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ABSTRACT X-ray inspection systems are critical in medical, non-destructive testing, and security
applications, with systems typically measuring attenuation along straight-line paths connecting sources and
detectors. Computed tomography (CT) systems can provide higher-quality images than single- or dual-view
systems, but the need to measure many projections leads to greater system cost and complexity. Typically,
off-angle Compton scattered photons are treated as noise during tomographic inversion.We seek tomaximize
the image quality of limited-view systems by combining attenuation data with measurements of Compton-
scattered photons, exploiting the fact that the broken-ray paths followed by scattered photons provide
additional geometric sampling of the scene. We describe a single-scatter forward model for Compton-scatter
data measured with energy-resolving detectors, and demonstrate a reconstruction algorithm for density
that combines both attenuation and scatter measurements. The experimental results suggest that including
Compton-scattered data in the reconstruction process can improve image quality for density reconstruction
using limited-view systems.

INDEX TERMS Inverse problems, computed tomography, reconstruction algorithms, x-rays.

I. INTRODUCTION
X-ray imaging is critical in medical [1], industrial [2] and
airport security [3], [4] applications. While medical applica-
tions have attracted the greatest attention, security scanning
applications such as luggage screening offer several unique
challenges. Because a wide variety of materials are encoun-
tered in luggage screening, accurate material identification is
important, leading to interest in using energy discriminating
detectors to improve material identification [5]–[9]. A second
key difference is that while CT systems used in medical
imaging are generally able to collect data projections at a
large number of angles fully encircling the object, access to
the object from multiple views is limited in many security
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applications, including luggage screening and kVp spectral
CT [10]. There have been a variety of investigations into
limited-view tomography methods, several of which exploit
energy-resolved measurements and enforce similarity across
energy channels [10]–[13]. However, the limited-view CT
problems remains quite challenging, even more so when
coupled with the need for accurate material identification.

Our hypothesis is that image quality can be improved in
limited-view tomography by processing not only straight-line
attenuation projections through the object, but also broken-
ray data created through Compton scattering. Scattering
occurs when photons travel from the source to a scattering
object, deflect via Compton scattering to a new angle, and
then are measured at a detector. Including these broken-
ray paths in the inversion process dramatically increases
the number of geometric ray paths through the investigation
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domain, and thus holds the potential to reduce image artifacts.
In addition, there are indications that Compton scatter data
has the potential to improve materials identification as it
provides a strong contrast mechanism comparing to total
attenuation [14], [15]. Compton scatter tomography has been
explored previously and has been shown to have advantages
over conventional CT systems in nondestructive evalua-
tion applications [16] and materials characterization [17].
However, processing this scattered data brings several chal-
lenges, notably the low number of counts associated with
these raypaths and the computational burden of modeling
the additional paths (the forward model for Compton scatter
tomography models attenuation from the source to the scat-
tering point, the scattering process itself, and attenuation of
the scattered photon as it travels to the detector). In addition,
the forward model could become computationally intractable
in situations where multiple scattering dominates over single-
scattering.

Analytic Compton scattering tomography reconstruction
methods are available, but are limited to specific data
acquisition geometries [18], [19]. Numerical reconstruction
algorithms, such as the one discussed in this paper, are appli-
cable to more general geometries. Unlike the work presented
here, many previous publications either assume that an X-ray
attenuation map is known a priori from a traditional CT scan
(resulting in a linear mapping from density to observations)
[14], or do not fully model the energy dependence of the
attenuation [20], [21]. Our forward model is more closely
related to that in [22], although that work includes fluores-
cence effects, which are not important in our application.

This work builds on and extends our recent simulation-
based study that combines scattered photons with attenuation
data to perform image reconstruction [23]. While that work
employed a similar forwardmodel to the one considered here,
the inversion approach was entirely different (as a minor note,
the current model uses a different solid angle calculation
which was proven to better match the experimental results).
More specifically, the work in [23] focused on recovering
spatial maps of both density and photoelectric coefficients.
Because of the smaller problem sizes considered, a Newton
type optimization method could be used. An edge preserving
regularization method first developed in [24] was used to sta-
bilize the density profile while a nonlocal means regularizer
was used for photoelectric. While effective, these regular-
ization methods are computationally intensive, requiring the
solution of multiple least-square problems at every ‘‘outer’’
iteration of the Newton method.

Driven largely by the exigencies associated with
processing a larger experimental data set, the effort here
differs significantly from the simulation-based work in [23].
Our goal is to provide an experimental validation of the
benefit of combining attenuation and Compton scatter data.
Thus, we focus on density inversion, deferring experimental
validation of photoelectric coefficient inversion (which is
more ill-posed) to future work. Specific contributions of the
current work are as follows: a) we develop experimental

FIGURE 1. Problem configuration.

hardware to support our studies, including design of a novel
source collimator, and validate the accuracy of our forward
model against experimental data; b) we employ an iterative
reconstruction method that scales better to larger-scale prob-
lems than the methods from [23]; c) we reduce computa-
tional effort algorithmically, by linearizing the attenuation
component of our inverse problem using a multi-energy
sinogram decomposition method (see Appendix B) that
exploits energy-discriminating detectors; and d) we address
computational issues by demonstrating an implementation
that exploits capabilities of multi-core processors.

The remainder of this paper is organized as follows.
We first describe the proposed system geometry and describe
the forward models for both Compton-scattered measure-
ments and attenuation data. We then introduce a gradient
descent algorithm that combines both attenuation and scatter
measurements. In the Results section, we describe an exper-
imental testbed and describe test scenarios. This testbed was
used to validate our single-scatter forward model in a recent
paper [25], indicating the multiple-scattering effects are neg-
ligible for this system. Finally, experimental results are shown
for density reconstruction of several objects, demonstrating
that incorporating scatter data into the inversion leads to
noticeable improvements in image quality and accuracy of
density estimates. Finally, we conclude and discuss future
work.

II. FORMULATION
In this section, we describe our physical forward model,
then outline the reconstruction algorithm. Fig (1) illustrates
a two-dimensional cross section of the problem, where the
slice plot is over the x − y plane and out-of-plane scattering
is neglected (justified experimentally as our measurements
are all in-plane). A pencil-beam X-ray source at location
rS illuminates the investigation domain Dinv at beam angle
φ, which is the angle between r and rC that points toward
center of Dinv. During data collection, the angle φ is rotated
to sweep across the domain. The source is moved in dis-
crete angular steps, so in the discussion below, one beam is
used to denote data collected for one source at one angle.
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Some photons travel on a straight-line path to a detector,
providing a measurement of attenuation along the path, while
others undergo non-coherent Compton scattering and are
deflected to other detectors, providing broken-raypath data.
For a particular beam, the detector receiving straight-line
attenuation data is known as the primary detector D, while
detectors receiving scattered data are known as secondary
detectors D′. Forward models for both types of data are now
described.

