (subject) Ancient astronauts in fiction

while the pairwise version (see also Figure 3b) is a bit
different:
We guess you would like to watch Terminator 2: Judgment

Day (1991) more than Transformers: Revenge of the Fallen
(2009) because you may prefer:

• (subject) 1990s science fiction films
• (subject) Science fiction adventure films
• (subject) Drone films
• (subject) Cyberpunk films

over:

• (subject) Films set in Egypt
• (subject) Robot films
• (subject) Films shot in Arizona
• (subject) Ancient astronauts in fiction
• (subject) IMAX films

�
The popularity-based explanation, as its name suggests,

justifies recommender choices by leveraging the popularity
of suggested items among the users with similar tastes of the
active user u, hence it may be considered as the less mean-
ingful to the user. The non-personalized explanation, instead,
tries to explain the provided recommendation by using addi-
tional information about the items. In our experiments, given
the top-2 recommended items i and j, we randomly select
k = 5 features from the set Fij = Fi∪Fj = {f1i, f2i, . . . , fni}∪
{f1j, f2j, . . . , fn′j}. In a similar manner, in a pointwise person-
alized explanation we selected the top-5 features from each
set Fi and Fj. The value k = 5 has been selected also to
compute e2k (i, j) in the pairwise personalized explanation.
Please notice that the considered set of features per item

varies according to the different configuration adopted for the
SemAuto autoencoder; it may include just item categories,
factual data or both of them.

During the online A/B testing phase, we fixed a sequence
of steps in order to measure the aforementioned explanatory
criteria.
Steps 1-3: At the beginning of the experiment, the user u

selects at least 15 movies she has watched among the ones
randomly listed by the platform. The movies belong to the
well-known MovieLens 20M dataset.17 Then, she is invited
to rate each selected movie on a five-stars rating scale; data so
gathered are exploited to get both the user profile computed

17https://grouplens.org/datasets/movielens/20m/

FIGURE 3. Screenshots of the A/B testing platform.

with the semantic autoencoder and a top-5 recommendation
list.
Step 4: Once the recommendation has been generated,

the user is asked to rate the suggested items, even if no
explanation has been shown yet (see Figure 3a): these ratings
will be relevant to determine the impact the explanation has
on the user (persuasiveness).
Step 5: The next step consists of showing to u one of the

four randomly selected explanation styles deployed within
the application (see Figure 3b). After enjoying the explana-
tion, the user has to re-rate the top-2 recommended items,
letting us measure how different is the evaluation of the items
before and after the explanation has been provided.
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TABLE 3. The final questionnaire.

Step 6: Similarly, in the last part of the experiment,
the user is asked to re-rate the recommended movies after
watching the related trailers. This phase allows u to emulate
the consumption of the items and makes her more aware
of the topics of the suggested movies. In this way we can
evaluate how much effective the selected explanation style
was (effectiveness).
Step 7: Finally, the user fills a questionnaire, aimed at

measuring the explanation transparency, trust and satisfac-
tion (see Table 3).

When evaluating an explanation system, the main metrics
to evaluate are [24]:
• transparency, which refers to the capability of the expla-
nation to make users aware of how the system works;

• trust, or rather the confidence users have in the system;
• satisfaction, if users have an enjoyable experience in the
usage of the system;

• persuasiveness, which evaluates how much convincing
is the proposed explanation;

• effectiveness: the explanation is said to be effective if it
helps users to correctly estimate items relevance before
the consumption.

The first three metrics are evaluated by collecting answers
from users after filling the questionnaire at Step 7. As a
final score for the first and the second metrics, we used the
percentage of users that answered positively to the questions
while we exploited the average score assigned by users to
quantify the overall satisfaction.
In order to evaluate the persuasiveness of the proposed

explanation, we asked users to rate each recommended item
before and after showing them the explanation: if the rating
provided after looking at the explanation is higher than the
original one, then the explanation has been able to persuade
the user to try the suggested item. More formally we measure
persuasiveness as [24]:

persuasiveness =
1
|U |
·

∑
u∈U

1
N
·

∑
i∈IuN

(reui − rui)

where U stands for the collection of users; IuN represents
the set of top-N recommended items for u; rui and reui are,
respectively, the ratings u assigns to i just before and after the
explanation is provided.

Analogously, we evaluated the effectiveness as the dif-
ference between two ratings (see Equation (6) [24]), where
r tui represents the rating the user gives to the suggested movie

TABLE 4. Summary of hidden units for mapped items only.

TABLE 5. Average number of features in cold start user profiles.

after watching the related trailer (r tui).

effectiveness =
1
|U |
·

∑
u∈U

1
N
·

∑
i∈IuN

||reui − r
t
ui||

The lower this value, the more effective the explanation,
since it implies that users have rated each item with very sim-
ilar values before and after the explanation has been provided.

