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ABSTRACT While it is well understood that the Internet of things (IoT) can facilitate numerous applications
(e.g., environmental supervision, forest fire prevention and Intelligent farming), it also brings a significant
challenge for efficiently selecting sensors that meet users’ preference and specific requirement from millions
of heterogeneous sensors. In this paper, we propose an improved fast nondominated sorting algorithm for
efficiently preference-based sensor selection in IoT. Specifically, this proposed method mainly includes three
parts: 1) Offline constructing R-tree to search sensor resources and narrowing the size of dataset according
to user’s preference; 2) Using an improved fast nondominated sorting approach to get nondominated front;
3) Employing TOPSIS to characterize every sensor option of the nondominated front. In order to illustrate
the usability of the model, we conduct experiments on several simulation datasets. Experimental results show
that this method outperforms several baselines in terms of both response time and accuracy.

INDEX TERMS Multi-criteria decision, R-tree structure, sensor selection, Internet of Things, the fast

nondominated sorting algorithm.

I. INTRODUCTION
In the Internet of things(IoT), the Internet is used as medium
to control all kinds of physical devices for collecting real-time
environmental data and transferring the data to middleware’s
specific function modules. Finally the middleware returns
the results to users. At present, the Internet of things is
widely employed in intelligent home, intelligent city, intelli-
gent healthcare, intelligent transportation and other fields. For
example, apps on smartphones enable many sensors to mon-
itor traffic jams and optimize drives in intelligent transporta-
tion. Type-B ultrasonic can use ultrasonic sensors, a type of
acoustic sensor, to know every move and development status
of the fetal, which can avoid some unexpected circumstances.
Similar sensor applications are numerous in daily use.

Due to the development of communication technology and
the emergence of various intelligent objects, a large number
of physical objects are connected to the Internet of things.
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Cisco predicts that the number of objects in the Internet of
things will increase to 50 billion by 2020 [1]. Therefore,
a large amounts of sensor data are expected to be generated
continuously. And generated date contains two kinds of data,
one to describe sensors and the other capture from realistic
environment. From this perspective, the biggest challenge
for services selection in Internet of things is to discover
sensor resources in large-scale heterogeneous environments
and choose the best option according to users’ specific needs
and constraints.

In recent years, many scholars have made great progress
in balancing users’ multiple requirements of sensor by
using multi-criteria decision analysis algorithms (MCDA).
ViSIoT [2], CASSARAM [3], CASSF [4] and other Internet
of things frameworks search for resources based on multi-
criteria decision analysis algorithm with users’ preference of
several specific sensor’s indicators in the Internet of things.
The process of sensor resources selection can be divided
into two phases: 1) Using static query to get a set of avail-
able sensor resources mainly according to user’s preliminary
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requirements of sensors, such as location, sensor types and
etc. Users can obtain the candidate sensor resources by
querying database or other way. 2) Applying multi-criteria
decision analysis algorithm (MCDA) to characterize and sort
candidate sensor resources with user’s preferences of sensor
attributes, and returning results to user.

In multi-criteria decision analysis algorithms, the Tech-
nique for the Order of Prioritization by Similarity to Ideal
Solution (TOPSIS) is widely used. TOPSIS has low time
complexity, and it can provide optimal option with a set
of preliminary constraints. But TOPSIS cannot take all the
constraints given by users into account at the same time.
According to the research results of Nunes et al. [21], only
a small number of sensors recommended by TOPSIS are in
nondominated front. The time complexity and space com-
plexity of the fast nondominated sorting algorithm based
on Pareto optimal principle are very lofty, but it has high
accuracy. In order to absorb the advantages of these two algo-
rithms, we propose an improved fast nondominated sorting
algorithm. The contributions of our research are four-fold as
follow:

« We construct R-tree to retrieve sensor resources stat-
ically. The R-tree is constructed to retrieve sensor
resources in two-dimension space including sensor loca-
tion and type, then user can obtain sensor dataset.

o We narrow the size of sensor dataset according to user
preferences of sensor attributes. The dataset is copied
into n copies, where n is the number of attributes.
N copies are respectively related to n sensor attributes
and the sensor resources in every copy are sorted accord-
ing to specific sensor attribute. The final size of dataset
is determined by the experiment result. Then the num-
ber of sensor option obtained from respective copies
is determined with the proportion of the preference
value of this sensor attribute to the total preference
value.

o We propose an improved fast nondominated sorting
algorithm to get the nondominated front of dataset,
which reduces the time complexity and space complex-
ity than original algorithm.

o We illustrate this model in several simulation datasets,
which are generated according to the change range of
sensor attributes value. And the experimental results
show that the model is superior to the existing sensor
selection models.

The rest of the paper is organized as follows: Section II
investigates the related work of sensor selection under the
Internet of things. The proposed sensor selection model is
introduced in Section III. Section IV reports and discusses
the experimental results. Finally, we present our conclusions
and future work in Section V.