A. FORWARD MODEL FOR COMPTON SCATTERING
When the incident beam crosses the investigation domain it
interacts with material inside, causing non-coherent Comp-
ton scattering. Using notation similar to [22], the expected
number of Compton-scattered photons collected at secondary
detector rD′ at an energy E ′D is given by:

gS (rD′ ,E ′D) =
∫

I(ES )
[∫

h(rD′ , r,E ′)S(r, θ,ES )

f (r, rS ,ES )δE ′D (E
′)δrD,rS (r)ρ(r)dr

]
dES (1)

where I(ES ) is the number of photons emitted by the source
at energy ES . f (r, rS ,ES ) computes the attenuation that
occurs as the incident photons travel from source location
rS to interaction point r. Similarly, h(rD′ , r,E ′) computes
the scattered beam attenuation that occurs as the scattered
photons travel from interaction point r to secondary detec-
tor location rD′ . Notice that Compton scattering causes an
energy shift, so h(rD′ , r,E ′) depends on the scattered photon
energy E ′. The function S(r, θ,ES ) computes the fraction
of photons scattered toward angle θ at interaction point r
(see Fig. 1). ρ (r) is the material density evaluated at the
interaction point r. δED (E

′) is a Dirac delta function that
selects for scattered photons with energy E ′ that matches
the energy E ′D at the detector. Finally, δrD,rS is a Dirac delta
function defined within Dinv over a line connecting rS to the
primary detector rD.

We now describe the terms in Eq. (1) in more detail. The
attenuation functions are computed as:

f (r, rS ,ES ) = exp
(
−

∫
µ(r′,ES )δr,rS (r

′)dr′
)

(2)

h(rD′ , r,E ′) = �D′ exp
(
−

∫
µ(r′,E ′)δrD′ ,r(r

′)dr′
)

(3)

where δr,rS (r
′) and δrD′,r (r

′) are Dirac delta functions defined
along raypaths that connect rS to r and r to rD′ , respectively.
The solid angle �D′ for a small rectangular shape detector is
approximated as [26]:

�D′ ≈ |cos
−1 (̂rT .̂rB) cos−1 (̂rL .̂rR)|

where r̂T , r̂B, r̂L and r̂R are unit vectors pointing from the
interaction point r to centers of top, bottom, left and right
edges of the detector at rD′ .The attenuation function µ (r,E)
in Eqs. (2) and (3) are the attenuation coefficient function,

FIGURE 2. Discretization of the investigation domain Dinv .

which is formulated in terms of Compton scatter and photo-
electric effects as:

µ(r,E) = NA
Z (r)
A(r)

fKN (E)ρ(r)+ fp(E)p(r) (4)

where NA is the Avogadro number and Z (r) and A(r) are
the atomic and mass numbers, respectively. ρ(r) and p(r)
are the material density and photoelectric coefficients, while
fp(E) = (E0/E)3 is the photoelectric energy factor with E0 as
the referenced energy. An interested reader is referred to [23]
for details concerning the computation of the Klein-Nishina
cross section fKN (E) in Eq. (4), the scattered energy E ′ and
the scattering factor S(r, θ,ES ) in Eq. (1).

Note that Eq. (1) computes the scattered photons that are
incident on the detector at energy ED, and does not account
for the fact that the detector provides an imperfect measure-
ment of photon energy. The actual signal recorded by the
detector at energy Eq is found by integrating over the detector
sensitivity function:

gD′ (rD′ ,Eq) =
∫
sq(ED′ )gS (rD′ ,ED′ )dED′ (5)

where sq(E) is the sensitivity function for the qth energy chan-
nel, centered at Eq. Idealized models for detector sensitivity
functions are presented in [27], and model the sensitivity
functions as being Gaussians whose bandwidth depends on
detector properties. More realistic sensitivity functions can
be computed for particular detectors and account for energy-
dependence of the sensitivity function; we employ a model
for the Multix ME100 detector found in [6].

B. DISCRETE FORM OF THE COMPTON
SCATTERING MODEL
The spatial domain in Eq. 1 is discretized into equal rect-
angular cells, see Fig. 2, such that the dimension across x
and y-axis has Nx and Ny segments, respectively, and the
total number of cells is NCells = NxNy. The source spectrum
is discretized into NE energy levels, where the k th level is
centered atESk and has width of1ES . Similarly, we discretize
the photon energies incident on the detector into ND energy
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bins, each with bin width1ED. Then, the discretized version
of Eq. (1) can be written as:

gS (i, j,m) =
∑
k

I (ESk )1ES
∑
l

h(rD′,j, r̄i,l,E ′i,j,l,k )

× S(r̄i,l,, θi,j,l,ESk )f (r̄i,l, rS,i,ESk )

×ω(i, j, l, k,m)δi,lρ(r̄i,l,) (6)

The indices i and j refer to a particular incident beam and sec-
ondary detector in the system, respectively, while the index
m indexes the fine scale energy bins into which we aggregate
the scattered photons prior to accounting for the finite energy
resolution of the detectors in Eq. 10. The index l indicates a
discretized cell (that contains the interaction point r̄i,l) from
the set of cells that the ith incident beam passes through. The
interaction point r̄i,l is taken to be located at the middle of the
discretized segment in the l th cell. The inner sum in Eq. (6)
computes numerically the spatial integral in Eq. (1) (integral
over r) using a Riemann sum. The two attenuation functions
f and h are computed numerically using Riemann sums to
approximate the integrals in Eqs. (2) and (3), giving

f (r̄i,l, rS,i,ESk ) = exp
(
−aTi,lµ(ESk )

)
(7)

h(rD′,j, r̄i,l,E ′i,j,l,k ) = �D′ exp
(
−bTi,j,lµ(E

′
i,j,l,k )

)
(8)

where aTi,l is a row vector with elements ordered lexico-
graphically from a matrix the size of the discretized grid.
This vector stores zeros for elements corresponding to cells
that do not intersect with the incident beam connecting
rS,i to ri,l , and otherwise stores the length of the intersected
beam segment across each cell. In the samemanner, the vector
bTi,j,l stores lengths along the scattered ray path from the
interaction point ri,l to the secondary detector rD′,j. Moreover,
µ(ESk ) and µ(E ′i,j,l,k ) are vectors with lexicographically-
ordered elements that store the attenuation function (Eq. (4))
evaluated over the discretized cells, assuming energies of ESk
and E ′i,j,l,k , respectively. The subscripts on E ′i,j,l,k indicate
that the energy shift is a function of the scattering geometry.