We conducted our experiment with the help of 892 volun-
teers,18 with at least 73 subjects for each of the implemented
settings. As stated in [44], 73 has to be considered as the
minimum acceptable sample size for such kinds of exper-
iments. This assures the significance of our experimental
results. Furthermore, we verified the statistical significance
of our experiment by usingWilcoxon Rank-Sum Test, getting
p� 0.01.

VI. RESULTS DISCUSSION
We have evaluated our approach by comparing it with differ-
ent state-of-the-art baselines and using three datasets in dif-
ferent domains, with respect to accuracy and diversity point of
view. In Table 6, we report the results gathered in datasets by
applying the methods discussed above. As for our approach
SemAuto, we tested it for a different number of neighbors by
varying k . In terms of accuracy, we see that SemAuto out-
performs our baselines on bothMovieLens 20M and Amazon
Digital Music datasets, while on LibraryThing the achieved
results are quite the same as BPRMF and WRMF baselines.
In particular, we suppose that the LibraryThing dataset is
highly affected by popularity bias since the fully-connected
autoencoder significantly outperforms all the other baselines
obtaining an aggregate diversity of only 118 items.

Moreover, focusing on the results, it seems that our
approach provides very discriminative descriptions for each
user, letting us identify the best neighborhood and compute
both accurate and diversified recommendations. Regarding
diversity, we get much better results on all the datasets.
As a matter of fact, we achieve the same results in terms of
accuracy as the baselines by suggesting many more items.

18They were recruited both among our students and via Amazon Mechan-
ical Turk.
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TABLE 6. Experimental results.

This means that our approach really captures the real users’
preferences and therefore, it provides useful recommenda-
tions that turn out to be also diversified since SemAuto
extracts unusual features from user ratings that are relevant
to the user. Hence, exploring the long tail allows SemAuto
to provide both accurate and diversified recommendations.
A further confirmation that our approach examines the long
tail is given by results reported in Table 6, where at a given
baselines’ value for the F-1 score, our approach recommends
more items than the baselines. Even if one may argue that our
method is more likely a rating prediction approach, nDCG
results reported in Table 6 confirm that SemAuto ranks
recommended items as they appear in the test set. In other
words, it means that our method not only suggests relevant

items, even from the long tail and so maintaining a high level
of diversity, but it does in the proper ranking order within the
recommendation list it generates.

Analyzing Table 4, we can state that SemAuto performs
better on those datasets whose items are described by a larger
amount of categorical information, which implies the usage
of many hidden units. Since ANNs can model very complex
functions if enough hidden units are provided, as Universal
Approximation Theorem points out, the more dataset’s items
are rich in features, the better SemAuto performs. For this
reason, our approach proved to work better on MovieLens
20M dataset (whose related neural networks have a high
number of hidden units) rather than the others. In particular,
the experiments show that the performances get worse as the
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TABLE 7. Experimental results in cold start scenario.

number of the neurons decreases, i.e., available categories are
not enough.

Regarding the cold user start scenario, we can see that the
same trend is confirmed. Our SemAuto approach performs
better when a large number of features are associated with
items since the more feature we have, the more hidden neu-
rons our model has. Taking a look at Table 7 we can see
that in a cold start scenario our method performs the best on
MovieLens 20M where we have a huge amount of features

in the user profiles, while we perform worst on Amazon Dig-
ital Music and LibraryThing where few features are available
(Table 5).

Concerning the explanation, analyzing the results shown
in Figure 4, we can state that, as expected, users prefer
a CB explanation, as the popularity-based merely tells
users that the recommended item is popular among the
user’s neighborhood. All the explanation metrics but the
persuasiveness one, confirm this trend; in this case, quite
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FIGURE 4. Results comparison.
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interestingly, the non-personalized explanation style with
categorical information get negative values, as it happens
when users rate items with lower values after looking at
the explanation than before. This means that the provided
explanation discourage users from watching the suggested
movies, probably because prompting a random set of item’s
feature as an explanation is deleterious for what concerns
users’ persuasion to watch a movie. Interestingly, it is worthy
to notice that when a personalized explanation is provided to
users, the categorical information works better than the fac-
tual one, although combining both of them achieves the best
results in users’ persuasion. Considering the satisfaction, it is
reasonable to expect that non-personalized style works worst
with respect to other explanation styles since it uses a random
set of items’ feature; this behavior is confirmed when it uses
categorical or factual information. However, when both of
them are combined, unexpectedly non-personalized outper-
forms the categorical pairwise. We suppose that the more
considerable amount of diversified item’s attributes deceive
the user and lead her to be satisfied with the received expla-
nation; furthermore, we assume that a significant contribution
is given by the factual, as also pointed by the effectiveness
metric. Here, the factual information outperforms all the other
explanation styles when used in the pairwise approach, but
when combined with the categorical information, they per-
form worst with respect to the former alone. We suppose that
the categorical information brings somuch noise that it makes
the user not correctly to estimate her expectation after she
read the explanation. In detail, the factual information works
better than the categorical one; we assume that users feelmore
comfortable with entities such as actors, directors, or real
people rather than abstract concepts like the ones categorical
information provides. The same goes for trust in which it
turns out that users consider more affordable an explana-
tion, whether it consists of factual information. Regarding
transparency, the system is perceived as more transparent
from users when supplementary information is prompted to
them, therefore combining categorical and factual gets the
best result.

