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ABSTRACT For a molecular graph 0, the general sum-connectivity index is defined as χβ (0) =∑
vw∈E(0)[d0(v) + d0(w)]β , where β ∈ R and d0(v) denotes the degree of the vertex v in the molecular

graph 0. The problem of finding best possible upper and lower bound for certain topological index is of
fundamental nature in extremal graph theory. Akhtar and Imran [J. Inequal. Appl. (2016) 241] obtained the
sharp bounds of general sum-connectivity index for four graph operations (F-sum graphs) introduced by
Eliasi and Taeri [Discrete Appl. Math. 157: 794-803, 2009)]. In this paper, for β ∈ N, we figured out and
improved the sharp bounds of the general sum-connectivity index for F-sum graphs, where F ∈ {R,Q,T }.
Several examples are presented to elaborate and compare the results of improved bounds with existing sharp
bounds. In addition, we obtained exact formula of general sum-connectivity index for F-sum graphs, when
F = S.

INDEX TERMS Molecular graphs, topological indices, Cartesian product, total graph, F-sum graphs.

I. INTRODUCTION
Assume 0 = (V (0),E(0)) be a simple, connected and finite
molecular graph. We denote vertex set and edge set by V (0)
and E(0) ⊆ V (0) × V (0), respectively. The order and size
of graph are denoted by |V (0)| = n and |E(0)| = m,
respectively. Each vertex of a molecular graph represents
atom and each edge depicts bonding of two atoms. The
degree of a vertex v ∈ V (0), symbolize by dG(v), is the
number of incident edges with v. A path graph or linear
graph Pn of length n − 1 be a graph consisting of vertex
set {vi : i = 1, 2, . . . , n} and edge set {vivi+1 : i =
1, 2, . . . , n − 1}. A cycle Cn having length n be a graph
consisting of vertex set {vi : i = 1, 2, . . . , n} and edge set
{vivi+1 : i = 1, 2, . . . , n− 1} ∪ {vnv1}.

Molecular graphs 0 illustrate the constitution of molecular
structures, where vertices correspond to atoms and edges to
covalent bonds between atoms. A Topological index (TI) is
a numeric quantity computed mathematically from param-
eters of a molecular graph and correlates the meaning-
ful information with the organic compound under study.
TI’s remain invariant with respect to symmetry properties
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(isomorphism) of 0. Various types of valency, distance, spec-
tral, and counting polynomials related TI’s of molecular
graphs are proposed in literature, however, degree related TI’s
are extensively investigated due to their significance. To con-
duct QSAR/QSPR analysis, topological invariants (being
input) play essential role to better understand the complexity
of molecules, physico-chemical and biological properties of
corresponding chemical compound [1]–[8].

First Zagreb and second Zagreb indices are among the
pioneer TI’s which were introduced by Gutman and Trinajstić
(1972) and are defined as [9]:

M1(0) =
∑
v∈V

d2v =
∑
vw∈E

(dv + dw).

M2(0) =
∑
vw∈E

(dvdw).

Li and Zheng (2005) extended the concept of first Zagreb
index and provided the idea of first general Zagreb index
(FGZI), which is given by [10]:

Mα(0) =
∑

v∈V (0)

dα0 (v) =
∑

vw∈E(0)

[dα−10 (v)+ dα−10 (w)].

where α ∈ R, α 6= 0 and α 6= 1. It is obvious that we
get the first Zagreb index M1(0) and forgotten topological
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index F(0) by setting α = 2 and α = 3 in FGZI,
respectively [9], [11].

Milan Randić (1975) introduced a TI with the name
branching connectivity index [12]. It earned high rank in
chemical graph theory due to its applied nature and its for-
mula is given by R−1

2
(0) =

∑
vw∈E(0)

1
√
dvdw

. Böllöbás and

Erdös (1998) extended the idea and proposed general Randić
index (GRI) which is defined as [13]:

Rα(0) =
∑

vw∈E(0)

[d0(v)d0(w)]α, α ∈ R, α 6= 0.

Clearly, α = −12 gives the classical Randić index R
−

1
2
(0) and

α = 1 provides second Zagreb index M2(0).
The additive version of Randić index is known as sum-

connectivity index which was initiated by Zhou and Trinajstić
(2009) and its formula is given as [14]:

χ
−

1
2
(0) =

∑
vw∈E(0)

1
√
dv + dw

.

In [15], Zhou and Trinajstić (2010) presented the concept
of general sum-connectivity index (GSCI) and established
Nordhaus-Gaddum-type results for GSCI. It is defined as
follows:

χβ (0) =
∑

vw∈E(0)

[d0(v)+ d0(w)]β , β ∈ R.

The significance and effectiveness of GSCI can be witnessed
by its relation with diverse TI’s, e.g., χ1 is the first Zagreb
index, χ2 is the hyper-Zagreb index, 2χ−1 is the harmonic
index, andχ

−
1
2
is the classical sum-connectivity index.More-

over, both R
−

1
2
(0) and χ

−
1
2
(0) correlate well with each

other as well as with the π -electron energy of benzenoid
hydrocarbons [16]. Chemical applications and mathematical
properties of these indices are investigated and presented in
[17]–[22]. Now, we state two important results from basic
mathematics which will be used in the main results.