Referring back to Eq. (6), θi,j,l in the scattering function
S(r̄i,l,, θi,j,l,ESk ) is the scattering angle that lies between ith

incident beam and scattering beam connecting l th interaction
point to jth secondary detector. On the other hand, the weight-
ing function ω(i, j, l, k,m) is used to approximate the Dirac
delta function δED (E

′) in Eq. (1) as:

ω(i, j, l, k,m) =


1, such that E ′i,j,l,k ∈[

Em −
1E
2
,Em +

1E
2

]
,

0, else.

(9)

The function δi,l in Eq. (6) approximates δrD,rS (r)dr in Eq. (1)
by storing the segment length of ith incident beam intersecting
with l th interaction cell. ρ(r̄i,l,) is the discretized value of the
density for the cell located at r̄i,l,.
Eq. (6) computes the photon counts before interaction

with the detector. A discrete form of the detector sensitivity
function can be found by computing a detector response

matrix S (described in [6] for the Multix detectors used in
our experiment). If the detector hasQ output energy channels,
then S is of size Q × ND and its entries are Sq,m = sq(Em).
The signal gD′ (i, j,m) after the detector interaction occurs is
computed as:

gD′ (i, j, q) =
∑
m

Sq,mgS (i, j,m) (10)

C. FORWARD MODEL FOR ATTENUATION DATA
The forward model for attenuation data is considerably sim-
pler than the Compton model, and builds closely on the
notation above. In subsequent discussion, we will also refer
to attenuation data as transmission or ‘Tx’ data. For a raypath
between a source-detector pair (rS , rD), the continuous model
for the number of counts collected on detector energy channel
q is:

gA(rD, rS ,Eq) =
∫
sq(ES )I (ES )f (rD, rS ,ES )dES (11)

where f (rD, rS ,ES ) has the same form as defined in Eq. (2),
but has a raypath that extends from rS to rD. All other terms
are as defined above.

Similarly, the discretized version of the forward model
follows closely from Eq. (7) and Eq. (10). Eq. (7) becomes
for the attenuation case:

f (r̄i, rS ,ESk ) = exp
(
−aTi µ(ESk )

)
(12)

where i denotes the raypath. aTi and µ(ESk ) are row vectors
defined as in Eq. (7). Eq. (12) differs from Eq. (7) only
in that there is no need to track the intersection point. The
multiplication of aTi and µ implements the integral along the
raypath as a Riemann sum.

When processing dual- or multi-energy X-ray attenua-
tion data, a common approach is sinogram decomposition,
in which the measured projections are decomposed into the
two energy-independent terms shown in Eq. (4) (see [9] and
references therein). In this representation, the spatial integral
in Eq. (2) is rewritten as:

aTi µ(ESk ) = cρ̃,ifKN (ESk )+ cp,ifp(ESk ) (13)

where cp,i = aTi p is the integral of photoelectric absorption
along beam i, where p is a column vector of size NCells × 1
that contains the lexicographically unwrapped values of the
photoelectric absorption in each cell. Similarly, cρ̃,i = aTi ρ̃
integrates a scaled version of the density along the raypath,
with the scaled density defined as ρ̃(r) = NA

2 ρ(r), where we
have taken advantage of the fact that Z (r)

A(r) ≈ 1/2 for most
elements [22].

This formulation of the forward model is convenient as
data can be collected at various energies and used to estimate
cρ̃,i and cp,i, solving a separate nonlinear inverse problem
for every raypath i. Details of the sinogram processing are
described in Appendix B and as well as in [9]. The result of
this processing are estimates of the projected density and pho-
toelectric coefficients along each raypath. These projections
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are related to the underlying data through a system matrix A
of size (# raypaths x NCells) whose rows are the vectors aTi
already defined:

cρ̃ = (NA/2)Aρ

cp = Ap (14)

Thus, once sinogram decomposition is performed, recovery
of the density and photoelectric images is a straightfor-
ward linear inverse problem. In the overall inversion method
described below, we seek to solve this linear inverse problem
as part of a joint inversion that combines attenuation and
scattered data.

D. RECONSTRUCTION ALGORITHM
Eq. (10) above gives an expression for the scattered data for
source i, receiver j and energy q. Collecting the results for all
i, j and q into a vector gD′ , the forwardmodel for the Compton
scattering signal described in Sections II-A and II-B can be
represented as:

f (ρ, p) = gD′ (15)

where f (ρ, p) is the nonlinear model of the Compton
scattering signal as a function of both the density ρ and
the photoelectric absorption coefficients p. To avoid confu-
sion with the signal gD′ computed using the model above,
the actual experimental data recorded from the instruments
will be referred to as d . Similarly, in place of cρ̃ and cp from
Eq. (14), sρ̃ and sp will refer to the sinogram decomposition of
the density and the photoelectric coefficient, extracted from
the actual transmission data.

For density reconstruction, the optimization function can
be written as:

rClρ̂ = argmin
ρ

{
0.5γ sc

∥∥f (ρ, p(0))− d∥∥22
+ 0.5γ tx

∥∥(NA/2)Aρ − sρ̃
∥∥2
2

+ λTV |∇ρ|1

}
(16)

where γ sc ≤ 1 and γ tx ≤ 1 are weights used to control the
relative importance of data misfit terms for scattering data
(first term) and attenuation data (second term). The enforce-
ment of the TV regularization is controlled through the λTV

parameter. Higher λTV will encourage reconstructed pro-
files that are piecewise constant with clearly defined edges,
a widely used regularization strategy in attenuation-only
computed tomography [28]–[30]. Equation. (16) is subjected
to an additional constraint ρ ≥ 0, i.e., negative densities are
not allowed.