Il. RELATED WORK

In this section, we first discuss the relevant work of sensor
selection in the Internet of things, and then summarize the
differences between our proposed model and previous work.
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Zhou [5] proposed that existing sensor selection methods
can be divided into two categories: context-based selection
methods (e.g., searching based on location and sensor type)
and content-based selection methods (e.g., searching sensors
that can generate specific values), which are described in the
following two aspects:

Context-based sensor selection method. Context-based
sensor selection methods rely on the different types of con-
textual information available in the sensor description. Nunes
had set up a IoT visualization platform ViSIoT [2], wher e
OpenWeatherMap1 as cloud sensor repository for storing the
state and other relevant information of the sensor, such as
their coordinates, battery level and price information. GSN
as a data processing system and this model use TOPSIS
for characterizing and sorting the sensor resources. Its main
purpose is to help the technical and non-technical users find
and use sensors by this platform. Perera presented a IoT
sensor selection model CASSARAM [3] based on context
awareness, which considers the sensor attributes, such as
reliability, accuracy, battery life and etc. Then it employed
the Weighted Euclidean distance based on Comparative Pri-
ority Index algorithm(CPWI) to characterize and sort sensors
with the user’s preference values of sensors attribute and
user’s ideals values of sensor. Neha proposed the VSBR [7],
which characterizes sensors resources by calculating the
weighted index (PBWI). The above two models require the
user to input the specific sensor preference values. Gong
proposed CASSF framework [4], where RDF graph was used
to store sensor information instead of relational database for
ensuring semantic information furthest, and TASI algorithm
[9], [10] was created to improve the overall search effi-
ciency. Ocean model [8] presented by Carlson, which intro-
duced the Ambient Ocean search engine and this engine
retrieves information based on arbitrary contextual data, such
as location, sensor information and etc. Nithya et al. [29]
proposed a clustering method based on cluster and cluster
head information to optimize sensor selection in the Inter-
net of things, which realized fast and effective retrieval.
Ramachandran et al. [30] proposed a method based on cluster,
where sensors were grouped into clusters based on their
energy level and proximity. Then user queries were processed
using natural language. Bharti proposed Vol based Sensor
Ranking Mechanism VoISRAM [31], which considers its
application context and balances the use of specific QoS
requirements and energy consumption to get the best option.
Inspired by ant clustering algorithm, Ebrahimi et al. [33]
proposed an effective context-aware method to cluster sen-
sors with similar context information in sensor semantic
coverage network. This model has obvious scalability and
faster running speed in cluster sensors and sensor search.
Deshpande et al. [34] implemented an ant based clustering
algorithm and made novel modifications to this algorithm.
The algorithm samples the whole sensor space and outputs
the corresponding clusters, where users can choose the best
clusters according to their own needs. Given the limitations
of memory, power and latency in the Internet of things,
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Sharma et al. [35] deployed unmanned aerial vehicles
(UAVS) as a dynamic node and used a radial basis function
kernel support vector machine to solve and optimize customer
queries. Nithya et al. [29] proposed an approach for optimal
selection of IoT sensors based on cluster and cluster head
formation for faster and effective retrieval. In order to prolong
the lifetime of network, Wang et al. [36] proposed a central-
ized clustering algorithm based on spectral partitioning and
a distributed implementation of the clustering method based
on fuzzy C-means in cluster head selection.

Nunes et al. [11] think that TOPSIS as common multi-
criteria decision analysis algorithms has low time complexity
but bad accuracy. However, the fast nondominated sorting
algorithm can provide the best tradeoff solution in the context
of multiple criterions but high time complexity and space
complexity, which makes it hard to execute in a large number
of sensor resources. The ES model integrates the advantages
of TOPSIS and the fast nondominated sorting algorithm.
Kertiou proposed dynamic skyline algorithm [12] to improve
the accuracy of multi-criteria decision analysis algorithm,
which has been widely used in multi-criteria decision applica-
tions such as web service combination [13] and wireless AD
hoc network routing. Compared with the fast nondominated
algorithm mentioned above, the dynamic skyline algorithm
has a lower time complexity, but it isn’t safe to require users
to input ideal values of sensor properties.

Content-based sensor selection method. Content-based
sensor selection methods use sensor output to search specific
sensor sets that match user queries [14]. Truong et al. [6] bor-
rowed the idea “‘search-by-example approach” from Google
image retrieval, which retrieved the relevant content with
given the relevant image for avoiding the situation that user
input inaccurate keywords. Taking the historical output of a
sensor as a comparison, the fuzzy set was used to efficiently
calculate the similarity score of the sensor, and the ranked
list is recommended to the user. Ostermaier et al. [15] pro-
posed a real-time search engine Dyser, which supported the
use of existing Web infrastructure to publish sensors dataset
and retrieve the specified sensor. Mietz et al. [16] proposed
Bayesian network model with using the highly correlated
output characteristics of many sensors to learn relevant struc-
tures from the historical data of sensors, which could get the
requesting probability of sensor without knowing the current
sensor output then it recommended sensor with high proba-
bility to the user. Truong et al. [17] proposed a lightweight
prediction model based on fuzzy logic algorithm to estimate
the probability of sensor option and realize content-based
sensor search in the Internet of things with low communica-
tion overhead and computational efficiency. Puning et al. [18]
proposed a sensor state prediction method to estimate the
short-term state of the sensor, which could make better use
of the time correlation between sensor data and accurately
perceive the change trend of sensor readings in the future.
Vasilev et al. [19] proposed a scalable model based on hyper-
graph representation to evaluate the cooperative relationship
between sensor nodes and achieve reliable node, which well
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covered the dynamic characteristics of complex sensor net-
works. In order to improve the efficiency of content-based
sensor search, Puning proposed a content-based sensor search
model CSME [20], which improved the efficiency and appli-
cability of existing sensor search systems. Zhang et al. [32]
established a multidimensional feature selection model and a
dynamic sensor data prediction model by using the complex
time series constituted by various sensors, which improved
the accuracy and stability of long-term prediction results of
iot sensor data. Zhang et al. [18] described an efficient MSE
structure for content-based sensor search, where the short-
term state of sensors are estimated in order to find candidate
ones.

