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ABSTRACT In this research work, a Three-Dimensional Cancer model (TDCM) has been used and nonlinear
controllers; Lyapunov Redesign, Synergetic and Sliding Mode based controllers have been designed in order
to reduce the growth of tumor cells to a level where they become harmless, to maintain the hunting predator
cells to their maximum possible value and to retain resting predator cells to 40% of the hunting predator
cells. The proposed controllers have been developed for chemotherapy and their effect on different cells has
been studied. Asymptotic stability of the proposed controllers has been studied using Lyapunov stability
theory. Theoretical analysis has been supported by simulation results using MATLAB/Simulink. Under the
proposed controllers, the system behaves very nicely even in the presence of un-modeled disturbances and

noise.

INDEX TERMS Hunting and resting predator cells, Lyapunov redesign control, sliding mode control,

synergetic control, tumor cells.

I. INTRODUCTION

Infectious diseases portrayed by uncontrolled cell
development are called cancer. Unsatisfactory performance
of immune system against chaotic tumor cells and their
disordered development prompts harm and even death to
patients. Tumor dormancy and escape from immune surveil-
lance system are some unpredictable characteristics during
tumor growth which must be controlled [1], [2].

There are several methodologies to treat a cancerous tumor
which include surgery, radiotherapy, immunotherapy and
chemotherapy. Oncologists have been using chemotherapy as
one of their primary treatment for cancer patients.

Different mathematical models of cancerous tumor exist
in the literature [3]. The scientists have been putting effort to
study different stages of tumor development and the effect of
chemotherapeutic medications on the development of tumor
cells. Some models can be found in which destruction of
tumor cells has been demonstrated under chemotherapeutic
treatment.

Log-kill theory says that the tumor growth is propor-
tional to the destruction of the cells [4]. Therefore, accord-
ing to this hypothesis, volume of huge tumors diminishes
quicker than that of smaller tumors. But there are certain
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diseases, like Lymphoblast Leukemia and Hodgkin’s
infection, the outcome contradicts to the hypotheses. Here,
smaller tumors decrease quicker than sizeable tumors of a
similar kind. Norton-Simon theory says that the cell destruc-
tion has been directly proportional to the rate of tumor
development [5], [6].

In earlier research, unconstrained and constrained con-
trol techniques with open loop analysis have been observed
in [7], [8]. In [9] a feedback controller has been presented
which uses quadratic performance criterion for analysis.
Optimal control on a stochastic nature model is another
field of research found in the literature [5]. It used optimal
control techniques for the comparison of different models.
Chemotherapeutic process has also been implemented using
multi-objective optimal control. Impact of parametric vari-
ations and disturbances has not been considered in most of
the controllers designed in the literature. Different control
strategies have also been developed to attain robustness [10].
Linear optimal regulation based on extremal variation, Ho
control and nonlinear optimal control have been developed
in [11], [12].

In one of the recent works, cell population exhibited a
chaotic property which is highlighted by state-space lin-
earization based on lie algebra using a TDCM by [1].
It included a typical population of tissue cells to perform a
phase space analysis and used optimal control theory to study
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the impact of chemotherapeutic treatment [13]. It analyzed
the development of tumor cell in the presence of the cytokine
IL-2 and the resting predator cells. Both cells play a fun-
damental role to activate and simulate the immune system
of the body. They concluded that antigenicity of the tumor
cells does a basic job in their own recognition by the immune
system. Fluctuations in the growth of tumor cells have been
seen and a stable limit cycle has been observed for some of the
antigenic parameters. It has been realized that chemotherapy
does influence the quickly developing hunting predator cells.

One can discover different cancer-immune interaction
models along with their dynamical analysis. These mod-
els incorporate distinctive cell growth and share fundamen-
tal qualities. They incorporate cancer-free equilibria, tumor
existing with different cells and uncontrolled development of
cancerous tumor [14]. Most of the intriguing dynamics occur
when there exists an equilibrium point between tumor and
other cells in a body which may produce oscillations in the
growth of the cells and converge to a stable limit cycle.