The formulation above lets us study the relative impact of
scattering and attenuation data on our solutions. In this work,
we will consider four scenarios to study the optimization
problem in Eq. (16), namely i) inversion using Compton
scatter data only (γ sc = 1, γ tx = 0), ii) inversion using
attenuation data only (γ sc = 0, γ tx = 1), iii) inversion

FIGURE 3. Photoelectric and compton attenuations of delrin.

equally weighting both data types ( γ sc = γ tx = 1), and iv)
and inversion that weights scattering data more heavily than
attenuation data (γ sc = 1, γ tx < 1).
The optimization function in Eq. (16) is written in term

of ρ only, so an estimate of the photoelectric coefficients
is required. Although the Compton scattering signal as
described in Eq. (6) depends nonlinearly on both ρ and p,
we can exploit the fact that the higher energy attenuation is
dominated by ρ. Fig. 3 plots the two portions of the atten-
uation function (see Eq.(4)) due to the Compton scattering
term (NA(Z (r)/A(r))fKN (E)ρ(r) and due to the photoelectric
absorption term (fp(E)p(r)) for Delrin, a plastic material used
in our experimental work. The figure shows that the pho-
toelectric absorption effect becomes increasingly negligible
above 40KeV; similar results are seen for other materials as
photoelectric absorption falls as the inverse cube of energy.
Hence, in our density reconstructions, we neglect the photo-
electric effect (set p = 0 in Eq. (16)) and measure data misfit
for scattered data for higher energy photons only. While mul-
tiple higher-energy bins could be used, in the results belowwe
sum all higher-energy scattered photons into a single energy
channel. Note that this approach requires the use of X-ray
detectors with the ability to resolve detected photon energy.

For the reconstruction process, the following algorithm
shows how the optimization in Eq. (16) can be carried out
using a steepest descent approach [25], [31], [32], [32]–[37]
known as embedded nonlinear Landweber-Kaczmarz algo-
rithm [25], [36], [37]

Algorithm I
Step 1.0 : Initialize ρ0 = 0, p0 = 0
Step 2.0 : Set parameters γ sc, γ tx , λTV , β
Step 3.0 : for i = 0, 1, . . . ,N iter

Step 3.1 : ρi+1 = ρi

− γ scωsci ∂ρi f
(
ρi, p0

)T (f (ρi, p0)− d)
− γ txωtx(NA/2)AT

(
(NA/2)Aρi − sρ̃

)
− λTV∇.

(
∇ρi√
|∇ρi|

2
+β

)
Step 3.2 : ρi+1 = max(0, ρi)
Step 3.3 : end loop
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While most of the notation above has already been intro-
duced, we note that β is a small number used to remove the
derivative singularity in the TV regularization term, N iter is
the number of gradient descent iterations, and ∂ρi f

(
ρi, p0

)
is the adjoint of the density differential, a matrix that is
described in detail in Appendix A which relates each mea-
surement to the change in density at every point. In the
algorithm, Step 1.0 initializes the density profile ρ0 to zero
and sets the photoelectric profile p0; note that the density
profile is updated in Step 3, while photoelectric values remain
at zero. In Step 2.0 the user sets the weighting parameters
γ sc and γ tx of the Compton and transmission data misfits,
respectively, and sets the TV regularization parameters. Step
3.0 is the iteration loop of the nonlinear Landweber algorithm
with N iter iteration steps. Step 3.1 shows one step of the
Landweber iteration over the density ρ, where γ scωsci and
γ txωtxi defines the step sizes per iteration for scattering and
transmission updates, respectively. A sufficient condition for
convergence of nonlinear Landweber-Kaczmarz states that
γ scωsci ≤ 1/(σ sc)2 and γ txωtxi ≤ 1/(σ tx)2 where σ sci and
σ tx are the maximum singular values of ∂ρi f

(
ρi, p0

)
and

(NA/2)A respectively, [36], [37]. Since γ tx ≤ 1 and γ sc ≤ 1,
to achieve maximum possible step sizes under the conver-
gence condition, ωtxi = 1/(σ tx)2 and ωsci = 1/(σ sc)2 are
assumed. The upper script (T ) is used to indicate the trans-
pose operator. Finally, Step 3.2 enforces the nonnegativity
constraint on density [38].

E. COMPUTATIONAL CONSIDERATIONS
AND IMPLEMENTATION
The maximum step size for the Landweber algorithm is set
by ωsci and ωtx , which in turn depend on the maximum
singular values σ sci and σ tx for the sensitivity operators
related to scattered data and attenuation data [33], [35], [37].
These maximum singular values are computed using power
iteration [39]. While σ tx is a fixed quantity as the transmis-
sion model is a linear model, σ sci changes each time the non-
linear Compton scatteringmodel is updated. The computation
of σ sci is expensive as it requires evaluating the differential
and the adjoint operators at least four times each. However,
it is not necessary to re-evaluate σ sci on each iteration, due
to the fact that the nonlinear Landweber will have its largest
changes in the first iteration steps, with changes in σ sci becom-
ing smaller as iteration proceeds. Hence for the results below,
σ sci will be only evaluated for selected iteration steps. For
all the examples, σ sci is computed at the first three iteration
steps, then at every tenth step up to iteration 50, then again at
iterations 75, 100 and 150.

The computation at each iteration is dominated by calcu-
lating the forward model Eq. (6), the differential ∂ρf (ρ, p)
Eq. (26), and the adjoint ∂ρf (ρ, p)T Eq. (27) operators.
Each of these terms is a matrix indexed by the incident
source beam, i, and secondary detector, j. Computing each
element of these matrices involves integrations over spatial
cells and photon energies, rapidly increasing the dimensions
of the problem and leading to a computational challenge.

Fortunately, these calculations (described in Appendix A)
lend well to parallelization across beam/detector pairs.

Initially the reconstruction algorithm was fully imple-
mented in Matlab 2016a and run on a High Performance
Computing cluster at Tufts University. Calculation of the ele-
ments of the forward model, differential, and adjoint matrices
were each parallelized by splitting the elements evenly across
nodes using Matlab’s Parallel Processing Toolbox. Recon-
structions for the scan scenario and test images discussed in
Section III.C typically required 3-5 days on up to 20 compute
nodes (the number and type of cluster nodes available varied
between runs).

To allow faster processing times, the forward model,
differential, and adjoint calculations were translated to C
and parallelized for a single node using OpenMP. The Intel
icc compiler was used with O3-level optimization and
AVX2 flags. Further acceleration was achieved by improving
the load balancing across processors. Note from Figure 2 that
different incident beams generally traverse over a different
number of voxels in the investigation domain. This means
that computing the integrations over voxels for different
source/detector pairs require different amounts of compu-
tation. Rather than splitting the computation by assigning
each processor a fixed number of operator elements, prior
knowledge of the geometry allows the workload to be split
more evenly thus achieving a better load balance. Running
the overall reconstruction within Matlab, but escaping to the
compiled routines for the three major operators, resulted in
equivalent reconstructions that completed on the order of
9 minutes on a single dedicated server with two 20-core Xeon
E5-2698v4 processors.

III. EXPERIMENTAL RESULTS
In this section, experimental results are illustrated to verify
the forward model and to study reconstruction results.
We describe the exeperimental testbed, discuss calibra-
tion and validation of the forward model, then show
reconstruction results for several scenarios.