Ihm proposed Grid-PPPS model [22], and this method
gridded the data space using hyperplane projection, which
reduced the time complexity compared with the plane-
project-parallel-skyline [23] model. Bijarbooneh et al. [24]
solved the problem of sensor optimal selection in the Inter-
net of things by combining constraint programming (CP)
and heuristic greedy algorithm. This model adopted a new
data acquisition scheme ASBP, which used highly correlated
spatio-temporal data in the network. Zhang et al. proposed
LHPM [25], which retained the reference value of sensor
output during query and realized high-precision prediction,
so as to reduce communication overhead as well as the cost
of storage and energy. Jiang et al. [26] believes that the
performance of support vector machines depends on setting
appropriate parameters. Therefore, cuckoo search (CS) algo-
rithm was adopted to optimize the key parameters with avoid-
ing the local minimum problem, which existed in traditional
parameter optimization methods.

Our method belongs to the first category. Compared with
the content-based sensor selection algorithm, the content-
based sensor selection algorithm focuses more on users’ non-
functional requirements of sensors. This input of model has
low requirements on users’ professionalism, and it’s easier to
carry out services. We propose an improved fast nondomi-
nated sorting algorithm, which gives a good balance between
the low time complexity of TOPSIS algorithm and the high
accuracy of the fast nondominated sorting algorithm based on
Pareto optimal principle, so as to provide users with efficient
sensor selections.

Ill. SENSOR RECOMMEND MODEL

In this section, we first introduce the data structures and
notations used in the model, then introduce the background
knowledge, and finally state our solution.

A. PROBLEM DEFINITION
For ease of the following presentation, we define the key data
structures and notations used in the proposed method. Table 1
lists the relevant notations used in this paper.

Definition 1 (Sensor Attribute): In order to describe the
performance of the sensor, we use six sensor attributes F =
{f1, ..., fs} including life, sensitivity, measurement accuracy,
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TABLE 1. Notations used in the paper.

SYMBOL DESCRIPTION
F The set of sensor attributes
fi The 3" sensor attribute
Di The user preference value of the i*/* sensor attribute
D; The dataset of the i*" Fastlist’s copies
My The j*" sensor attribute value of i*" sensor attribute
Maz(f;) Max value of the it" sensor attribute
Min(f;) Min value of the i*" sensor attribute
The objective function
< S;, St > Tuple structure for R tree retrieval
S The position of the sensor
St The sensor type
Fastlist The dataset of sensors
Fastlist’ The dataset of sensors after reducing
DFront The first nondominated front
n The size of Fastlist’

response time, start time and energy consumption in this
paper.

Definition 2 (The Objective Function): Sensor selection
frames as solving multi-objective optimization. For the six
sensor attributes described in Definition 1, the objective
functions are defined as G = {Max(f1), Max(f>), Max(f3),
Min(fs), Min(fs), Min(fs)}. In order to simplify the solu-
tion process, we take the negative values of three sensor
attributes of response time, start time and energy consump-
tion. So the objective function is G = {Max(f;), Max(f>),
Max(f3), Max(fs), Max(fs), Max(fs)}.

Definition 3 (The Retrieving Structures Used in R-Tree):
R-tree is used for spatial data storage, which can be used
to store spatial information on maps, such as restaurant
addresses. In this paper, the R-tree is built by constructing
a two-dimension tuple <S;, S;>, where S; represents the posi-
tion of sensor and S; represents the type of sensor. Inputing
the sensor tuple <Sy, S;>, we can quickly obtain the required
sensor dataset.

Definition 4 (The Dataset of Sensor): After retrieving
R-tree to obtain sensor dataset, we change sensor dataset
into an array Fastlist = [[m1, m12, m13, m14, m5, mig], . . .,
[mu1, My, my3, mpa, mys, myel] according to the sequence of
sensor attributes.

Definition 5 (Nondominated Front): In multi-criteria deci-
sion analysis problems, there may be conflicts and incompa-
rability between multiple criterions. One solution may be the
best in one criterion, and the worse in another. We select two
sensor options (S1 and S2 ) randomly. When every sensor
attribute value in S1 is no less than the corresponding sensor
attribute value of S2, we call S1 dominant S2. In other words,
if the sensor option S1 is not dominated by other sensor
data, S1 is called the nondominated solution. The set of all
nondominated solutions is the nondominated front.