In the literature, a controller has been designed for the
chaotic behavior of tumor dynamics [15]. The chaos and opti-
mal control of cancer model with totally obscure parameters
together with the asymptotic stability has been studied in [16].
A nonlinear prey-predator model has been considered in [17]
to demonstrate regular interaction between tumor and resting
predator cells. To incorporate the characteristics of finite time
convergence and enhance robustness of the controller, Sliding
Mode Controllers can play a pivotal role.

In this paper we have proposed three nonlinear controllers
namely; Lyapunov Redesign, Synergetic and Sliding Mode
based controllers using TDCM for reducing the growth of
tumor cells to a level where they become harmless, main-
taining the hunting predator cells to their maximum possible
value and retaining resting predator cells to 40% of the hunt-
ing predator cells.

The contents of this paper are organized as: Mathemati-
cal modeling has been discussed in section II. Controllers
have been designed and detailed mathematical analysis has
been discussed in section III. Simulation results using MAT-
LAB/Simulink have been shown in section IV and section V
presents the conclusion.

Il. MATHEMATICAL MODEL

The model is developed for spontaneous tumor regression and
progression which is an interaction between the anticancer
agent cell, lymphocytes and macrophages, that are natural
killer cells which destroy the malignant cells. The following
assumptions have been considered:

1. The predator is T-lymphocytes and cytotoxic
macrophages/natural killer cells of immune system, attacks/
destroys or ingests the tumor cell.

2. The prey are the tumor cells which are attacked and
destroyed by the immune cells. The predator has two states;
hunting and resting, and destroys the prey. The tumor cells are
caught by macrophages which can be found in all the tissues
of the body and circulate round in the blood system.
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3. Macrophages absorb tumor cells, eat them and release
series of cytokines which activates the resting T-lymphocytes
that coordinate the counter attack.

4. The resting predator cells can also be directly simu-
lated to interact with antigens. These resting cells cannot
kill tumor cells, but they are converted to a special type of
T-lymphocyte cells called natural killer or hunting cells and
begin to multiply and release other cytokines that simulate
more resting cells.

5. This conversion between hunting and resting cells result
in a degradation of the resting cells undergoing natural growth
and activation of hunting cells.

6. To introduce the mathematical model, we assume that
the tumor cells are being destroyed at a rate proportional to
the densities of the tumor cells according to the law of mass
action. We also assumed that the resting predator cells are
converted to the hunting cells either by direct contacting with
them or by contact with a fast diffusing substance produced
by hunting cells. Once a cell is converted, it will never return
to the resting stage and active cells die at constant probability
per unit time.

7. All the resting predator and tumor cells are nutrient rich
undergoing mitosis and the tumor cells have a proliferating
advantage over the normal cells [16].

The mathematical model of the tumor uses tumor
cells, hunting predator cells and resting predator cells.
Equation (1) shows the ordinary differential equations of the
tumor model [1].

a7 7(1 T) TH TR
=<, Iy _

” 1 I a a3

dH H

— =pmH( - —)— TH 1
" rH( kz) as (D
dR r3TR

— = — TR — d3R

” (T+k3) az 3

where T'(¢) is the number of tumor cells, H(¢) is the number
of hunting predator cells and R(¢) is the number of resting
predator cells at time ¢. The tumor cells develop at the rate rq
without any effect of hunting and resting predator cells with
maximum carrying capacity of k. aj» and a3 are the rate at
which tumor cells are being killed by the hunting and resting
predator cells respectively. The hunting predator cells grow at
the rate of r, with the maximum carrying capacity k. Hunting
predator cells are being killed by the tumor cells at the rate of
az1. The resting predator cells are being killed by the tumor
cells at the rate of a3 and they die naturally at the rate of d3.
Since the recognition of tumor cells by predator cells is a very
complex process, let us assume that the activation of resting
predator cells depends directly on the number of tumor cells
with positive constants r3 and k3 [1].