A. EXPERIMENTAL TESTBED
A multi-energy X-ray testbed system was constructed to
experimentally measure both transmission (Tx) and Compton
scattering data in a controlled environment using energy-
discriminating detectors. This testbed, shown in Fig. 4, con-
sisted of an L-shaped detector array mounted on an optical
table (L-shaped detector arrays are the norm for conven-
tional transmission X-ray baggage scanners, as they make
efficient use of space for the rectangular tunnels used in these
scanners). A roughly 60 cm × 40 cm section of the optical
table was outfitted with regular 2’’ × 2’’ indentations that
allow the repeatable positioning ofmaterial samples and other
image targets. Both 2’’ square and 2’’ diameter circular test
objects could be mounted directly to the testbed. Mechanical
adaptors were built to allow for repeatable positioning of
larger objects.
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FIGURE 4. Experimental setup for measurements; a) top view showing
the X-ray source, source collimator, and L-shaped array, three-target
scenario (reconstructions in Fig. 8); markers show the origin of (x, y )
coordinate system. A slit opening built into the detectors ensures that
only in-plane scatter is measured; b) zoom on coaxial target
(reconstructions in Fig. 9); c) zoom on box target (reconstructions in
Fig. 11).

Detectors: The detector array consisted ofME-100 photon-
counting detectors (Multix, Inc., Moirans, France), arranged
in 14 modules each containing 128 detectors. Five modules
(640 detectors) were arranged on one side of the L with
9 modules (1152 detectors) on the other, giving 1792 detec-
tors in total. Each detector pixel was approximately 0.08 cm
in width and height. A lead collimator is built into the detector
package to suppress scatter from objects outside of the plane
formed by the X-ray source and detector array. An additional
radiation shield, shown in Fig. 4, further reduces scatter from
outside the detector plane. During data collection, detectors
were operated at the finest energy resolution, outputting
128 evenly spaced energy channels from 20-160 keV. This
represents an over-sampling, as the actual energy resolution
of the ME100 is closer to 5-7 keV, depending on energy.
A detailed model of the ME100 energy resolution, based
on [6], was used in reconstruction.
Source: The objects were interrogated using a single X-ray

source (bremsstrahlung spectrum with peak energy 160 keV
and average energy 62 keV, giving the spectrum in Fig. 5).
A source collimator was used to produce a narrow pencil
beam, as discussed in detail below. The source intensity
(shown in Fig. 5) was computed pre-collimation, leading to
a need to calibrate the emitted source flux, with calibration
described in the next section. This source was mounted on
a pivot at a radius of 76.2 cm from the origin of the coor-
dinate system, which was taken to be in the middle of the

FIGURE 5. Source spectrum intensity.

interrogation region (see Fig. 4(b)). The testbed could be
precisely configured to interrogate the scene from 6 different
angles spaced apart by 22.5◦, ranging from −22.5◦ to 90◦,
with the 0◦ source perpendicular to the longer detector array
(source position (x = 0, y = −76.2 cm) and the 90◦ source
perpendicular to the shorter detector array (source position
(x = −76.2 cm,y = 0). For each source position, the source
was rotated so beams were swept across the interrogation
domain in 0.4◦ steps. Data from the various source positions
were collected to mimic a multi-source system in which
sources scan the region sequentially.

Initial experimental results showed that scatter from the
pencil beam forming collimator itself was discovered to be
a major limiting factor, which resulted in several iterations
of hardware development. The original design employed a
pencil beam forming system that is standard in commercial
X-ray backscatter systems [40], shown in Fig. 6(a). The cone
beam from the X-ray source is chopped into a pencil beam
by a combination of a rotating disk with radial slot apertures
and stationary pre-collimator slot in the plane of the detec-
tors. As the disk rotates, the combination of disk aperture
and pre-collimator form a rhombus shaped opening which
sweeps across the field of view. Unfortunately, a rotating
disk chopper requires a knife edge aperture, as shown in
Figure 6(b),which created substantial scatter and fluores-
cence, both of which added noise to the overall data. Further-
more, because the point of scatter moves as the disk rotates,
a complex set of systematic errors were embedded in the data,
which included shifting transmission images of any objects in
the tunnel.

To avoid these artifacts, the final design employed a snout
which was fixed to the X-ray source, and the entire assembly
of source and snout rotated to sweep the pencil beam across
the tunnel, as shown in Fig. 6(c). The direct connection
of snout to source results in containment of leakage radia-
tion and a uniform pencil beam cross section. More impor-
tantly, this geometry controlled the scatter from the apertures
themselves. Monte Carlo simulations predicted that simply
replacing the knife edge aperture with a simple tunnel should
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FIGURE 6. Source collimation alternatives tested during experimentation.
a) shows a conventional chopper system for creating a pencil beam; b)
shows artifacts generated by scattering off the conventional chopper
aperture; c) shows the rotating source and snout concept, with a shield to
limit scatter from the primary aperture.

reduce scatter and fluorescence by 10x-20x. The inclusion
of a scatter shield further limited unwanted scatter in all
directions except for a small region near the primary pencil
beam. Collimation by the ‘primary aperture’ forms the pencil
beam. The primary aperture itself is positioned only as far
from the focal spot as deemed necessary to provide adequate
spatial resolution (i.e. to adequately limit of the divergence
angle of the pencil beam.) Most of the length of the snout
serves as a scatter shield to contain scatter from the primary
aperture. The exit opening of the snout defines a narrow
angle of allowed scatter which is effectively a halo around
the pencil beam. Direct beam from the halo illuminates a
few dozen pixels on either side those in the path of the good
pencil beam. Compton interactions from the narrow halo are
orders of magnitude fewer than from the unwanted scatter in
the original system, which was critical to obtaining a good
match between forward model and experimental data. All
data results shown in this paper were generated using this
snout design.

B. CALIBRATION AND FORWARD MODEL VERIFICATION
The X-ray source used to generate the incident beam
has intensity IS (ES ) shown in Fig. 5. Due to the

FIGURE 7. Forward model verification, showing (a) total photon counts
per detector, and (b) photon counts per energy bin at detector 1550.
Detectors 1-1152 are for the upper side of the detector (see Fig. 4), and
the jump in figure (a) at detector 1153 marks the transition between sides
of the L-shaped detector array.

source collimation, a calibration parameter αc is required
to determine the effective photon counts on the incident
beam I(ES ) in Eq. (1), such that I(ES ) = αcIS (ES ). The
parameter αc was determined by matching the forward model
to data collected using a reference object (a 2’’ cylinder of
known density) with the beam pointed at the center of the
object. After collecting the data, high noise detectors were
dropped and the predicted data for the remaining detectors
was computed using the model described in Section II-A with
I(ES ) = IS (ES ). The computed curve was then multiplied by
the unknown αc andmatched with the data using least squares
minimization.