B. BACKGROUND

1) TOPSIS ALGORITHM

Supposing we have sensor options set L = {l1, > ..., [,;} and
decision criterion set C = {c1, ¢z ..., ¢y}, then the value a;;
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represents that the attribute value of /; is ¢;(i=1,2...m;j =
1,2..., n). The constructed decision matrix A = (a;),,z_, 1S
used to describe the multi-criteria decision problem, and the
specific formula is as follows:

C1 2 c3 te Cn
I an an a3 e ain
12 ar] an a3 XK azy
A= . . . . .
I aml am2 am3 te Amn

The sensor selection frames as a multi-criteria decision
analysis problem. Among the multi-criteria decision analysis
algorithms, TOPSIS algorithm has a strong explanatory sort-
ing principle. The TOPSIS aims to find the best solutions,
where the best option is nearest to the optimal solution and
farthest to the inferior solution [27]. The time complexity of
TOPSIS is O(n?), where n respects the size of sensor dataset.
TOPSIS algorithm is summarized as follows:

1. Normalize the matrix A to A" according to the following
Equation 1.

d, = Y (D

ij e 2 an)?
i=1\"y

where a;; represents the value of the j* attribute of the i’ sen-
sor, and z is the number of rows in matrix A;

2. Each sensor attribute’s minimum values and maximum
values in matrix A’ are calculated to get the optimal point
and the worst point, which is represented by ay; and a_;
respectively, as shown in Equation 2.

/

j» d—j = min a;j 2)

ayj = max a
+ l<x<l l<x<l

3. Euclidean distance of every sensor option to ay; and a_;

are computed and represented by s;+ and s;_, as shown in

Equation 3,4.

l

sip = | Y _(a—ay)? 3)
N
l

sie = | ) _(aj—a)? “
s

4. Set a measurement index to characterize and sort each
sensor option according to the computed value. The index
formula is as shown in Equation 5.

Si—

Ci+ = siv + si_ 5
2) THE FAST NONDOMINATED SORTING ALGORITHM
The fast nondominated sorting algorithm [27] is used to sort
the options in the nondominated front according to the pareto
optimal principle. The fast nondominated sorting algorithm’s
time complexity is O((mn)?) and storage space are o),
where n is the size of sensor dataset and m is the number
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of criterions. Given a sensor dataset P, the fast nondominated
sorting algorithms need to compute two parameters of each
sensor i in P including np and S, in which np refers to the
number of option in P that dominate sensor i, and S, refers
to the option set dominated by sensor i, the algorithm is
summarized as follows:

1. For every option of P, find the sensor option withnp = 0
and save them in the set F. The set F| represents the first
nondominated front.

2. For every option j in S, which is dominated by sensor in
F1,update the corresponding value np to np = np-1.If np = 0,
we store j in set F5.

3. Take F; as the current sensor set, repeat step 2 and
replace F,_1and F, with Fi and F; respectively, until the
whole sensor set is layered.

Filter and sort dataset

I

Retrieve and narrow sensor dataset
2h
g o e
=
3 ° v ° L J
° o ° ° °
o » —> 00
. . °
. rY . L}
b L]
]
Sensor type

I

Get user requirements

i -

FIGURE 1. The flow chart of the model .

C. SENSOR SELECTION MODEL

The time complexity of TOPSIS is low, and it can efficiently
characterize and sort the sensor dataset, but the given selec-
tion has a low proportion in the nondominated front. In order
to solve this problem, scholars combined the fast nondomi-
nated sorting algorithm to propose the ES model [11]. The
ES model reorders the selections given by TOPSIS and rec-
ommends them to users, which increases the proportion of
the selections in the nondominated front but also increases
the processing time by tens of times. Our model only obtains
the first nondominated front to reduce the time complexity to
O(n). The flow chart of the model is shown in figure 1:

Step 1: Get the sensor dataset. The Internet of things
includes a large number of sensors. Using the traditional
method to static retrieve sensor dataset is time-consuming.
We use R-tree to reduce the time of repeated retrieval
and improve the retrieval efficiency. According to the two-
dimensional tuple <Sj, S;>, the sensor dataset is retrieved
and obtained. According to the order of the six sensor
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attributes, we change obtained dataset into array Fastlist =
[[mi1, mi2, m3, myg, mys, migl, . .., [me1, mr2, mg3, myq,
mgs, mkﬁ]], where mi1, M2, M3, Mi4, Mmis5, Mg respectively
represents sensor option’s six sensor attributes value.

The size of Firstlist obtained by retrieving the R-tree based
on the two-dimensional tuples of sensor is still large, so it
is necessary to narrow the scope of sensor dataset while it
contains all nondominated front as much as possible. First,
we copy the sensor array Firstlist into q copies, where q
is the number of sensor attributes. In this paper, we select
six sensor attributes including life, sensitivity, measurement
accuracy, response time, start time and energy consumption,
so the q equals to 6. We reorder the sensor resources in
each copy according to specific sensor attributes, so we
get six sets [list]...list6]. Next, the optimal size of sen-
sor dataset n should be set according to the experiment
results. When n equals to 900, the accuracy of the model
is the highest, the results are shown in figure 3. Then,
according to the proportion of this sensor attribute prefer-
ence value in the sum of the six sensor attribute preference
values, the required number of sensor options of the each
copy in n is determined, as shown in Equation 6. Finally,
the sensor dataset with the number of n is integrated into

Fastlist' = [[my1, mi2, mi3, mig, mis, migl, . .., [mp1, my2,
Mp3, Mpa, My5, Mpe]], where n equals to 900;
i
Dj=—— xn (6)
Zj:lpj

where D; represents the dataset of the i’ cope after reducing,
p;j represents the users’ preference value of the j™ sensor
attribute value;

Step 2: An improved fast nondominated sorting algorithm.
The fast nondominated sorting approach is used to sort
the options in fronts regarding their nondominated levels.
However, this algorithm is very tedious and the time com-
plexity is O(mn?), where m represents the number of criteria
and n represents the number of available sensor options.
The scale of the Internet of things is so large that using the
fast nondominated sort algorithm to make recommendations
among millions sensor options is time-consuming. Moreover,
it is not necessary to sort all the sensor options according to
the nondominated level in a sensor recommendation system,
and it just needs to find the optimal solution set. There-
fore, we improved the fast nondominated sorting algorithm
to obtain the sensor options with the highest nondominated
sorting in the shortest time. This algorithm was improved
by combining the ideas of quick sorting algorithm, and the
time complexity was reduced to O(n), where n equals to 900,
as shown in Algorithm 1.