Binomial and Trinomial Theorem
Binomial and trinomial theorems are quick way to expand

(multiplying out) binomial and trinomial expression involv-
ing higher powers. Their formal expressions are presented
below, respectively.

(x1 + x2)n =
n∑
i=0

(
n
i

)
xn−i1 x i2. (1)

(x1 + x2 + x3)n =
∑
a,b,c

a+b+c=n

Pa,b,c xa1x
b
2x

c
3. (2)

where Pa,b,c =
(a+b+c)!
a! b! c! .

Cartesian product is a convenient and elegant tool to
develop a larger network from smaller graphs and is cru-
cial for design as well as analysis of networks [23]. The
cartesian product of two simple graphs 01 and 02 is
a new graph denoted by 01� 02 whose vertex set is
V (01)� V (02) = V (01) × V (02) and whose edge set is the

FIGURE 1. Base graph C6 along with its derived graphs.

set of all pairs (v1,w1)(v2,w2) such that either v1v2 ∈ E(01)
and w1 = w2, or w1w2 ∈ E(02) and v1 = v2.
Thus, every edge of 01 and every edge of 02 contributes
4 edges in 01� 02. Moreover, |V (01� 02)| = n1n2 and
|E(01� 02)| = e1n2 + e2n1.
For a connected-simple graph 0, the subdivided graph

S(0), the triangle parallel R(0), line superpositionQ(0) [24],
and the total graph T (0) [25] can be constructed as follows:

1) S(0) is derived from base graph 0 by placing an addi-
tional node (hollow) on every edge of 0.

2) R(0) is achieved from S(0) by connecting the
end (solid) vertices of the original edges of 0 that are
incident with thin vertices.

3) Q(0) is attained from S(0) by linking those pairs of
new vertices (hollow) by edges which have common
adjacent (solid) vertex.

4) T (0) is constructed from S(0) by applying R(0) and
Q(0), simultaneously.

Above mentioned operations are applied on the base graph
C6 and derived graphs S(C6), R(C6), Q(C6), and T (C6)
are depicted in Figure 1. For two simple-connected graphs
01 & 02 and F ∈ {S,R,Q,T }, Eliasi and Taeri [26] devel-
oped four new graphs by applying the notion of cartesian
product on F(01) and 02 and resultant graphs, denoted by
(01+F 02), are calledF-sum graphs. The vertex set ofF-sum
graph 01 +F 02 is V (01 +F 02) = V (F(01)) × (V (02)) =
(V (01) ∪ E(01)) × (V (02)) such that two vertices (v1, v2)
and (w1,w2) of V (01 +F 02) are adjacent if and only if
[v1 = w1 ∈ V (01) and (v2,w2) ∈ E(02)] or [v2 = w2 ∈

V (02) and (v1,w1) ∈ E(F(01))]. In 01 +F 02, we recognize
|V (02)| copies of the graph F(01) provided that vertices of
these copies are labeled with vertices of 02. The vertices of
01 and vertices in E(01) are referred as solid and hollow
vertices in 01 +F 02, respectively and connecting only solid
vertices having same symbol in F(01) in such a way that their
adjacency in 02 is preserved. For further clarity, see Figure 2.
Numerous extremal results regarding GSCI for various

classes of graphs were investigated by active researchers.
Du et al. [27], [28] discussed minimum GSCI of unicyclic
graphs, maximum GSCI of n-vertex tree and characterize
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FIGURE 2. Graphs P5 and P6 along with their F-sum graphs.

extremal trees for certain value of α. Ramane et al. [29]
studied and provided exact formulae for GSCI, GRI, FGZI,
and co-indices of certain families of graphs. Furthermore,
exact formulae, as well as bounds on several indices
of unicyclic, bicyclic, and F-sum graphs were provided
in [30]–[35]. Akhter and Imran [36] obtained sharp bounds
for GSCI of F-sum graphs.
In this paper, we improved the sharp bounds for F-sum

graphs offered in [36] for β ∈ N and F ∈ {R,Q,T } by
employing different technique. We observe that advantage of
improved bounds over sharp bounds are due to the involve-
ment of certain eminent TI’s of the base graphs in it, whereas
sharp bounds involve order, size, smallest degree, and largest
degree of 0, only. As a consequence, we observed and ana-
lyzed that our results perform equally well for any kind of
parameters, while the sharp bounds deviate from exact value
for big values of β, 1(0) or small value of δ(0). In addition,
we derived exact formula for GSCI of graph01+S02 in terms
of certain topological indices of base graphs.

II. RESULTS AND DISCUSSION
In this section, the main results regarding general sum-
connectivity index for the F-sum graphs 01+S 02, 01+R02,
01 +Q 02 and 01 +T 02, where 01 and 02 are considered
to be connected simple graphs. Throughout n1 = V (01),
n2 = V (02), e1 = |E(01)|, e2 = |E(02)|, V (S(01)) =
n1 + e1, |E(S(01))| = 2e1, M0(01) = n1, M1(01) = 2e1,
M1(02) = 2e2, M2(01) = M1(01), M2(02) = M1(02),
R1(02) = M2(02), χ0(02) = e2, χ1(01) = M1(01)
Theorem 1: Let 01 and 02 be two connected, simple and

finite graphs and β ∈ N, then the GSCI of S-sum graph (sub-
division) is

χβ (01 +S 02) =
β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

+χβ−i(S(01))M i(02)
]
.

