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ABSTRACT In binary classification tasks, Cohen’s kappa is often used as a quality measure for data
annotations, which is inconsistent with its original purpose as an inter-annotator consistency measure.
The analytic relationship between kappa and commonly used classification metrics (e.g., sensitivity and
specificity) is nonlinear, and thus is difficult to be applied for interpretation of the classification performance
(merely from the knowledge of the kappa value) of the annotations. In this study, based on an annotation
generation model, we derive a simplified, linear relationship for Cohen’s kappa, sensitivity, and specificity
by using the 1st-order Taylor approximation. This relationship is further simplified by relating to Youden’s J
statistic, a performancemetric for binary classification tasks.We provide an analysis on the linear coefficients
in the simplified relationship and the approximation error, and conduct a linear regression analysis to assess
the relationship by using a synthetic dataset where the ground truth is known. The results show that there is
only a negligible approximation error in the simplified relationship when nomajor bias and prevalence issues
exist. Furthermore, the relationship between kappa and Youden’s J is validated on an annotation dataset from
seven graders in a diabetic retinopathy screening study. The discrepancy between kappa and Youden’s J is
demonstrated to be an effective measure for annotator assessment when no ground truth is available.

INDEX TERMS Cohen’s kappa, sensitivity, specificity, Youden’s J statistic, relationship, annotator evalu-
ation.

I. INTRODUCTION
In medical imaging, almost all state-of-the-art methods for
lesion detection and disease diagnosis tasks are developed by
applying supervised learning with a binary classification for-
mulation [1]–[4]. For this purpose, annotations of the training
samples (i.e. labels) need to be obtained beforehand. In the
machine learning community, it has been demonstrated that
the quality of the data labels can have a number of effects
on the resulting classifier, ranging from the classification
performance, the complexity of the classifier model, to the
number of required training samples [5]–[9]. For example,
Pelletier et al. [10] studied the effect of annotation noise
(i.e., errors) on classification performance in land cover map-
ping from satellite time series images; it was concluded that
the classifier performance can be adversely affected when the
noise levels are higher than 25%–30%.

While in practice annotations are typically obtained
from experts for the annotation task under consideration,
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it is often difficult, if not impossible, to achieve perfect
annotations [11], [12]. This can be due to the subjectivity of
the annotators, the imperfect knowledge of the experts, or the
difficulty of the annotation tasks. This is especially the case
in biomedical data [13]–[15], in which the annotation tasks
are often difficult and complex. Therefore, it is important
to assess the quality of annotations prior to their use in
supervised learning.

In the literature, a common approach tomeasure the quality
of annotations is to apply ametric to assess the inter-annotator
consistency in the data [16]. One such metric is Cohen’s
kappa coefficient (or kappa in short) [17], which has been
accepted as the de facto standard for measurement of inter-
annotator agreement [18], [19]. Mathematically, Cohen’s
kappa is defined as:

κ =
pA − pE
1− pE

(1)

where pA is the observed relative agreement between
two annotators, and pE is the hypothetical probability of
agreement by chance (with data labels randomly assigned).
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TABLE 1. Two example sets of diagnostic results compared with the gold
standard. Plus signs indicate the positive class, while negative signs
indicate the negative class.

In particular, κ = 1 corresponds to the case of perfect
agreement, whereas κ = 0 indicates no agreement other
than what would be expected by chance. While commonly
used, Cohen’s kappa is also cited for its problems associ-
ated with bias and prevalence in the interpretation of kappa
values [18], [20]. The bias problem is caused by the difference
in the distribution of annotation categories of the two annota-
tors, while the prevalence problem arises when the underlying
distribution of class categories is skewed [18].