In order to non-dimensionalize the system, lets introduce:

T H R
X1=—, Xp=—,x3=—
T T TR T Tk

r r d
Ry=-2 Ry=-, Dy=—

1 1 r
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Equation (1) takes the following form:
X1 =x1(1 —x1) —Apxixy — Azxrxs
X = Ruxp(l — x2) — Azixixz (3)
R3x1x3

= — A3z1x1x3 — D3x3 +u

x1 + k3
Equation (3) is the state space representation of dimension-
less TDCM.

IIl. CONTROLLER DESIGN

A. PROPORTIONAL INTEGRAL DERIVATIVE (PID)
CONTROLLER

PID control is a closed loop feedback control system which
is very commonly used in numerous industrial automation
because of its adaptability and dependability [18]. It contin-
uously calculates the error from the feedback loop and tunes
its output. It works on the structure of the PID controller, for
instance, K (s) being described by equation (4) [19].

K.
K(s) = Ky + = +Kus )

K (s) is the controller gain which has three parts; K (s), K; and
K. They represents the proportional, integral and the deriva-
tive gains respectively. Desired response can be obtained by
tuning these gains [18]. Figure (1) shows the block diagram
of how the PID control works.

B. LYAPUNOV REDESIGN CONTROLLER
Lyapunov Redesign controller has been designed for the
treatment of tumor by strengthening the immune system and
destruction of cancer cells through drug injection. For this
purpose, error has been introduced by taking the difference of
tumor and resting predator cells with their desired reference
value as follows:

{e 1 = X1 —Xid (5)

€2 = X3 — X34

where x14 is the desired value of tumor cells and xy4 is the
desired value of resting predator cells; both in steady state.
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Taking time derivative of equation (5) to get the following
error dynamics:
el =X — X4
S (6)
€2 = X3 — X34
Substituting x and x3 from equation (3) in equation (6),
we get

€1 =x1(1 —x1) — Apx1x2 — A13x1%3 — X1g

R3x1x3 . @)
e = —Az1x1x3 — D3x3 +u — X34

x1 + K3

x1q4 and xp; are constant references, so their derivative
becomes zero. For the states x; and x3 to converge to their
desired values, the errors e; and e; must converge to zero.
For this purpose, a positive Lyapunov candidate function is
taken as:

1 1
V=ce+ e ®)

For asymptotic stability, time derivative of V must be negative
definite. For this purpose, taking time derivative of equa-
tion (8), we get

V =celel +erer 9

By substituting the values of €] and ¢, from equation (7) in
equation (9), we get

V =ei(x1(1 —x1) — Appxixp — A13x1x3
R3x1x3

+ ex( —Azix1x3 — D3x3 +u)  (10)

X1 + k3
For V to be negative definite, we take

e1(x1(1 —x1) — Appx1x2 — A13x1x3
R3x1x3
+e
2()61 + k3
= —kiel — kye3 (11)

— Az1x1x3 — D3x3 +u)

where k1 and k> are the control design parameters which are
positive definite. So that V becomes

V = —kie? — kye3 (12)

which will always be negative definite and the states will be
asymptotic stable at the equilibrium point (e1, e2) = (0, 0)
by Lyapunov stability theory. The control input for both the
resting predator and tumor cells can be obtained from the
equation (11) as follows:

1
u= a[—m(m(l —x1) —Apxix2 — A13x1x3)

(R3X1X3

— e

2 X1+ k3

—kiey — kpep)] (13)

— Az1x1x3 — D3x3)

which is required control law using Lyapunov Redesign con-
trol technique.
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C. SYNERGETIC CONTROLLER
Synergetic control emerged a few years ago and is been well
used and developed by the control and automation society.
Conceptually, Synergetic control works in a same manner
as sliding mode controller. It works very nicely even in the
presence of the disturbances and uncertainties; the advantage
being chattering appears but with reduced amplitude as com-
pared to Sliding Mode Control (SMC) [20].