Proof: Let d(w, v) = d(01+S02)(w, v) be the degree of a
vertex (w, v) in the graph (01+S02). Then using the definition
of GSCI for graph operation S, we have

χβ (01 +S 02) =
∑

(w1,v1)(w2,v2)
∈E(01+S02)

[
d(w1, v1)+ d(w2, v2)

]β

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
+

∑
v∈V (02)

∑
w1w2∈E(S(01))

[d(w1,v)+d(w2,v)
]β

= S1+ S2. (3)

Consider

S1 =
∑

w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d01 (w)+d02 (v1)+d01 (w)+d02 (v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
2d01 (w)+ (d02 (v1)+ d02 (v2))

]β
.

Using binomial theorem, we get

S1 =
∑

w∈V (01)

∑
v1v2∈E(02)

[ β∑
i=0

(
β

i

)
2β−idβ−i01

(w)

× (d02 (v1)d02 (v2))
i
]

=

β∑
i=0

(
β

i

)[
2β−i

∑
w∈V (×01)

dβ−i01
(w)

∑
v1v2∈E(02)

(d02 (v1)+ d02 (v2))
i
]

=

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

]
.

S2 =
∑

v∈V (02)

∑
w1w2∈E(S(01))

[
d(w1, v)+ d(w2, v)

]β
=

∑
v∈V (02)

∑
w1w2∈E(S(01))

[
dS(01)(w1)+d02 (v)+dS(01)(w2)

]β
=

∑
v∈V (02)

∑
w1w2∈E(S(01))

[
(dS(01)(w1)+dS(01)(w2))+d02 (v)

]β
.

(4)

Again, using binomial theorem, we have

S2 =
∑

v∈V (02)

∑
w1w2∈E(S(01))

[ β∑
i=0

(
β

i

)

× (dS(01)(w1)+ dS(01)(w2))β−i(d02 )
i(v)
]
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=

β∑
i=0

(
β

i

)[ ∑
w1w2∈E(S(01))

(dS(01)(w1)+ dS(01)(w2))β−i

×

∑
v∈V (02)

(d02 )
i(v)
]

=

β∑
i=0

(
β

i

)[
χβ−i(S(01))M i(02)

]
. (5)

Plugging equations (4) and (5) in equation (3), we get

χβ (01 +S 02) =
β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

+χβ−i(S(01))M i(02)
]
.

This concludes the proof.
Example 1: Let 01 = P4, 02 = C3, β = 3, and F = S.

Then n1 = M0(01) = 4, n2 = M0(02) = 3, e1 = χ0(01) =
3, e2 = χ0(02) = 3, δ01 = 1, 101 = 2, δ02 = 2, 102 = 2,
χ (01) = 10, χ2(01) = 34, χ3(01) = 118,
First, we compute sharp lower bound γ2 and sharp upper

bound γ1 using formulae derived in [36] γ2 = 2βn1e2
(
δ01 +

δ02
)β
+ 2n2e1

(
2δ01 + δ02

)β
= 7200 γ1 = 2βn1e2

(
101 +

102
)β
+ 2n2e1

(
2101 +102

)β
= 10752

Here, we compute GSCI using formula derived in
theorem 1

χ3(P4 +S C3)

=

3∑
i=0

(
3
i

)[
23−iM3−i(01)χi(02)

+χ3−i(S(01))M i(02)
]

= 8 M3(01)χ0(02)+ χ3(S(01))M0(02)

+ 3(4 M2(01)χ (02)+ χ2(S(01))M (02))

+ 3(2 M (01)χ2(02)+ χ (S(01))M2(02))

+M0(01)χ3(02)+ χ0(S(01))M3(02)

= 8(18)(3)+ 3(310)+ 12(10)(12)+ 18(82)

+ 6(6)(48)+ 36(22)+ 4(192)+ 24(6) = 7710.

In graph P4 +S C3, we observe 6 edges each with end vertex
degrees (2, 3), (3, 3), and (4, 4) and 12 edges having end
vertex degrees (2, 4). Now, we calculate exact value of GSCI
of P4 +S C3 for β = 3.

χ3(P4 +S C3) =
∑

vw∈E(P4+SC3)

(dP4 (v)+ dC3 (w))
3
= 7710.