Finally, we can state that the personalized style outper-
forms the non-personalized since the latter relies on a random
list of features that belong to the suggested item, with no
assurance that they reflect the user’s preferences. Further-
more, among the personalized approaches, the pairwise is the
one that performs better; we suppose that it actually captures
the user’s preferences, and is capable to rank items’ features
accordingly.

To provide an answer to RQ1, examining the results,
it turns out that our SemAuto provides reliable users’
descriptions, as evidenced by the effectiveness metric, which
gets the lowest value by using a pairwise explanation.
This can be interpreted as a strong signal that the infor-
mation encoded in the autoencoder hidden layer is rep-
resentative of the users’ preferences because the users
are less prone to change her ratings after she read the
explanation.

As for RQ2, we can assert that the pairwise approach
outperforms the pointwise one in all metrics, especially in
transparency because it provides a better justification on how
the system ranks items according to the importance of the
features in the user profile. This lets the user understand
better how her preferences are involved in the recommenda-
tion process. This has an impact, especially for the persua-
siveness metric, where the pairwise approach has a higher
score with respect to the pointwise explanation, thus leading
users to consume an item after they have read the provided
explanation.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel approach that exploits
both deep learning techniques and knowledge graphs to
provide accurate, diversified and explainable recommenda-
tions. Usually, a classical application of autoencoders consists
of compressing the original input data into a new latent
space with lower dimensions so that finding relationships
and similarities among the data should be easier thanks to
the reduced dimensionality. In this case, we rely on the
topology of a KG to label hidden neurons for a not fully-
connected Autoencoder Neural Network whose model turns
out to be interpretable. We used our approach to auto-encode
user ratings in a recommendation scenario via the DBpedia
KG and proposed an algorithm to compute user profiles,
which are exploited to provide recommendations based on
the semantic features we extract with our autoencoder. Exper-
imental results show that we are able to outperform state-
of-the-art recommendation algorithms on both accuracy and
diversity.We tested our approach even in a cold start scenario,
finding a common trend: the more categorical information
(features) we have for each user profile, the better our method
performs. This is quite interesting since this approach could
be used to perform studies on data quality for knowledge
bases in recommendation scenarios; in a future investigation,
we will compare how the use of different knowledge graphs
within our method will impact the quality of recommen-
dations regarding both accuracy and diversity. Furthermore,
we will compare our approach with other competitive base-
lines, as suggested in more recent works [45].

We also performed online experiments to validate the
capability of our approach to generating an explanation for
recommendation lists via the exploitation of data coming
from the DBpedia knowledge graph. Experimental results
show that our SemAuto can be used to generate a com-
pelling explanation for a recommendation list. In particu-
lar, a content-based explanation is preferred by users, as it
outperforms other baselines concerning transparency, trust,
satisfaction, persuasiveness,and effectiveness. As we can see
in the satisfaction, effectiveness and trust plots in Figure 4,
for both pointwise and pairwise approaches, an interesting
point is that, in order to build an explanation, factual data
works better than the semantic/categorical one, achieving
the same results as when both semantic and factual data are
exploited.
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The results presented in this paper pave the way for various
further investigations in different directions. From a method-
ological and algorithmic point of view, we can surely inves-
tigate the augmentation of further deep learning techniques
via the injection of explicit and structured knowledge com-
ing from external sources of information. Giving an explicit
meaning to neurons in an ANN as well as to their connec-
tions can fill the semantic gap in describing models trained
via deep learning algorithms. Moreover, having an explicit
representation of latent features opens the door to better and
explicit user modeling. We are currently investigating how
to exploit the structure of a KG-enabled autoencoder to infer
qualitative preferences represented by means of expressive
languages such as CP-theories [46]. Providing such a pow-
erful representation may also result in being a key factor in
the automatic generation of explanation to recommendation
results.
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