The control synthesis starts by choosing a suitable
macro-variable function §(X, ) defined as:

8§ =Cie; + Cren (14)

where C1 and C; are real positive constants. Taking time
derivative of equation (14), we get

§=Cre1 + Crén (15)

The task is to track the resting predator cells to 40% of the
hunting predator cells and reduce the tumor with an expo-
nential rate under the control input. The dynamic evolution
of the macro-variable is given by:

T6+8=0,T >0 (16)

where control parameter T is the convergence rate of the
controlled states of the system. Now substituting the values
of €1 and ¢, from equation (6) in equation (15), we get

§ = Cilxi(1 — x1) — Appxix — Apax1az — X141
ool R3x1x3
2 x1 +K3

Putting the values of  and § from equations (14) and (17)
respectively into (16), we get

—Azx1x3 — D3x3 +u—x3¢]  (17)

T<C1 (xl(l —x1) — A1px1x2 — A13X1X3 —J'Cld)

Raxix3 )
+C2< — A31x1x3 — D3x3 +M—X3d)

x|+ K3
+Cie1 + Cre2 =0 (18)
From equation (18), we have the following control law:
R C
= 1 —Az1x1x3 — D3x3 — ez
x1 + K3 GT T

cl
- C—X1(1 —x1)+Apxixa +Apxixaz (19)
2

Asymptotic stability of the system can be proved by taking
following Lyapunov candidate function as:

1o

V=3 b (20)
Taking the time derivative of equation (20), we get:
V=45 1)
Using equation (17), the equation (21) becomes
V=—l# (22)

T
which is negative definite ensuring asymptotic stability of the
system.
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D. SLIDING MODE CONTROLLER
SMC controller has been designed as given in [21]. The
sliding surface can be taken as:

s =aiel + aer (23)
First derivative of sliding surface can be written as:
§=aiey +axéy (24)

x14 and x4 are constant references so the derivative becomes
zero. Using equation (6) we can write equation (24) as
following:

S = aix| + axs (25)

Using the exponential reaching law, we have

s
§=—k|s| sign(—) (26)
14
Control law obtained from SMC has two parts
U = Upg + Udis 27

where u,, is the equivalent controller part which controls
the reaching phase and ug;s is the discontinuous controller
part which makes sure that the system remains on the sliding
surface once arrived. ug;s is computed by using § = 0, using
equation (26) we can write

. s
ugis = —k | s | Slgn(%) (28)
Uy is computed using equation (3) and equation (25)

a
Ueg = ——(x1(1 — x1) — Appx1x2)
ap
<R3X1X3
X1 + k3

Using equation (28) and equation (27), we have the follow-
ing control law:

—A31x1x3 — D3X3) (29)

. (s ai

u=—k|s| Slé’”(-) — — @1 (1 —x1) — Appx1x2)
¥ as

<R3X1X3

X1 + k3

Asymptotic stability of the system can be proved by taking
following Lyapunov candidate function as:

— A31x1x3 — D3X3) (30)

1,
== 31
v 2s 31
Taking time derivative of the equation (31) we get
V=8 (32)

For asymptotic stability we must have v < 0. Substituting
value of § from equation (25), equation (32) can be written
as:

S<al (xl(l —x1) —Appxix —A13x1x3)

Raxix3
+a (
: X1+ k3

— As1x1x3 — Daxs +u)> <0 (33
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TABLE 1. Value of constants and system parameters.

Parameter | Value | Parameter | Value
Ro 0.6 R3 4.5
D3 0.5 A12 1
Aoq 1.5 Az 2.5
As1 0.2 Xd1 0.01
Xd3 0.4 - -

Time Responce of Uncontrolled States
T T T T T T

—— Tumor cells
—— Hunting Predator cells
Resting Predator cells

Number of Cells/mm?