In addition, we computed actual value of χ3(P4 +S P4)
to be 6812 and the sharp bounds on GSCI is given by
γ2 = 1416 < 6812 < 11328 = γ1, whereas result obtained
using formula presented in theorem 1 is exactly 6812.
Theorem 2: Let 01 and 02 be two connected, simple and

finite graphs and β ∈ N, then the improved lower and

upper bounds for GSCI of R-sum graph (triangle parallel) are
LR ≤ χβ (01 +R 02) ≤ UR, where

LR =
β∑
i=0

(
β

i

)[
4(β−i)M(β−i)(01)χi(02)+2βM(β−i)(02)χi(01)

]
+

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(δ01 )
aMb(02),

UR =
β∑
i=0

(
β

i

)[
4(β−i)M(β−i)(01)χi(02)+2βM(β−i)(02)χi(01)

]
+

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(101 )
aMb(02).

where Pa,b,c =
(a+b+c)!
a! b! c! . Equality holds iff 01 is regular

graph.
Proof: Let d(w, v) = d(01+R02)(w, v) be the degree of a

vertex (w, v) in the graph (01 +R 02). Then GSCI for graph
operation R is computed as

χβ (01 +R 02) =
∑

(w1,v1)(w2,v2)∈E(01+R02)

[
d(w1, v1)+d(w2, v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
+

∑
v∈V (02)

∑
w1w2∈E(R(01))

[d(w1, v)+ d(w2, v)
]β
.

For every edge w1w2 ∈ E(R(01)) and vertex v ∈ V (02),
we have two choices and are presented below

χβ (01 +R 02)

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
+

∑
v∈V (02)

∑
w1w2∈E(R(01))
w1, w2∈V (01)

[d(w1, v)+ d(w2, v)
]β

+

∑
v∈V (02)

∑
w1w2∈E(R(01))
w1∈V (01)

w2∈V (R(01))−V (01)

[
d(w1, v)+ d(w2, v)

]β
= S3+ S4+ S5. (6)

S3

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
2dR(01)(w)+ d02 (v1)+ d02 (v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
4d01 (w)+ (d02 (v1)+ d02 (v2))

]β
.

S3

=

∑
w∈V (01)

∑
v1v2∈E(02)

[ β∑
i=0

(
β

i

)
4β−idβ−i01

(w)

× (d02 (v1)+ d02 (v2))
i
]
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=

β∑
i=0

(
β

i

)[
4β−i

∑
w∈V (01)

dβ−i01
(w)

×

∑
v1v2∈E(02)

(d02 (v1)+ d02 (v2))
i
]

=

β∑
i=0

(
β

i

)[
4β−iMβ−i(01)χi(02)

]
. (7)

Subsequent summation consists of edges of triangle parallel
graph R(01) such that both end points are in V (01). In this
scenario dR(01)(w) = 2d01 (w).

S4 =
∑

v∈V (02)

∑
w1w2∈E(R(01))
w1, w2∈V (01)

[d(w1, v)+ d(w2, v)
]β

=

∑
v∈V (02)

∑
w1w2∈E(R(01))
w1, w2∈V (01)

[2d02 (v)+ dR(01)(w1)

+ dR(01)(w2)
]β

=

∑
v∈V (02)

∑
w1w2∈E(01)

[2d02 (v)+ 2d01 (w1)+ 2d01 (w2)
]β

=

∑
v∈V (02)

∑
w1w2∈E(01)

2β [d02 (v)+ (d01 (w1)+ d01 (w2))
]β

=

∑
v∈V (02)

∑
w1w2∈E(01)

2β
[ β∑
i=0

(
β

i

)
dβ−i02

(v)

× (d01 (w1)+ d01 (w2))i
]

(using 1)

=

β∑
i=0

(
β

i

)
2β
[ ∑
v∈V (02)

dβ−i02
(v)

×

∑
w1w2∈E(01)

(d01 (w1)+ d01 (w2))i
]

=

β∑
i=0

(
β

i

)
2βMβ−i(02)χi(01). (8)

Our next summation comprise of edges of graphR(01) having
end vertices in V (01). It is evident from graph R(01) that
dR(01)(w) = 2.

S5 =
∑

v∈V (02)

∑
w1w2∈E(R(01))
w1∈V (01)

w2∈V (R(01))−V (01)

[
d(w1, v)+ d(w2, v)

]β
.

S5 =
∑

v∈V (02)

∑
w1w2∈E(R(01))

w1∈V (01), w2∈V (R(01))−V (01)

[
dR(01)(w1)

+ d02 (v)+ dR(01)(w2)
]β

=

∑
v∈V (02)

∑
w1w2∈E(R(01))

w1∈V (01), w2∈V (R(01))−V (01)

[
2d01 (w1)

+ d02 (v)+ 2
]β

=

∑
v∈V (02)

∑
w1w2∈E(R(01))

w1∈V (01), w2∈V (R(01))−V (01)

[ ∑
a,b,c

a+b+c=β

Pa,b,c

× 2ada01 (w1)db02 (v)2
c
]
. (using 2)

where Pa,b,c =
(a+b+c)!
a! b! c! .

S5 =
∑
a,b,c

a+b+c=β

Pa,b,c 2a+c
[ ∑

w1w2∈E(R(01))
w1∈V (01)

w2∈V (R(01))−V (01)

da01 (w1)

×

∑
v∈V (02)

db02 (v)
]
.

since E(R(01)) = 2E(01) = 2e1, and δ01 (w) ≤ d01 (w)
∀ w ∈ V (01), therefore

S5 ≥
∑
a,b,c

a+b+c=β

Pa,b,c 2a+c
[
2e1(δ01 )

aMb(02)
]

=

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(δ01 )
aMb(02). (9)

Consequently, by using equations (7)-(9) in equation (6),
we get

χβ (01 +R 02)

≥

β∑
i=0

(
β

i

)[
4(β−i)M (β−i)(01)χi(02)+ 2βχi(01)M (β−i)(02)

]
+

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(δ01 )
aMb(02) = LR.