After getting sensor dataset Fastlist’ by step 1, we compute
the nondominated front by the proposed model as shown
in Algorithm 1. First, as shown in Line 1 ~ 7, we define
a function to obtain the dominance relation between sen-
sor option SensorOptionl and sensor option SensorOption?2.
Next, as depicted in Line 10 ~ 12, we assign values to the
parameters used in the model. In Line 13 ~ 23, We compare
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Algorithm 1 An Improved Fast Nondominated Sorting
Algorithm

input: Dataset:Fastlist’ = [[my1, mi2, mi3, mia, mis, ...,
mul, ..., (Mg, My, My, Mk, Mg, « . ., Myg]].
output: The first nondominated front: DFront
1: function MYCOMPARE(SensorOptionl, SensorOption2)
2: if SensorOptionl1[i] >= SensorOption2[i], i € [1,k]
then

3 return TRUE
4 else
5 return FALSE
6: end if
7. end function
8: function QUICKDOMINATE(Fastlist’, start, end)
9 if start < end then
10: i < start
11: j < end
12: base < Fastlist'[i]
13: while i < j do
14: inter < mycompare(Fastlist'[i], base)
15: if base dominate Fastlist'[i] then
16: Fastlist'[i] < —1
17: i<—i+1
18: else
19: Fastlist'[i] < —1
20: base < Fastlist'[i]
21: break
22: end if
23: end while
24: while i < j do
25: inter < mycompare(Fastlist'[j], base)
26: if base dominate Fastlist'[i] then
27: Fastlist'[j] < —1
28: j<—j—1
29: else
30: j<«—j—1
31: end if
32: end while
33: end if
34: DFront=QuickDominate(Fastlist’, i,
len(Fastlist’) — 1)
35: return DFront
36: end function

base node with Fastlist'[i] according to pareto’s optimal solu-
tion principle, If the base node dominates Fastlist'[j], then
Fastlist'[i] is assigned to —1 and i is increased by 1. If the
Fastlist'[i] dominates the node base, Fastlist'[i] is assigned
to base node. Then, as shown in Line 24 ~ 32,We compare
base node with Fastlist'[j]laccording to pareto’s optimal solu-
tion principle, If the base node dominates Fastlist'[j], then
Fastlist'[j] is assigned to —1 and j is decreased by 1. If the
Fastlist'[j] dominates the node base, j is decreased by 1.
Finally, we redefine the input value of this model as shown
in Line 34.
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Step 3: Sort using the TOPSIS algorithm. Referencing
to user’s preferences and the physical significance of each
sensor attribute, TOPSIS algorithm is used to characterize
each sensor resource in the first nondominated front, rank and
recommend it to users.

IV. EXPERIMENT EVALUATION

In this section, we report on the results of a series of experi-
ments conducted to evaluate the performance of the proposed
sensor recommend model. We first describe the settings of
experiments including datasets, comparative methods, evalu-
ation methods and user interface. Then we report and discuss
the experimental results.

TABLE 2. The value range of sensor attributes.

Sensor attribute Unit Value range
Life y Sor10
Sensitivity nA/ppm  [2,100]
Measurement accuracy ~ ppm [0,1]
Response time S 8,15 or 30
Start time ms 70 or 300
Energy consumption uW 2.7 or 50

A. EXPERIMENTAL SETTINGS

1) DATASETS

There is no public dataset to provide large-scale sensor con-
textual information. We found a public sensor website ‘“Array
of Things”, which contains 22 different sensors of image
processing, environment and air quality detecting. And this
sensors collect data from 12 locations, such as Chicago and
Taiwan. In terms of recommending sensors based on sensor
attributes, the website has less types of sensors than we need.
Therefore, we conducted a combination of real data of this
website and synthetically generated data according to the
range of sensor attribute data of the public sensor website
“Array of Things™. This combination of data allows to pro-
vide a large amount of sensor data and helps to better under-
stand the behavior of sensor recommendation algorithms.
The value range of sensor attributes is shown in the table 2.
We take six sensor attributes mentioned above into account,
in which three sensor attributes have fixed value while others
have value range. In order to test the influence of dataset size
on the model, we conduct four datasets of different sizes, and
more details of these datasets are shown in table 3.

2) COMPARATIVE METHODS

« TOPSIS: Firstly, the method [27] normalizes the sensor
dataset matrix. Next, computing the best point and worst
point according to the objective function. Then comput-
ing the distance of every sensor in sensor dataset matrix
to the best point and worst point. Finally, ranking and
recommending it to users.