Nl

0 2 a0 60 80 100 120 140 160 180 200
Time in days

FIGURE 2. Uncontrolled response of Three Dimensional Cancer Model.

Substituting u from equation (30), we can write equation (33)
as:

—a |5 | sign(%) <0 (34)

which is negative definite ensuring asymptotic stability of the
system.

IV. SIMULATION AND RESULTS

MATLAB/Simulink has been used to simulate and study the
performance of the proposed controllers. The values of
the constants and system parameters have been shown in
the table (1).

The uncontrolled response of the system is shown
in figure (2). The response shows chaotic behavior. Figure (3)
shows uncontrolled response in three-dimensional phase por-
trait which also shows chaotic behavior of the system. The
system has initial conditions as 0.1 for all states and then the
system shows chaotic behavior which is not desirable in any
system.

The comparison of resting predator cells under the pro-
posed controllers is shown in figure (4). It is clear from the
figure (4) that the output of PID controller shows overshoots
and undershoots before converging to the desired value with
almost no steady state error. The output of Synergetic and
Lyapunov Redesign controller converges to the desired value
in lessor time as compared to PID controller. Synergetic
controller tracks the reference value with negligible oscilla-
tions with a smaller steady state error. Lyapunov Redesign
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FIGURE 3. Uncontrolled response of Three Dimensional Cancer Model.
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FIGURE 4. Resting predator cells: Comparison between Synergetic,
Lyapunov Redesign and PID controllers.

Time Responce of Controlled States
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——Synergetic
0ssf os0s PID
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osf | — il
0385
0.5
,—‘ 0%, 4 3 s 10

Number of Cells/mm?

FIGURE 5. Resting predator cells with drug path blockage: Comparison

between Synergetic, Lyapunov Redesign and PID controllers.

controller shows steady state error which keeps reducing with
time and converges to desired value at t = oo.
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Time Responce of Controlled States
T T

——Lyapnov Redesign
—— Synergetic

PID
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Number of Cells/mm?
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8 2 3

.
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FIGURE 6. Resting predator cells with oral medication: Comparison
between Synergetic, Lyapunov Redesign and PID controllers.
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:K v
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035

—— Lyapunov Redesign|
——Synergetic
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Number of Cells/mm?

0.35

Time in days

FIGURE 7. Resting predator cells with constant disturbance: Comparison
between Synergetic, Lyapunov Redesign and PID controllers.

In figure (5) same comparison is shown as figure (4) but
to test the stability of the controllers, drug path blockage
scenario has been simulated by adding a saturation block
in MATLAB/Simulink. This figure shows bigger overshoots
and undershoots in the output of PID controller which takes
a lot of time to converge to the desired value. Output of
the Synergetic and Lyapunov Redesign controllers shows a
good transient response and converges to the desired value
very quickly. Output of Lyapunov Redesign deviates from
the desired value in steady state response but converges back
quickly while the Synergetic controller does not show any
deviation in the steady state response.

The number of cells depends on various factors such as the
type of food, medication and even the environment. This kind
of cell behavior has been simulated by adding oral medication
that will strengthen as a result of first dose whereas in sec-
ond dose, it weakens the resting predator cells in the body.
Figure 6 shows the output of resting predator cells under
the proposed controllers. The initial response is like that
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——Synergetic

PID
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FIGURE 8. Resting predator cells with added White Noise disturbance:
Comparison between Synergetic, Lyapunov Redesign and PID controllers.
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—— Synergetic

PID
———Refrence -

Time Responce of Controlled States
T T

Number of Cells/mm?

Time in days

FIGURE 9. Tumor cells: Comparison between Synergetic, Lyapunov
Redesign and PID controllers.

of figure (4). Non-linear controllers neutralized the effect of
the disturbance and the output of PID controller showed small
overshoots and undershoot and took small time to converge
back to the desired value when medicine has been taken by
the patient.