Similarly, by using 101 (w) ≥ d01 (w) ∀ w ∈ V (01), we get

χβ (01 +R 02)

≤

β∑
i=0

(
β

i

)[
4(β−i)M (β−i)(01)χi(02)+2βχi(01)M (β−i)(02)

]
+

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(101 )
aMb(02) = UR.

Equality holds iff 01 is regular graph. This concludes the
proof.
Example 2: Again considering same graphs and using

information discussed in Example 1 but forβ = 2 andF = R,
we compute sharp lower and upper bounds using formulae
derived in [36].

γ2 = 2β (n1e2 + n2e1)
(
2δ01 + δ02

)β
+ 2n2e1

(
2δ01 + δ02 + 2

)β
= 1992.

γ1 = 2β (n1e2 + n2e1)
(
2101 +102

)β
+ 2n2e1

(
2101 +102 + 2

)β
= 4176.
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Here, we compute GSCI using formula derived in theorem 2

LR =
β∑
i=0

(
β

i

)[
4(β−i)M (β−i)(01)χi(02)+ 2βχi(01)

]
×M (β−i)(02)+

∑
a,b,c

a+b+c=β

Pa,b,c 2a+c+1e1(δ01 )
aMb(02)

= 16M2(01)χ0(02)+ 4M2(02)χ0(01)

+ 2
(
4M (01)χ (02)+ 4M (02)χ (01)

)
+M0(01)χ2(02)+ 4M0(02)χ2(01)

+ 24P1,0,1M0(02)+ 6P1,1,0M (02)

+ 6P0,1,1M (02)+ 12P2,0,0M0(02)

+ 12P0,2,0M2(02)+ 12P0,0,2M0(02)

= 16(10)(3)+ 4(12)(3)+ 8(6)(12)+ 8(6)(10)+ 4(48)

+ 12(34)+ 48(3)+ 6(24)+ 6(24)+ 24(3)+ 6(12)

+ 24(3) = 2928.

Similarly, using specific values from Example 1 to compute
UR, we have UR = 3432. In graph P4 +R C3, we observe
6 edges eachwith end vertex degrees (2, 4), (4, 4), and (4, 6),
12 edges having end vertex degrees (2, 4), and 9 edges having
end vertex degrees (6, 6). Now, we calculate exact value of
GSCI of P4 +R C3 for β = 2.
χ2(P4 +R C3) =

∑
vw∈E(P4+RC3)

(dP4 (v)+ dC3 (w))
2
= 3264.

It is evident that our bounds LR = 2928 ≤ 3264 ≤ 3432 =
UR sound promising as compared against sharp bounds
γ2 = 1992 ≤ 3264 ≤ 4176 = γ1, offered in [36].
Theorem 3: Let 01 and 02 be two connected, simple and

finite graphs and β ∈ N, then the improved lower and
upper bounds for GSCI ofQ-sum graph (triangle parallel) are
LQ ≤ χβ (01 +Q 02) ≤ UQ, where

LQ =
β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)+n2(2δ01 )

iχβ−i(01)
]

+

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(δ01 )

aMb(02)χc(01)
]
,

UQ =
β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)+n2(2101 )

iχβ−i(01)
]

+

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(101 )

aMb(02)χc(01)
]
.

where Pa,b,c =
(a+b+c)!
a! b! c! . Equality holds iff 01 is regular

graph.
Proof: Let d(w, v) = d(01+Q02)(w, v) be the degree of a

vertex (w, v) in the graph (01 +Q 02). Then GSCI for graph
operation Q is computed as

χβ (01 +Q 02)

=

∑
(w1,v1)(w2,v2)∈E(01+Q02)

[
d(w1, v1)+ d(w2, v2)

]β

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
+

∑
v∈V (02)

∑
w1w2∈E(Q(01))

[d(w1, v)+ d(w2, v)
]β
.

For computational ease, all edgesw1w2 ∈ E(Q(01)) provided
vertex v ∈ V (02) can be split into two sets which are
expressed in following expression.

χβ (01 +Q 02)

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
+

∑
v∈V (02)

∑
w1w2∈E(Q(01))

w1∈V (01)w2∈V (Q(01))−V (01)

[
d(w1, v)+ d(w2, v)

]β
+

∑
v∈V (02)

∑
w1w2∈E(Q(01))

w1,w2∈V (Q(01))−V (01)

[
d(w1, v)+ d(w2, v)

]β
χβ (01 +Q 02) = S6+ S7+ S8. (10)

S6

=

∑
w∈V (01)

∑
v1v2∈E(02)

[
d(w, v1)+ d(w, v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
2dQ(01)(w)+ d02 (v1)+ d02 (v2)

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[
2d01 (w)+ (d02 (v1)+ d02 (v2))

]β
=

∑
w∈V (01)

∑
v1v2∈E(02)

[ β∑
i=0

(
β

i

)
2β−idβ−i01

(w)(d02 (v1)