« ES: Firstly, the method [11] uses the TOPSIS to rank and
sort the sensor dataset. Next, setting the SR parameter
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TABLE 3. Statistics of sensor datasets.

Dataset Dataset 1 Dataset 2 Dataset 3 Dataset 4
The total number 10000 50000 100000 200000
Uv sensors 777 3858 7632 15389
Printing sensors 778 3877 7738 15281
Carbon monoxide sensors 801 3924 7622 15459
Pressure sensors 780 3837 7746 15298
Temperature sensors 736 3834 7621 15240
Humiture sensors 732 3856 7594 15306
Humidity sensors 810 3717 7668 15492
Acceleration sensors 750 3858 7736 15165
Optical sensors 763 3910 7629 15457
Sulfur dioxide sensors 757 3858 7750 15357
Nitrogen dioxide sensors 752 3774 7835 15378
Magnetic sensors 780 3898 7710 15690
Ozone sensors 784 3799 7719 15488
®
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FIGURE 2. The user interface.

to limit the number of sensor dataset inputed to the fast
nondominated sort algorithm. Finally, the N options that
belong to the nondominated front are recommended.

« Dynamic skyline algorithm: Firstly, this method [12]
gets the user request and computes the local dynamic
skyline to narrow the sensor dataset. Then, collecting a
set of locally filtered sensor data to compute the dynamic
skyline. Finally, using SAW algorithm to rank sensor
dataset.

3) EVALUATION METHODS

In order to evaluate the efficiency of the model, the response
time and the accuracy are selected as evaluation indexes to
judge the proposed model. After getting sensor dataset by
using user’s sensor requirements to retrieving R-tree, we keep
track of time until the recommended sensor is fed back to
the user. This time interval is response time. As a sensor
selection model, we employ a proportion of the number of
user satisfying sensor options in the top-K options as the
accuracy to measure the proposed sensor selection model.
The accuracy formula is defined as:

U
Accuracy = X @)
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where U represents the number of sensor options which user
is satisfied, and K is the number of sensors options recom-
mended by the model;

4) THE USER INTERFACE

In this model, users are required to input data such as sensor
location, type and sensor attribute value preference. In order
to facilitate users to operate, we design the user page. shown
in figure 2.

As shown in figure 2, after fill the sensor information in
the red square circle, the user click the “Submit™ button to
submit the information to the server. Then the server puts the
descriptive information of the sensor recommended by model
in “Result show” module. Finally, the users need to select
content options in “Result show’ module and submit results.

B. EXPERIMENTAL RESULTS

In this part, we evaluate the model proposed in this paper
from three aspects: impact of parameter setting, response
time comparison of sensor selection algorithm and accuracy
comparison of sensor selection algorithm.

1) IMPACT OF PARAMETER SETTING

We need ensure an important parameter in our model, which
is the number of sensor options to be processed by an
improved fast nondominated algorithm. Before we conduct
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FIGURE 3. Comparison experiments of parameter setting.

the experiments, we need determine which dataset we need
to use. In order to simulate sensor resources selection prob-
lem in the real situation, in which has a large number of
sensor resources, ES model proposed by Nunes [11] and
dynamic skyline model proposed by Kertiou [12] adopt mul-
tiple datasets to measure the performance of the model. And
These two models has the best performance when the size
of dataset is 100,000. Therefore, combined with the dataset
settings in other papers, dataset3 is selected for experiment
in the parameter setting part.

We conduct 15 groups experiments based on dataset3 as
shown in figure 3, and parameter n is set from 100 to 1500.
Experimental results including the response time and the
accuracy are the average of 30 users’ experimental records.
According to the experimental results, the trend of accuracy is
on the rise. The highest accuracy is 76.92% with that n equals
to 900, and the lowest is 61.15% with that n equals to 100.
When parameter n is set from 900 to 1500, the accuracy of
the model reaches a stable state and fluctuates around 75%.
The general trend of response time is also on rise with the
increase of the number of parameter n. However, response
time fluctuates greatly, and the reasons for the large fluctua-
tion of response time include the size of sensor dataset and
the duplication of sensor options in the dataset. The highest
of response time is 0.45 seconds while n equals 1400, and the
lowest of response time is (.35 seconds while n equals to 100.

According to the results shown in 15 groups experi-
ments, the accuracy and response time of our proposed
model increase with adding the number of parameter n,
but the rangeability is different. The rangeability of accu-
racy is 15.77% while the rangeability of response time is
0.1 seconds. In addition, The main purpose of our model is
to improve the precision of sensor recommendation model,
so we choose the case with high accuracy first when choosing
the parameter n. we set n as 900 when the accuracy is the
highest, and the corresponding response time is 0.40 seconds.
To sum up, we set the experiment parameter n to 900, and the
following experiments are all conducted with that n equals
to 900.
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2) RESPONSE TIME COMPARISON OF SENSOR

SELECTION ALGORITHM

As an interactive system, it needs to consider the satisfaction
of users. We require the time interval as small as possible,
so the response time is taken as an indicator to measure
the sensor selection model. In order to test the performance
of the sensor selection model in the area of response time,
we conduct experiments under two conditions: ““‘different
group of the same dataset” and ‘“‘same group of different
datasets™.