It is noted that Cohen’s kappa is only intended to evaluate
how often the annotators may agree with each other. It does
not, however, measure directly the quality (i.e., the accuracy)
of annotations for a classification task, where sensitivity and
specificity are at the most concern. This is illustrated by
examples shown in Table 1, wherein the confusion matrices
of two diagnostic experiments are given. In the table, plus
signs denote the positive class and negative signs the negative
class. In Table 1(a), both the sensitivity and specificity of
the diagnostic results are at 90%, a very high performance
for a binary classification task; however, its kappa value is
only 0.590, indicating only a moderate agreement between
the diagnostic results and the gold standard. On the other
hand, in Table 1(b), the sensitivity and specificity of the diag-
nostic results are at 100% and 71.4%, respectively, a relatively
low specificity; however, the kappa value is 0.823, indicating
a high agreement between the diagnostic results and the gold
standard.

Without the knowledge on the accuracy of annotations
in terms of classification performance, it is difficult to
assess their efficacy for classifier training. In the literature,
the threshold of acceptability is often set empirically based
on the kappa value. For example, kappa value of 0.67 is used
as a cutoff in computational linguistics [18], [21]. However,
there is little understanding of how well the annotations are
merely judging from the kappa value. As illustrated in Table 1
above, there is a noticeable gap between the use of kappa as
an inter-annotator consistencymeasure and its use as a quality
measure of annotations in a binary classification task.

Because of this noted inconsistency in the use of
kappa, there have been great interests in investigating the
relationship between Cohen’s kappa and the performance
metrics commonly used in classification tasks (i.e. sen-
sitivity and specificity) [22]–[25]. Several studies have
derived independently an analytic relationship of kappa, sen-
sitivity, and specificity [22], [23]. For example, based on

the 2×2 confusionmatrix, Feuerman andMiller [23] obtained
the following relationship:

κ =
2αβ(Se+ Sp− 1)

(α2 + β2)+ (β − α)(αSe− βSp)

for Se 6= Sp, where Se is sensitivity, Sp is specificity,
α is the proportion of examples in the positive class, and
β = 1− α. However, this relationship is often difficult to be
employed for interpretation, because of the nonlinear nature
of sensitivity and specificity in the function.

In a previous study, based on an annotation generation
model, we derived a linear relationship κ = Se + Sp − 1
for unbiased annotations [26]. In this study we extend this
derivation to the more general case of biased annotations.
We derive a simplified, linear relationship of kappa, sensitiv-
ity and specificity by employing the 1st-order Taylor approx-
imation. This relationship is further simplified by relating to
Youden’s J statistic, a metric used for classification perfor-
mance. To help elucidating this relationship, we provide an
analysis on the linear coefficients and validate the approx-
imation error empirically. For the latter, a linear regression
analysis is performed to compare the true relationship with
the simplified one based on a synthetic dataset. The results
demonstrate the effectiveness of the developed relationship
when no severe bias and prevalence issues exist. In addition,
the relationship between kappa and Youden’s J is also vali-
dated on a real-life dataset collected from a diabetic retinopa-
thy (DR) screening study, wherein the discrepancy between
kappa and Youden’s J is applied for annotator assessment.

II. METHODS
A. ANNOTATION GENERATION MODEL
In an annotation task, the instances under consideration can
be thought as being drawn from a population that is a mixture
of two subpopulations [27], [28]: reliable and unreliable. The
reliable subpopulation consists of instances that are easy to
annotate, so that the two annotators will always agree on their
labels [27], [28]. The unreliable subpopulation consists of
instances that are hard to annotate, so that the two annotators
will be agreed on their labels by chance alone [27], [28].

Let Xi be the annotation of an instance provided by the ith
annotator (i ∈ {1, 2}) and c ∈ {0, 1} be the category of the
labels, in which c = 1 denotes positive class and c = 0
is negative class. The annotation process above suggests an
annotation generationmodel with latent variable l for the easy
and hard types, i.e., l = E (easy) and l = H (hard) [28]. It is
described by conditions as follows:

P(X1 = c|l = E) = P(X2 = c|l = E) (2)

P(X1 = X2|l = E) = 1 (3)

P(X1,X2|l = H ) = P(X1|l = H )P(X2|l = H ) (4)

Equations (2) and (3) represents that the two annotators per-
fectly agree on the easy instances. Equation (4) denotes that
the two annotators independently provide labels for the hard
instances. Note when one annotator is ground-truth annotator,
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TABLE 2. Mathematical symbols used in this study.

equation (4) still holds. In this case, the other annotator makes
guessing on the hard instances, thus the resulting labels are
independent of their true labels (obtained from the ground-
truth annotator).