+ d02 (v2))
i
]

(using 1)

=

β∑
i=0

(
β

i

)[
2β−i

∑
w∈V (01)

dβ−i01
(w)

∑
v1v2∈E(02)

(d02 (v1)+d02 (v2))
i
]

S6

=

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

]
. (11)

Next summation contains those edges of graph 01 +Q 02
having one vertex in V (01) and other in V (Q(01))− V (01)

S7 =
∑

v∈V (02)

∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

[d(w1, v)+ d(w2, v)
]β

S7 =
∑

v∈V (02)

∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

[dQ(01)(w1)

+ d02 (v)+ dQ(01)(w2)
]β

=

∑
v∈V (02)

∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

[d(01)(w1)+ d02 (v)

+ dQ(01)(w2)
]β
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=

∑
v∈V (02)

∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

[ ∑
a,b,c

a+b+c=β

Pa,b,c

da01 (w1)db02 (v)d
c
Q(01)(w2)

]
. (using 2)

We observe that dQ(01)(w2) = d01 (ui) + d01 (uj) ∀ w2 ∈

V (Q(01)) − V (01) such that w2 is the vertex added into the
edge uiuj ∈ E(01).Moreover∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

dQ(01)(w2) = 2
∑

uiuj∈E(01)

(
d01 (ui)

+d01 (uj)
)
.

Also using the fact δ01 (w) ≤ d01 (w) ∀ w ∈ V (01), we have

S7 ≥
∑
a,b,c

a+b+c=β

Pa,b,c

[
(δ01 )

a
∑

v∈V (02)

db02 (v)

×

∑
w1w2∈E(Q(01))

w1∈V (01)
w2∈V (Q(01))−V (01)

dcQ(01)(w2)
]

≥

∑
a,b,c

a+b+c=β

Pa,b,c

[
(δ01 )

aMb(02)2

∑
uiuj∈E(01)

(d01 (ui)+ d01 (uj))
c
]

=

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(δ01 )

aMb(02)χc(01)
]
. (12)

Following summation comprise of edges with both end
vertices in V (Q(01))− V (01).

S8 =
∑

v∈V (02)

∑
w1w2∈E(Q(01))

w1,w2∈V (Q(01))−V (01)

[
d(w1, v)+ d(w2, v)

]β
=

∑
v∈V (02)

∑
w1w2∈E(Q(01))

w1,w2∈V (Q(01))−V (01)

[
dQ(01)(w1)+dQ(01)(w2)

]β
=

∑
v∈V (02)

∑
uiuj∈E(01)
ujuk∈E(01)

[
d01 (ui)+d01 (uj)+d01 (uj)+d01 (uk )

]β
=

∑
v∈V (02)

∑
uiuj∈E(01)
ujuk∈E(01)

[(
d01 (ui)+ d01 (uk )

)
+ 2d01 (uj)

]β
=

∑
v∈V (02)

∑
uiuj∈E(01)
ujuk∈E(01)

[ β∑
i=0

(
β

i

)
(d01 (uj)+ d01 (uk ))

β−i

× (2d01 (uj))
i
]
(using 1)

=

β∑
i=0

(
β

i

)[ ∑
uiuj∈E(01)
ujuk∈E(01)

(d01 (uj)+ d01 (uk ))
β−i

×

∑
v∈V (02)

(2d01 (uj))
i
]

≥

β∑
i=0

(
β

i

)[
n2(2δ01 )

i
∑

ujuk∈E(01)

(d01 (uj)+ d01 (uk ))
β−i
]

S8 =
β∑
i=0

(
β

i

)[
n2(2δ01 )

iχβ−i(01)
]
. (13)

Using equations (11)-(13) in equation (10), we have

χβ (01 +Q 02)

≥

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)+ n2(2δ01 )

iχβ−i(01)
]

+

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(δ01 )

aMb(02)χc(01)
]
= LQ.

Similarly,

χβ (01 +Q 02)

≥

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)+ n2(2101 )

iχβ−i(01)
]

+

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(101 )

aMb(02)χc(01)
]
= UQ.

Equality holds iff 01 is regular graph. This concludes the
proof.
Example 3: For F = Q and β = 2, we compute sharp

lower and upper bounds for graphs presented in Example 1
by using formulae derived in

γ2 = 2βn1e2
(
δ01 + δ02

)β
+ 2n2e1

(
3δ01 + δ02

)β
+4βn2(δ01 )

β
(M1(01)

2 − e1
)
= 978

γ1 = 2βn1e2
(
101 +102

)β
+ 2n2e1

(
3101 +102

)β
+4βn2(101 )

β
(M1(01)

2 − e1
)
= 2304.

Here, we compute GSCI using formula derived in theorem 3

LQ
= 4M2(01)χ0(02)+ 3χ2(01)+ 2

(
2M (01)χ (02)+ 6χ (01)

)
+M0(01)χ2(02)+ 12χ0(01)+ 2P1,0,1

(
M0(02)χ (01)

)
+ 2P1,1,0

(
M (02)χ0(01)

)
+ 2P0,1,1

(
M (02)χ (01)

)
+ 2P2,0,0

(
M0(02)χ0(01)

)
+ 2P0,2,0

(
M2(02)χ0(01)

)
+ 2P0,0,2

(
M0(02)χ0(01)

)
= 4(10)(3)+ 3(34)

+ 2
(
2(6)(12)+ 6(10)

)
+ 4(48)+ 12(3)+ 12(10)+ 18(3)

+ 18(10)+ 6(3)+ 24(3)+ 6(34) = 1584.