Example output from the resulting calibrated model is
shown in Fig. 7. A Delrin (CH2O) target of 2.54 cm radius
was placed at the center of the experimental fixture. The
X-ray source was located at 0◦ source (see description in
Section III-A) with the beam directed toward the center of
the object. Fig. 7(a) shows the sum of photon counts over
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all the energies at each detector for both experimental and
simulation results. In the experimental results, the photons
are collected over 0.1 msec time slots and are then averaged
over 200 time slots for a total observation time of 20 sec. The
jump at detector 1153 marks the transition from the longer
to the shorter arms of the L-shaped detector array (shown
in Fig. 4). Fig. 7(b) shows the number of photon counts per
energy at a single detector (number 1550), for both simulation
and experiment. The effect of statistical noise can be clearly
seen in Fig. 7(b), as the number of photons per energy bin on
one detector is relatively low. However, in general the forward
model in Fig. 7 shows a close match to the experimental
results. Note that spectrum shape in Fig. 7(b) is smoothed
compared to the source spectrum (Fig. 5) due to the imperfect
energy resolution of the detectors [6].

While the overall match in Fig. 7(a) is good, isolated
detectors are seen that have anomolously high or low counts
relative to their neighbors. Detectors are arranged in blocks
of 32, and investigation showed that a majority of anomolous
detectors were located at the edges of each detector block,
while other anamolous detectors could be identified by mea-
suring dark-scan current (i.e., detector output with the X-ray
source turned off). Anomalous detectors were identified and
removed before further processing.

C. RECONSTRUCTION RESULTS
To test image reconstruction, a series of phantoms objects
were measured on the testbed. These phantoms range from
simple geometric objects to objects more typical of airport
luggage. In this section, we present reconstuction results
for three scenarios: a) an arrangement of three plastic rods;
b) a coaxial plastic object with an inner Delrin cylinder sur-
rounded by an outer HDPE cylinder; and c) a cardboard box
packed with cotton T-shirts that concealed Delrin and HDPE
square rods. As described above, detector collimation was
used to ensure that only in-plane scattering was measured,
so all reconstructions are two-dimensional.

Data were collected from all 6 source locations. Because
we seek to understand the benefit of Compton scattering data
for few-view systems, we processed data for configurations
of 3, 4 and 6 sources. The three-source configuration included
the (90◦, 45◦,−22.5◦) sources, while the 4-source configura-
tion used the (90◦, 45◦, 0◦,−22.5◦) sources. Reconstructed
images are plotted below only for selected source con-
figurations, but image quality metrics for a wider set of
configurations are found in Table 1.
A common set of parameters were used to reconstruct

all scenarios shown. Reconstructions were generated on an
evenly spaced grid (4 mm grid spacing in both dimensions)
for 150 iterations of the algorithm.

Total variation parameters were set as β = 10−6 and
λTV = 0.01 for all examples. Selecting λTV is in gen-
eral problem dependent. For optimization problems with
‘‘weighted’’ misfit terms that are function of their misfits,
λTV should be updated to balance the optimization prob-
lem in accordance with the change in misfits weights [30].

TABLE 1. Quantitative comparison of methods. First number is
SSIM, second number is normalized error (both computed vs. nominal
density). High SSIM and low errors are desired; best result for each case
is bolded.

The later makes selecting λTV a difficult task, so optimization
schemes have been developed for such problems, e.g. the
multiplicative constraint approach [38]. However, if themisfit
terms are multiplied with fixed weights, as in Eq. (16), then
selecting λTV becomes simpler and estimates can be found
empirically [41], [42]. For all the examples illustrated in this
work, a fixed value of λTV = 0.01 is used.
Transmission sinogram decomposition was performed for

all source-detector raypaths after elimination of bad detectors
(as discussed in the previous section). Compton scattering
measurements from good detector pixels were spatially aver-
aged into 200 equivalent detectors. In effect, this simulates
the use of larger-area scatter detectors (roughly 7x area
increase), which helps to improve count statistics and to
reduce computation time.

1) THREE TARGETS
In this example, the investigation domain contains three
targets: a 2’’ diameter PVC cylinder (C2H3Cl), a 2’’ square
Delrin rod (CH2O), and a 2’’ diameter Delrin cylinder
(CH2O) (see Fig. 4). The results of density reconstructions for
a 4-source configuation are shown in Fig. 8. Fig. 8(a) shows
the nominal (ground truth) density. To simplify the plotting,
this and all subsequent density reconstructions are shown for
a fixed range of 0 − 1.5 g/cm3 (note that PVC and Delrin
densities are quite similar).

The remaining plots show reconstructed density using
Compton-scattered data only (Fig. 8(b)), Tx data only
(Fig. 8(c)), and both Tx and scatter data (Fig. 8(d)). For
results in Fig. 8(d), equal weighting is placed on both Tx
and scatter data (i.e., λtx = λsc = 1). The use of Compton
scatter data alone yields a reconstruction with reasonable
geometric detail, but with greatly underestimated density
values. As a note, this result is the solution of a nonlinear,
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FIGURE 8. Reconstructed result of three targets example, showing
(a) actual density profile, (b) reconstruction using Compton scattering
data only, (c) reconstruction using Tx data only, (d) reconstruction using
both Compton and Tx data. All density reconstructions are shown for a
dynamic range of 0 - 1.5 g/cm3.

non-convex problem without convergence guarantees. The
Tx-only reconstruction in subfigure (b) shows improved den-
sity estimates, but density is still underestimated, and there
is a noticeable increase in artifacts (see blue background
region). The combination of Tx and Compton scatter data
in (d) shows the most accurate (highest) reconstructed den-
sity values, and also shows a reduction in artifacts relative
to Tx-only results. The geometric definition of the three
shapes is also improved as compared to Tx-only results. This
improvement is attributed to the additional sampling of the
scene provided by broken-ray raypaths.

Because a reliable estimate of the actual density is avail-
able, quantitative measures of the reconstructed image can be
computed, using the nominal density image (subfigure (a))
as the reference image. Overall estimation error is measured
using normalized mean-squared error (expressed as a per-
cent), as well as the widely-used Structural Similarity Image
Metric (SSIM) [43]. SSIM is most typically used as an image
quality metric that matches human perception, which has
relevance for an X-ray imaging system where images would
be reviewed by a human operator. Both metrics are shown
in Table 1 for all phantoms and various numbers of sources.
Note that the combination of Tx and scatter data gives the
lowest error for all cases, and the best SSIM for all but one
case.