Based on the annotation generation model, for ease of
development, the mathematical symbols of different expres-
sions used in this study are listed in Table 2.

From equations (3) and (4), the probabilities of the two
annotators agree on the easy and hard instances are:

pe = P(X1 = X2|l = E) = 1 (5)

and

ph = P(X1 = X2|l = H )

= P(X1 = 0|l = H )P(X2 = 0|l = H )

+P(X1 = 1|l = H )P(X2 = 1|l = H )

= p0q0 + p1q1 (6)

respectively.
The annotation generation model yields κ = 1 for

easy instances and κ = 0 for hard instances [26]. When
the population consists of both easy and hard instances,
0 < κ < 1. These results together indicate that 0 ≤ κ ≤ 1
when the annotation generation model is considered. Note
the definition in equation (1) indicates that it is possible for
kappa to be negative [29], which implies that the agreement
of the two annotators is worse than random. Negative kappa
happens rarely in real annotation tasks, thus is beyond the
scope of this paper.

B. COHEN’S KAPPA COEFFICIENT
To investigate the relationship between kappa and classifi-
cation metrics, one annotator has to be ground-truth anno-
tator. Without loss of generality, let X2 be the ground-truth
annotator. Assume distributions of different categories in
easy and hard subpopulations are same for ground truths,
i.e., P(X2 = c|l = E) = P(X2 = c|l = H ) = qc,
the proportion of category c in the population is:

P(X2 = c) = qc (7)

Note q1 = 0 (i.e. q0 = 1) and q0 = 0 (i.e. q1 = 1) will lead to
undefined sensitivity and specificity, respectively. Therefore,
this study only considers 0 < qc < 1 (i.e. both categories are
present in the population).

With the above assumption, it can be easily shown that
P(l|X2 = 0) = P(l|X2 = 1) = P(l), suggesting that
proportions of hard (and easy) instances in category 0 is
equal to that in category 1. It is approximately true in most
applications considering annotators always have difficulty in
discriminating the boundary instances, which validates the
effectiveness of above assumption in real application.

Moreover, equation (2) yields P(X1 = c|l = E) = P(X2 =
c|l = E) = qc, thus the proportion of instances in category c
for X1 is:

P(X1 = c) = qce+ pch (8)

From equations (7) and (8), the chance agreement and the
relative observed agreement between two annotators are as
follows:

pE = (1− 2q0q1)e+ phh (9)

and

pA = e+ phh (10)

In the end, Cohen’s kappa can be expressed as:

κ =
e

e+ 1−ph
2q0q1

h
(11)

with 0 ≤ κ ≤ 1. For conciseness, the derivations of kappa
(including equations (7), (8), (9), (10) and (11)) and its range
are shown in Appendix A.

C. SENSITIVITY AND SPECIFICITY
The probability that the two annotators agree on category c is
obtained as follows:

P(X1 = c,X2 = c) = qce+ pcqch (12)

The derivation of which is shown in Appendix B.
From equations (7) and (12), sensitivity and specificity

of X1 can be calculated as:

Se = P(X1 = 1|X2 = 1)

=
P(X1 = 1,X2 = 1)

P(X2 = 1)
= p0e+ p1 (13)

and

Sp = P(X1 = 0|X2 = 0)

=
P(X1 = 0,X2 = 0)

P(X2 = 0)
= p1e+ p0 (14)

respectively, which further yield the relationship as follows:

Se+ Sp = 1+ e (15)

This relationship indicates that the summation of sensitiv-
ity and specificity is determined by the proportion of easy
instances in the dataset.