TABLE 4. Comparison of response times for the different group of
dataset1.

group 1 2 3 4 5
TOPSIS 0.220 0.214 0.211 0.217 0.229
ES 12936 13.031 13.029 12.168 12.810
Dynamic Skyline 3.766 4.093 3.931 4.026 4.010
Our 0.219 0.214 0.218 0.217 0.217

In the premise of the same dataset, user’s experimen-
tal records are divided into uneven groups and the mean
response time of each group are calculated. The stability of
the four sensor selection algorithms of TOPSIS, ES, dynamic
skyline algorithm and our model was measured by com-
paring the difference between the highest group and the
lowest group. In same dataset, user’ s experimental records
is divided into 5 groups, the first group contains 5 exper-
imental records, the second group consists of 10 experi-
mental records, the third group consists of 15 experimental
records, the fourth group contains 20 experimental records,
and the last group contains 25 experimental records. The
specific experimental results are shown in table 4, table 5,
table 6 and table 7. In the experimental results of datasetl,
the response time differences of the four methods among dif-
ferent groups are 0.001 seconds, 0.04 seconds, 0.266 seconds
and 0.003 seconds respectively. In the experimental results of
dataset 2, the response time differences of the four methods
among different groups are 0.018 seconds, 0.863 seconds,
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TABLE 5. Comparison of response times for the different group of
dataset2.

group 1 2 3 4 5
TOPSIS 0.220 0.214 0.211 0.217 0.229
ES 12936  13.031 13.029 12.168 12.810
Dynamic Skyline ~ 3.766 4.093 3.931 4.026 4.010
Our 0.219 0.214 0.218 0.217 0.217

TABLE 6. Comparison of response times for the different group of
dataset3.

group 1 2 3 4 5
TOPSIS 0.640 0.526 0.534 0.543 0.541
ES 13.087 13.243  13.210 13291 13.102
Dynamic Skyline ~ 9.596 8.779 8.942 9.012 8.921
Our 0.390 0.391 0.409 0.445 0.452

TABLE 7. Comparison of response times for the different group of
dataset4.

group 1 2 3 4 5
TOPSIS 1.071 1.056 1.126 1.117 1.122
ES 14.046  16.794 15.287 14418 13.920
Dynamic Skyline ~ 19.881  22.283  21.024  20.148  20.277
Our 0.859 0.916 0.985 0.986 0.972

0.327 seconds and 0.005 seconds, respectively. In the
experimental results of dataset 3, the response time dif-
ference of the four methods among different groups
are 0.014 seconds, 0.204 seconds, 0.817 seconds and
0.062 seconds, respectively. In the experimental results of
dataset 4, the difference in response time of the four methods
among different groups are 0.07 seconds, 2.748 seconds,
2.402 seconds and 0.113 seconds respectively. According to
the experimental results, TOPSIS and the proposed model
have the best stability in response time, and the general trend
of ES algorithm and dynamic skyline algorithm in response
time is steady with the capacity of datasets increasing.

TABLE 8. Comparison of response times for the same group of different
datasets.

Dataset 10000 50000 100000 200000
TOPSIS 0.042 0.219 0.553 1.086

ES 1752 12.701 13.327 14.254
Dynamic Skyline ~ 1.087 3.989 8.916 19.932
Our 0.076 0.216 0.421 0.965

Assuming that the number of user experimental results
recorded is the same, we calculate the average response time
of different methods with the same dataset, and finally mea-
sure the four sensor selection algorithms in response time by
comparing the values. As shown in table 8, the response time
of TOPSIS, ES, dynamic skyline and our proposed model
increases on the rise of the size of dataset, but the increase
rate is different. The response time of TOPSIS algorithm,
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dynamic skyline algorithm and our model in datasetl as a
benchmark, while the increasing ratio of three datasets com-
paring with dataset1 are 5, 10 and 20, TOPSIS algorithm cor-
responding response time is 0.219 seconds, 0.553 seconds,
1.086 seconds, dynamic skyline algorithm correspond-
ing response time is 3.9989 seconds, 8.914 seconds, and
19.932 seconds, our model corresponding response time
are 0.216 seconds, 0.421 seconds and 0.965 seconds.
The response time of TOPSIS algorithm, dynamic skyline
algorithm and our model increases at roughly the same
rate as that the size of dataset increase. The response time
of ES algorithm in the dataset2, dataset3 and dataset4 are
12.701 seconds, 13.327 seconds, and 14.254 seconds,
because of the fast nondominated sorting algorithm takes up
most processing time in ES algorithm, and that ES algorithm
sets a threshold and SR limits the size of date to be inputed
in the fast nondominated sorting algorithm, So there is little
difference in response time.

In terms of time complexity, TOPSIS algorithm has time
complexity of O((n)?), ES algorithm has time complexity of
O((mn)?) (n <= 2095), dynamic skyline algorithm has time
complexity of O((mn)?), and our model has time complexity
of O((n)?) (n <= 900), Where n represents the number of sen-
sor records and m represents the number of sensor attributes.
According to the time complexity, the advantages of the four
sensor recommended models in response time are explained,
and the response time of our proposed model is the minimum.