2) COAXIAL GEOMETRY
As a second example, we consider a coaxial geometry in
which a Delrin cylinder is placed inside an outer HDPE shell.

FIGURE 9. Reconstructed result of coaxial example, (a) actual density
profile, (b) reconstruction using Compton scattering data only,
(c) reconstruction using Tx data only, (d) reconstruction using both
Compton and Tx data.

Ground truth and reconstruction results (again for the
4-source configuration) are shown in Fig. 9. The results
are generally similar to the three-target phantom, with the
combination of Tx and Compton-scattered data showing
best results. While all reconstructions underestimate density,
Fig. 9(d) shows more accurate values, particularly for the
inner Delrin cylinder. In addition, the geometry of the outer
cylinder is better defined, and artifacts outside the HDPE
object are noticeably reduced.

An interesting feature of the Tx-only reconstruction
in Fig. 9(c) is the noticeable variation in the reconstructed
density of the outer ring. This is a result of the extremely
limited number of angles used in reconstruction (the effect
is reduced if all 6 sources are used). One potential gain from
adding Compton scatter data is that the additional raypaths
provide additional geometric information that can reduce
artifacts in few-view reconstruction. A modest improvement
is in fact visible, with the reconstructed HDPE ring being
more homogenous in Fig. 9(d) than in Fig. 9(c). This leads to
the question of whether Compton scatter data can be further
exploited to reduce image artifacts.

As noted in Section II-D, convergence is guaranteed if
the gradient descent steps based on Tx and scatter data
are limited by choosing step size multipliers λtx ≤ 1 and
λsc ≤ 1. In the results above, the largest possible steps
were taken (λtx = λsc = 1) to accelerate convergence.
However, given that the limited-view artifacts are primarily
associated with transmission data, it is interesting to explore
whether de-emphasizing Tx data can further reduce artifacts.
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FIGURE 10. Alternate reconstruction, which emphasizes the role of
Compton data during reconstruction by setting γ tx = 0.5 and γ sc = 1.
(a) reconstructed density (b) percent norm error vs. nominal density for
all methods. While the alternate reconstruction does not improve SSIM or
overall error, it slightly improves homogeneity in the outer ring of the
object.

TABLE 2. Measures of homogeneity in coax reconstruction, focusing on
outer (HDPE) ring. Variability is measured as distance between the
percentile values shown, with the lowest variablity shown in bold.

Fig. 10(a) shows the result obtained by taking smaller steps
based on transmission data, setting λtx = 0.5 and λsc = 1.
Careful visual inspection suggests some improvement in the
image, particularly in the homogeneity of the outer ring.
To quantify this, the ground truth image in Fig. 9(a) was used
to identify all pixels corresponding to the outer ring. Variabil-
ity of reconstructed density for these pixels was computed
using percentile measures, with results shown in Table 2.
There appears to be a modest but measurable improvement
in homogeneity, with the most homogeneous reconstruction
given by the result plotted in Fig. 10(a).
Fig. 10(b) compares the overall image error for various

solutions as a function of iteration number, showing that
varying the ratio λtx/λsc changes the shape of the error curve
vs. ground truth values. While in this instance the lowest
overall error is given by equal weighting, determining the
optimum weighting for transmission vs. scattered data in the
inversion is a potentially interesting avenue for future work.

3) PACKED BOX WITH COTTON AND TARGETS
As a final example, Fig. 11 shows a more ‘real-world’ sce-
nario with more inhomogeneity in which polyethylene and
Delrin objects are surrounded by several inches of cotton
fabric (T-shirt material) and cellulose (the cardboard boxes
used to contain the fabric.) This configuration approximates
a cross section of a typical carry-on sized suitcase, packed

FIGURE 11. Reconstructed result of clutter example, (a) actual density
profile, (b) reconstruction using Compton scattering data only,
(c) reconstruction using Tx data only, (d) reconstruction using both
Compton and Tx data.

with clothing and two masses of contraband organic material.
The interior of the box is imaged, so the background density
is that of cotton (taken to be 0.23 g/cm3). In this scenario,
the Compton scatter-only result shows very weak contrast
at the location of the two objects. The Tx-only result does
recover the objects, but underestimates their density. The
combination of Tx and scatter data yields the most accurate
density estimates for the hidden objects, as shown by the
normalized error listed in Table 1.

IV. DISCUSSION AND FUTURE WORK
The work above has described physics-based models for both
Compton scattering and transmission data, and used these
models to reconstruct density of objects imaged by very few-
view tomography systems. The experimental results showed
that reconstructions that combined transmission (attenuation)
data with Compton scatter measurements yield more accurate
density estimates, and have reduced image artifacts, com-
pared to transmission-only reconstructions. This suggests that
current systems, which typically measure only transmission
data and seek to eliminate scattered photons through collima-
tion, are discarding potentially useful information that could
improve image quality. A further result is that a first-order
scattering model (neglecting potential multiple scattering)
was sufficient for image recovery in our experiments.

The observed improvements in image quality can be
attributed to underlying scattering physics. While Comp-
ton scattered data and attenuation measurements are both
affected by the same underlying physical properties (density
and photoelectric coefficient), the measurements are affected
differently by thesematerial properties. X-ray backscattering,
which is a special case of Compton scattering, is known to
highlight organic and low atomic number materials that have
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a low signature in transmission mode [40]. Thus, the addition
of scattering data provides new cues that can be exploited in
material recovery. As discussed above, another key feature of
Compton scattering is that the broken raypaths add geometric
paths through the scene that can be important in few-view
imaging scenarios, leading to reduction in image artifacts.

In this paper, we focused on density reconstruction
only, deferring photoelectric reconstruction to future work.
However, the photoelectric coefficients can be recovered
using a similar Landweber iteration. Because the Compton
scattering effect (proportional to density) is significant at all
energies (see Fig. 3), a reasonable density estimate is required
for photoelectric recovery. The photoelectric profile could
thus be recovered using a cyclic descent approach, in which
Algorithm 1 above is used to estimate density, after which
the estimated density is used to initialize the photolelectric
recovery, and iteration between density and photoelectric
reconstructions can be repeated as desired, yielding improved
estimates on each iteration.

An important goal for future work is understanding the
benefit of the proposed approach for a wider array of prob-
lems. Ideally future studies would include a wider variety of
materials (textured materials, metal) as well as scenes with
increased clutter. In addition, the geometric arrangement of
X-ray sources and detectors could be optimized to ensure a
more even coverage from all sides of the scanned object.