Youden’s J statistic [30], [31] is a performance summary
for binary classification task. It is defined as J , Se+Sp−1.
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Equation (15) suggests the following relationship between e
and Youden’s J :

J = e (16)

It indicates that Youden’s J measures the proportion of the
easy instances.

D. KAPPA APPROXIMATION
The kappa expression in equation (11) is complex and diffi-
cult to be interpreted by sensitivity and specificity. To deal
with this issue, we consider kappa approximation in this
section. To ensure low approximation error, we derive kappa
approximation with respect to e and h, respectively.

For simplicity of notations, let B = 1−ph
2q0q1

, then

B =
1− ph
2q0q1

=
1
2

(
p0
q0
+

1− p0
1− q0

)
>

1
2

(17)

1) KAPPA APPROXIMATION WITH RESPECT TO E
For e > 0, equation (11) can be formulated as:

κ =
1

1+ B(1/e− 1)
=

1
1− B

(
1−

1

1− B−1
B e

)
(18)

Recall the Taylor series of 1
1−x for |x| < 1 is:

1
1− x

=

∞∑
i=0

x i (19)

Then kappa in equation (18) is expressed as:

κ =
e
B

∞∑
i=1

(
B− 1
B

e
)i−1

(20)

Note |B−1B e| < 1 holds for 0 < q0 < 1, which is proved
in Appendix C.

Therefore, for e > 0, κ is approximated as:

κ ≈ e/B (21)

according to the 1st-degree Taylor expansion.Moreover, from
equation (11), κ = 0 for e = 0, thus κ = e/B holds as well.
The use of 1st-order Taylor expansion in equation (21)

unavoidably introduces error as follows:

error =
e
B

∞∑
i=2

(
B− 1
B

e
)i−1

(22)

When B is fixed, the error is monotonically increasing with
respect to e. Therefore, the above approximation may intro-
duce great error when e is large.

2) KAPPA APPROXIMATION WITH RESPECT TO H
To eliminate the issue of potential great error when e is large,
we further introduce a kappa approximation with respect
to h, for which equation (11) is formulated as:

κ =
1

1+ Bh/(1− h)
=

1
1− B

(
1−

B
1− (1− B)h

)
(23)

Based on Taylor series, kappa in equation (23) can be
expressed as:

κ = 1− Bh
∞∑
i=1

[(1− B)h]i−1 (24)

Considering the 1st-degree Taylor expansion, κ is approx-
imated as:

κ ≈ 1− Bh (25)

which leads to error as follows:

error = Bh
∞∑
i=2

[(1− B)h]i−1 (26)

3) FINAL KAPPA APPROXIMATION
From equations (21) and (25), kappa approximation with
respect to e and h yield errors:

errore =
e

e+ Bh
− e/B =

e2(B− 1)
B(e+ Bh)

(27)

and

errorh =
e

e+ Bh
− (1− Bh) =

h2B(B− 1)
e+ Bh

(28)

respectively.
Solving |errore| ≤ |errorh| gets e ≤ B

1+B . Therefore,
the final kappa approximation is:

κ ≈

e/B, if e ≤
B

1+ B
Be+ 1− B, otherwise

(29)

in which kappa approximation with respect to e is in favor of
low e, while kappa approximation with respect to h is in favor
of low h (thus high e).

E. RELATIONSHIP OF KAPPA, SENSITIVITY AND
SPECIFICITY
From equations (15), (16), and (29), the relationship of kappa,
sensitivity, and specificity is obtained as follows:

J = Se+ Sp− 1

≈


Bκ, if e ≤

B
1+ B

1
B
κ +

B− 1
B

, otherwise
(30)

Since B > 0.5, this relationship indicates that for fixed B,
as κ increases, J increases. More importantly, equation (30)
indicates some undesirable relationships between kappa and
Youden’s J for small and large B’s as follows, which should
be avoided in real application: 1) when B is high, increasing
value of κ increases J dramatically for e ≤ B

1+B , but has very
little effect on the value of J for e > B

1+B ; 2) when B is low,
increasing value of κ has very little effect on the value of J
for e ≤ B

1+B but increases J dramatically for e > B
1+B .
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FIGURE 1. 3D plot of function B(p0, q0).