Similarly, using required values from Example 1 to compute
UQ, we have UQ = 2058. In graph P4 +Q C3, we observe

167296 VOLUME 7, 2019



M. Ahmad et al.: Exact Formula and Improved Bounds

12 edges each with end vertex degrees (3, 3), (3, 4), and
(4, 4). Now, we compute exact value of GSCI of P4 +Q C3
for β = 2.
χ2(P4 +Q C3) =

∑
vw∈E(P4+QC3)

(dP4 (v)+ dC3 (w))
2
= 1788.

It is obvious that our bounds LQ = 1584 ≤ 1788 ≤
2058 = UQ are better in contrast to the sharp bounds
γ2 = 978 ≤ 1788 ≤ 2304 = γ1, offered in [36].
From Figure 2, it can readily be observed that T -sum

graph (total graph) is closely related to R-sum graph and
Q-sum graph graph. Consequently their degrees have follow-
ing relation (i) d01+T02 (w, v) = d01+R02 (w, v) for w ∈ V (01)
and v ∈ V (02), (ii) d01+T02 (w, v) = d01+Q02 (w, v) for
w ∈ V (T (01)) − V (01) and v ∈ V (02). Following result
is direct consequence of theorems 2 and 3
Theorem 4: Let 01 and 02 be two connected, simple

and finite graphs and β ∈ N, then the improved
lower and upper bounds for GSCI of T -sum graph are
LT ≤ χβ (01 +Q 02) ≤ UT , where

LT =
∑
a,b,c

a+b+c=β

2Pa,b,c

[
(δ01 )

aMb(02)χc(01)
]

+

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

+ 2βMβ−i(02)χi(01)+ n2(2δ01 )
iχβ−i(01)

]
UT =

∑
a,b,c

a+b+c=β

2Pa,b,c

[
(101 )

aMb(02)χc(01)
]

+

β∑
i=0

(
β

i

)[
2β−iMβ−i(01)χi(02)

+ 2βMβ−i(02)χi(01)+ n2(2101 )
iχβ−i(01)

]
where Pa,b,c =

(a+b+c)!
a! b! c! . Equality holds iff 01 is regular

graph.
Example 4: For F = T and β = 2, we compute sharp

lower and upper bounds for graphs presented in Example 1
by using formulae derived in

γ2 = 2β (n1e2 + n2e1)
(
2δ01 + δ02

)β
+ 2n2e1

(
4δ01 + δ02

)β
+ 4βn2(δ01 )

β
(M1(01)

2
− e1

)
= 2088.

γ1 = 2β (n1e2 + n2e1)
(
2101+102

)β
+2n2e1

(
4101+102

)β
+ 4βn2(101 )

β
(M1(01)

2
− e1

)
= 5208.

Here, we compute GSCI using formula derived in theorem 4

LT = 4M2(01)χ0(02)+ 2M2(02)χ0(01)+ 3χ0(01)

+ 2
(
4M (01)χ (02)+ 4M (02)χ (01)+ 6χ (01)

)
+
(
M0(01)χ2(02)+ 4M0(02)χ2(01)+ 12χ2(01)

)
+ 2P1,0,1

(
M0(02)χ (01)

)
+ 2P1,1,0

(
M (02)χ0(01)

)

+ 2P0,1,1
(
M (02)χ (01)

)
+ 2P2,0,0

(
M0(02)χ0(01)

)
+ 2P0,2,0

(
M2(02)χ0(01)

)
+ 2P0,0,2

(
M0(02)χ0(01)

)
= 4(10)(3)+ 4(12)(3)+ 3(3)+ 4(6)(12)+ 8(6)(10)

+ 12(10)+4(48)+4(3)(34)+12(34)+12(10)+24(3)

+ 24(10)+ 2(3(3)+ 12(3)+ 3(34)) = 2895.

Similarly, using required values from Example 1 to com-
pute UT , we have UT = 4692. In graph P4 +T C3, we
observe 6 edges eachwith end vertex degrees (4, 4) and (3, 6),
12 edges each having end vertex degrees (3, 4) and (4, 6),
and 9 edges with end vertex degrees (6, 6).Now, we compute
exact value of GSCI of P4+T C3 for β = 2. χ2(P4+T C3) =∑
vw∈E(P4+TC3)

(dP4 (v)+dC3 (w))
2
= 3954. It is evident that our

bounds LT = 2895 ≤ 3954 ≤ 4692 = UT are tighter than
the sharp bounds γ2 = 2088 ≤ 3954 ≤ 5208 = γ1, offered
in [36].