3) ACCURACY COMPARISON OF SENSOR

SELECTION ALGORITHM

As a sensor selection model, it is also necessary to consider
the accuracy of sensor resources that model fed back to
users. In this section, the ratio between the number of sensor
resources that users are satisfied with and the number of
sensor resources that the model recommends to users is taken
as the accuracy to measure the performance of the sensor
selection model. In different datasets, we need to calculate the
accuracy of the top-k options recommended by TOPSIS, ES,
dynamic skyline and our model respectively. In this experi-
ment, we set the average value of 120 experimental records
of users as accuracy and setk as 5, 10, 15 and 20. the statistical
results are shown in the figure 4.

In datasetl, TOPSIS algorithm has the highest accuracy
in the top ten sensor selection records, which is 46.53%.
ES algorithm, dynamic skyline algorithm and our proposed
model all have the highest accuracy in the top five sensor
selection records, which are 56.92%, 61.54% and 64.62%.
TOPSIS algorithm, ES algorithm, dynamic skyline algorithm
and our model all have the lowest accuracy in top 20 sensor
selection records, which are 40.96%, 49.04%, 51.73% and
51.92%. When K is 5, 10, 15 and 20, the accuracy ranking
of the four sensor selection algorithms ranges from large to
small: our model, dynamic skyline algorithm, ES algorithm
and TOPSIS algorithm.

In dataset2, TOPSIS algorithm, ES algorithm, dynamic
skyline algorithm and our proposed model all have the highest
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FIGURE 4. Accuracy in different datasets.

accuracy in the top five sensor selection records, which are
61.54%, 78.46%, 68.46% and 80.00%. TOPSIS algorithm,
ES algorithm, dynamic skyline algorithm and our model all
have the lowest accuracy in top 20 sensor selection records,
which are 51.73%, 67.69%, 58.85% and 73.30%. When
K is 5, 10, 15 and 20, the accuracy ranking of the four
sensor selection algorithms ranges from large to small: our
model, ES algorithm, dynamic skyline algorithm and TOPSIS
algorithm.

In dataset3, TOPSIS algorithm, ES algorithm, dynamic
skyline algorithm and our proposed model all have the highest
accuracy in the top five sensor selection records, which are
65.38%, 73.84%, 73.46% and 77.69%. TOPSIS algorithm,
ES algorithm, dynamic skyline algorithm and our model all
have the lowest accuracy in top 20 sensor selection records,
which are 58.65%, 69.61%, 59.03% and 70.19%. When
K is 5, 10, 15 and 20, the accuracy ranking of the four
sensor selection algorithms ranges from large to small: our
model, ES algorithm, dynamic skyline algorithm and TOPSIS
algorithm.

In dataset4, TOPSIS algorithm, ES algorithm, dynamic
skyline algorithm and our proposed model all have the highest
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accuracy in the top five sensor selection records, which are
61.53%, 78.46%, 73.07% and 83.84%. TOPSIS algorithm,
ES algorithm, dynamic skyline algorithm and our model all
have the lowest accuracy in top 20 sensor selection records,
which are54.03%, 73.84%, 56.53% and 80.96%. When K
is 5, 10, 15 and 20, the accuracy ranking of the four sen-
sor selection algorithms ranges from large to small: our
model, ES algorithm, dynamic skyline algorithm and TOPSIS
algorithm.

According to top five sensors recommended options,
the accuracy of the four algorithms increase with the size of
dataset rising. The highest accuracy of TOPSIS algorithm is
65% in the dataset3, the highest accuracy of ES algorithm is
78% in the dataset4, the highest accuracy of dynamic skyline
algorithm is 73% in the dataset3, and the highest accuracy
of our model is 83% in the dataset4. The accuracy growth
of TOPSIS, ES, dynamic skyline algorithm and our model
for top five sensors recommended options are 20%, 21.54%,
11.54% and 18.85%, among which our model and dynamic
skyline algorithm have good stability. Although the accuracy
of the four sensor selection algorithms fluctuates greatly,
they will eventually reach a stable state. The accuracy of
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TOPSIS algorithm, ES algorithm, dynamic skyline algorithm
and our model in stable state is 65.38%, 78.46%, 73.46% and
83.84% respectively. In conclusion, our model has the highest
accuracy and good stability.

V. CONCLUSION

In this paper, the sensor selection model based on an
improved fast nondominated algorithm is proposed, which
overcomes the low accuracy of TOPSIS algorithm and the
high time complexity of the fast nondominated sorting algo-
rithm. First, the R-tree is built to quickly retrieve sensor
resources, which reduces the time of repeated retrieval.
We take the user’s preference of sensor attribute into account
to narrow sensor dataset, and the size of sensor dataset is set
to 900 after experiments where the accuracy of our proposed
model is the highest. Then, an improved fast nondominated
sorting algorithm is used to get the nondominated front to
improve the accuracy of the model. Finally, we use TOPSIS
algorithm to sort the sensor dataset and recommend them to
users. To illustrate the usability of the model, we conducted
experiments on four datasets of different sizes. In terms of
accuracy, our proposed model has the highest accuracy on
four datasets. In terms of the response time, our proposed
model has more superiority than others with the size of sensor
dataset increasing because our model restricts the number
of sensor options dealt with an improved fast nondominated
sorting algorithm. Experimental results on four datasets show
that our proposed model has high accuracy and low response
time in sensor selection problem.

Current sensor data is stored semantically, which pro-
vides a good opportunity for cross-platform data processing.
In order to improve the compatibility and extensibility of sen-
sor selection model, we plan to extension the sensor selection
model in the context of semantic Internet of things.
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