In figure (7) a constant disturbance has been added to test
the output of the proposed controllers. PID controller did not
yield any output while the nonlinear controllers produced the
output similar to that of figure (4).

Gaussian white noise is added to the system to simulate
the natural variance occurring in the human body. Figure (8)
shows the output of the Lyapunov Redesign, Synergetic and
PID controllers after the addition of Gaussian white noise
of power 0.01. Only PID controller has been unable to cope
with the disturbances and showed a very noisy output. Syn-
ergetic and Lyapunov Redesign controllers do have small
disturbances in the output but the noise observed in the output
is negligible.
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FIGURE 10. Comparison between controlled response of Three
Dimensional Cancer Model.

Phase Potrail of Controlled Vs Uncontrolled States
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04 05
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Hunting Predator CeHs/

FIGURE 11. Comparison between controlled and Uncontrolled response
of Three Dimensional Cancer Model.

Figure (9) shows the comparison of the proposed Lyapunov
Redesign and Synergetic with each other and that with PID
controller. It is clear that the tumor cells converge to zero and
a small overshoot has been observed in output of the PID
controller.

Figures (10) and (11) show the comparison of the con-
trolled and un-controller phase portraits of resting predator
cells using the proposed (Synergetic, Lyapunov Redesign and
Sliding Mode) and PID controllers respectively. It is clear
from both figures (10),(11) that the output of PID controller
undergoes overshoots and undershoots.

Figure (12) shows the comparison of resting predator cells
using Lyapunov Redesign, Synergetic and Sliding Mode
Controllers. Both Synergetic and Lyapunov Redesign con-
trollers start tracking the reference value right from the initial
stage while the sliding mode controller starts to follow the
Synergetic and Lyapunov Redesign to a certain point but gets
diverted and shows delayed convergence.

Figures (13) and (14) show comparison of tumor and hunt-
ing predator cells between Lyapunov Redesign, Synergetic
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FIGURE 12. Resting predator cells: Comparison between Synergetic,
Lyapunov Redesign and SMC controllers.
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FIGURE 13. Tumor cells: Comparison between Synergetic, Lyapunov
Redesign and SMC controllers.
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FIGURE 14. Hunting predator cells: Comparison between Synergetic,
Lyapunov Redesign and SMC controllers.

and Sliding Mode Controller respectively. Sliding mode con-
troller has negligible steady state error but starts tracking its
reference with considerable delay as shown in figure (12).
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Time Responce of Controlled States
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FIGURE 15. All three cells using Sliding Mode Controller.

Figure (13) shows overshoot in sliding mode controller and
a delay in convergence to zero. Figure (14) also shows that
sliding mode controller takes longer to converge to its track-
ing point.

Figure (15) has been drawn to show the behavior of all the
3 cells using sliding mode controller. Chattering phenomenon
has been observed in zoomed-part of the figure (15) which is
natural in case of sliding mode controllers.

V. CONCLUSION

In this paper, three nonlinear controllers (Synergetic,
Lyapunov Redesign and Sliding Mode Controller) have been
proposed to control the hunting predator, resting predator
cells and to reduce tumor cells to a level where they can
successfully be removed via surgery and the resting preda-
tor cells to 40% of the hunting predator cells. Proposed
controllers have been compared with each other and with
PID controller. Simulation results using MATLAB/Simulink
show that the performance of the proposed Synergetic
controller is slightly better than Lyapunov Redesign con-
troller and Sliding Mode Controller, Sliding Mode and
PID controllers in transition state and Sliding Mode Con-
troller is slightly better than Synergetic, Lyapunov Redesign
and PID controllers in steady state error. The perfor-
mance of the proposed controllers has been compared
based on their transient response and steady state error.
It is also noted that the both proposed Sliding Mode and
Synergetic controller performed slightly better than Lya-
punov Redesign and far better than PID controller even
in the presence of un-modeled disturbances and additive
noises.
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