III. APPLICATIONS AND CONCLUSIONS
Results for cycles Cr and Cs
Let Cr and Cs be two cycle graphs with vertices r and s,

respectively. ThenGSCI ofF-sum graphsCr+SCs,Cr+RCs,
Cr +Q Cs, and Cr +T Cs are given as

1. χβ (Cr +S Cs) =
β∑
i=0

(
β

i

)
rs22β

(
1+ 21−i

)
.

2. χβ (Cr +R Cs) =
β∑
i=0

(
β

i

)
rs22β−i

(
1+ 22i

)
+

∑
a,b,c

a+b+c=β

Pa,b,c22a+b+c+1s

= LR = UR.

3. χβ (Cr +Q Cs) =
β∑
i=0

(
β

i

)
rs22β+1

+

∑
a,b,c

a+b+c=β

Pa,b,c2a+b+c+1rs

= LQ = UQ.

4. χβ (Cr +T Cs) =
β∑
i=0

(
β

i

)
rs2β

(
2β+1 + 22i

)
+

∑
a,b,c

a+b+c=β

Pa,b,c2a+b+c+1rs

= LT = UT .

Note that equality in lower and upper bounds for graphs
Cr+FCs, F ∈ {R,Q,T } holds due to the reason that01 = Cr
is regular graph with regularity 2.
Results for paths Pr and Ps
Let Pr and Ps be two cycle graphs with vertices r and s,

respectively. Then GSCI of F-sum graphs Pr+S Ps and lower
and upper bounds of GSCI for Pr+RPs, Pr+QPs, and Pr+T
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Ps are given as

1. χβ (Pr +S Ps)

=

β∑
i=0

(
β

i

)(
(2+ (r − 2)2β−i)(2(3)i + (s− 3)22i)

+ (2(3)i + (r − 3)2i+1)(2+ (s− 2)2β−i)
)
.

2. LR
≤ χβ (Pr +R Ps) ≤ UR, where

LR

=

β∑
i=0

(
β

i

)(
4β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 2β (2(3)i + (r − 3)4i)(2+ (s− 2)2β−i)
)

+

∑
a,b,c

a+b+c=β

Pa,b,c2a+c+1(r − 1)(2+ (s− 2)2b),

UR

=

β∑
i=0

(
β

i

)(
4β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 2β (2(3)i + (r − 3)4i)(2+ (s− 2)2β−i)
)

+

∑
a,b,c

a+b+c=β

Pa,b,c22a+c+1(r − 1)(2+ (s− 2)2b).

3. LQ
≤ χβ (Pr +Q Ps) ≤ UQ, where

LQ

=

β∑
i=0

(
β

i

)(
2β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 2i(2(3)β−i + (r − 3)4β−i)s
)

+

∑
a,b,c

a+b+c=β

2Pa,b,c(2+ (s− 2)2b)(2(3)c + (r − 3)4c),

UQ

=

β∑
i=0

(
β

i

)(
2β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 4i(2(3)β−i + (r − 3)4β−i)s
)

+

∑
a,b,c

a+b+c=β

Pa,b,c2a+1(2+ (s− 2)2b)(2(3)c + (r − 3)4c).

4. LT
≤ χβ (Pr +T Ps) ≤ UT , where

LT

=

β∑
i=0

(
β

i

)(
2β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 2β (2(3)i + (r − 3)4i)(2+ (s− 2)2β−i)
)

+ 2i(2(3)β−i + (r − 3)4β−i)s

+

∑
a,b,c

a+b+c=β

2Pa,b,c(2+ (s− 2)2b)(2(3)c + (r − 3)4c),

UT

=

β∑
i=0

(
β

i

)(
2β−i(2+ (r − 2)2β−i)(2(3)i + (s− 3)4i)

+ 2β (2(3)i + (r − 3)4i)(2+ (s− 2)2β−i)
)

+ 4i(2(3)β−i + (r − 3)4β−i)s

+

∑
a,b,c

a+b+c=β

Pa,b,c2a+1(2+ (s− 2)2b)(2(3)c + (r − 3)4c).

IV. CONCLUSION
To find sharp bounds, for certain topological index, is always
an intricate and interesting problem. In [36], sharp bounds
for GSCI of four operations on graphs

(
01+S 02, 01+R 02,

01+Q02, 01+T 02
)
are presented. In this paper, we proposed

improved as well as persuasive version of lower and upper
bounds of GSCI for F-sum graphs, where F ∈ {R,Q,T },
and β ∈ N. In addition, we derived exact formula for GSCI
of graph01+S02 and presented some examples. To conclude,
we elaborated and compared our improved bounds with the
sharp bounds presented in [36] by taking tiny examples,
when β = 2 and β = 3. Our bounds involve order, size,
smallest degree, largest degree of 0, and certain eminent
TI’s of the base graphs, whereas sharp bounds involve order,
size, smallest degree, and largest degree of 0, only. As a
consequence, one can observe and analyze that our results
perform equally well for any kind of parameters, while the
sharp bounds deviate from exact value for large values of
β, 1(0) or small value of δ(0).

LIST OF ABBREVIATIONS
Abbreviation Meaning
TI Topological Index
QSAR Quantitative Structure Activity

Relationships
QSPR Quantitative Structure Property

Relationships
FGZI First General Zagreb Index
GRI general Randić index
GSCI general sum-connectivity index
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