Multiple avenues exist to further develop X-ray systems
that combine traditional attenuation-based imaging with
Compton scatter data. Given the low count rates associated
with Compton scattered data, larger area detectors or higher-
flux sources would be desirable. Algorithmically, there are
open questions on how best to combine transmission and
scattering data during inversion; Fig. 10 and the related
discussion explored this idea briefly. In part for computa-
tional reasons, we primarily used the energy-discriminating
detectors to eliminate low-energy data where photoelectric
effects are significant, and summed high-energy data together
into a single energy bin. However, multiple high-energy
bins could be used during reconstruction, and the optimal
energy binning for detector data remains to be fully explored.
This work explored only a single regularization strategy
(Total Variation), so selection of alternate strategies and opti-
mal parameter selection could improve performance. In addi-
tion, we explored only a single solution method (nonlinear
Landweber) and future studies could explore potential advan-
tages of algorithms such as ADMM, split-Bregman methods,
or accelerated versions of steepest descent [34]. Finally,
computational issues can be addressed by exploring the use
of specialized hardware such as GPUs, and also exploring by
geometries that would allow for analytic simplifications to
image reconstruction.

APPENDIXES
APPENDIX A
In this appendix, the computation of the differential ∂ρ f (ρ, p)
and the adjoint ∂ρ f (ρ, p)T operators of the Compton scat-

tering model are described. For simplicity of notations
and description, the adjoint and differential operators will
be computed assuming one source and one detector only.
Expanding the equations to several sources and detectors is
straightforward. Starting with Eq. (6) and dropping the source
and detector indices i and j and reordering some of the terms
gives, for energy bin m,

gS (m) =
∑
k

∑
l

I (ESk )1ESS(r̄l,, θl,ESk )

×ω(l, k,m)δlh(rD′ , r̄l,E ′l,k )

×f (r̄l, rS ,ESk )ρ(r̄l) (17)

The photon counts due to l th interaction point and k th incident
energy is given by:

gM (k, l) = I (ESk )1ESS(r̄l,, θl,ESk )δl
×h(rD′ , r̄l,E ′l,k )f (r̄l, rS ,ESk )ρ(r̄l) (18)

which, using Eqs. (7) and (8), gM (p), can be simplified as

gM (k, l) = I (ESk )1ESS(r̄l,, θl,ESk )δl�D′

× exp
(
−aTl µ(ESk )− b

T
l µ(E

′
p)
)
ρ(r̄l) (19)

where only the last two terms depends on density. Eq. (17)
can be computed using Eq. 18

gS (m) =
∑
p

ω(p,m)gM (p) (20)

which can be rewritten as a matrix multiplication, yielding a
vector containing results for all energies:

gS = WgM (21)

where the elements of matrix W are ω(p,m). The measured
signal by the detectors gD′ given in Eq. (10) can be expressed
in term of gM as follow

gD′ = SWgM (22)

Taking the derivative of Eq. (19) with respect to density gives

δgM (p) = I (ESk )1ESS(r̄l,, θl,ESk )δl�D′

× exp
(
−aTl µ(ESk )− b

T
l µ(E

′
p)
)
dTp δρ (23)

where

dTp = −0.5NAρ(r̄l)fKN (ESk )a
T
l

−0.5NAρ(r̄l)fKN (E ′p)b
T
l + 1Tl (24)

where Z (r)/A(r) is approximated by 0.5, a good approxi-
mation for most elements [22]. 1Tl is a row vector ordered
lexicographically as in aTl and bTl , which stores one for the
element that corresponds to the interaction point and zeros
otherwise. Eq. (23) can be simplified as

δgM (p) = epdTp δρ (25)

where

ep = I (ESk )1ESS(r̄l,, θl,ESk )δl�D′
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× exp
(
−aTl µ(ESk )− b

T
l µ(E

′
p)
)

(26)

The vector δgM can be expressed as

δgM =



e1dT1
e2dT2
.

.

.

eNPd
T
NP

 δρ = Mδρ (27)

where NP = NENI , NE is the number of incident energies
and NI is the number of interaction points. Using Eq. (22)
and Eq. 27 gives the definition of ∂ρ f (ρ, p)

δgD′ = SWδgM = SWMδρ = ∂ρ f (ρ, p) δρ (28)

The transposed operator is then computed as

∂ρ f (ρ, p)T = MTWTST (29)

Computing ∂pf (ρ, p) and ∂pf (ρ, p)T follows similar steps as
above.

APPENDIX B
In this appendix, we briefly review the sinogram processing
for transmission data. Our approach is a multi-energy exten-
sion of the dual-energy sinogram decomposition method
presented by Ying et al. [44]. For more details, the reader
is referred to [9]. Based on the relation in Eq.13, we can
recover cρ̃,i and cp,i by minimizing the squared error between
the measured projections and modeled projections. Here we
define θ i =

[
cρ̃,i, cp,i

]
as the unknown density and photo-

electric projections along raypath i. Then, the log-normalized
modeled projection along raypath i for source energy Es is

K (θ i) = − ln
[ ∫

I (Es)exp(−cρ̃,ifKN (Es)

−cp,ifp(Es))dEs]+ ln
∫
I (ES )dES (30)

Ying et al. studied the dual-energy case where the object
is scanned twice with low- and high-energy source spectra.
They used low- and high- energy measured sinograms to
estimate sinograms in Compton (related to scaled density)
and photoelectric space by minimizing the squared error
between the summed low- and high-energy scans projec-
tion and a modeled project computed using Eq. 30, subject
to non-negativity constraints. We generalize their result to
multi-energies by seeking a solution that minimizes

(θ i) = argmin
θ i

(K(θ i)−mi)T6(K(θ i)−mi). (31)

with nonnegativity constraints:

cρ̃,i ≥ 0 and cip,i ≥ 0

In the equation above, vector K(θ i) is the NE dimensional
column vector of modeled log-normalized mean values com-
puted for different values of Es, using Eq. 30 and mi is
the NE dimensional column vector of log-normalized mea-
sured projections. 6 = diag{w} and w is the number of

photon counts received in each energy bin. The 6 matrix
acts as a weighting matrix, making the problem a weighted
least squares problem, and was derived by Bouman and
Sauer by finding a quadratic approximation of the Pois-
son log-likelihood function for X-ray transmission problem
using a Taylor series expansion, which can be described as
[45]–[47]. This weighting matrix 6 gives more weight to the
raypaths and energy bins whose measured photon count is
larger. In practice, for rays passing through objects with high
attenuation, this givesmoreweighting to the high energy bins.
In the case where only two energies are present and 6 is the
identity, Eq. 31 reduces to the result in [44]. For the inter-
ested reader, [9] explores cases where multi-energy sinogram
decomposition has advantages over dual-energy sinogram
decomposition.
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