For the special case of unbiased annotations (i.e. pc = qc),
we get B = 1 from equation (17) and the relationship in
equation (30) can be simplified as follows:

J = Se+ Sp− 1 = κ = e (31)

This relationship has been developed in [26] as well.

III. FURTHER ANALYSIS
A. ANALYSIS OF B
Due to the importance of B in the relationship (30), in this
section we will analyze the value of B in different aspects of
views as follows: 1) the range of B, 2) the effect of (q0, p0)
on B, and 3) the effect of prevalence on B.

1) RANGE OF B
Equation (17) has been shown that B > 0.5. In particular,
B → ∞ when q0 → 0 or q0 → 1 (i.e. extremely severe
prevalence problem is present). In this study, we consider
less severe prevalence problems with 0.06 ≤ q0, p0 ≤ 0.94
and Figure 1 shows the corresponding 3D plot of function
B(q0, p0). Epirically, the range of B is 0.74 ≤ B ≤ 7.87 for
0.06 ≤ q0, p0 ≤ 0.94.

More importantly, from Figure 1, it can be seen that
B has relatively small values for most (q0, p0)’s, and high
values when 1) q0 → 0 and p0 → 1, or 2) q0 → 1
and p0 → 0. These observations imply that extremely
large B occurs when the so-called prevalence (i.e. q0 is far
from 0.5) and bias (i.e. p0 is far from q0) problems are
present [18], [20]. The prevalence problem should be avoided
by selecting relatively balanced dataset for annotation; the
bias problem should be avoided by annotator selection and
annotation method design, which have been investigated in
our previous study for diabetic retinopathy grading in fundus
images [32].

2) EFFECT OF (q0,p0) ON B
As noted in Section II-E, B = 1 corresponds to unbiased
annotations. Therefore, good annotations get B → 1, which
also yields B → 1/B. For simplicity, this study considers

the effect of (q0, p0) for 0.5 < B < 2, which also
yields 0.5 < 1/B < 2. With simple mathematical cal-
culation, the solutions of 0.5 < B < 2 are obtained as
follows:

1) 0 < q0 < 1
4 , 0 < p0 <

3q0−4q20
1−2q0

;
2) 1

4 ≤ q0 ≤
3
4 , 0 < p0 < 1; or

3) 3
4 < q0 < 1, 1 > p0 >

3q0−4q20
1−2q0

.

These solutions demonstrate that majority of (q0, p0) satisfies
0.5 < B < 2.
From the above solutions, it can be seen that when 0 <

q0 < 1
4 ,

3q0−4q20
1−2q0

decreases as q0 decreases (i.e. more severe
prevalence problem), thus the range of p0 decreases; simi-

larly, when 3
4 < q0 < 1,

3q0−4q20
1−2q0

increases when q0 increases
(i.e. more severe prevalence problem), thus the range of p0
decreases as well. These results suggest that starting from
prevalence index |q0−0.5| = 0.25, the range of p0 satisfying
0.5 < B < 2 become narrower when the prevalence problem
becomes severe (i.e. |q0−0.5| becomes larger). These results
imply that for B → 1 in a fixed small range, the tolerance
to bias problem becomes less when the prevalence problem
becomes severe.

3) EFFECT OF PREVALENCE ON B
Let x = q0 − 0.5, −0.5 < x < 0.5, then

B(x, p0) =
p0

0.5+ x
+

1− p0
0.5− x

(32)

which yields

∂B(x, p0)
∂x

=
(1− 2p0)x2 + x + 0.25(1− 2p0)

(0.25− x2)2
(33)

Since (0.25− x2)2 > 0, the sign of ∂B(x,p0)
∂x is determined by

its nominator (1 − 2p0)x2 + x + 0.25(1 − 2p0). Let f (x) =
(1− 2p0)x2+ x + 0.25(1− 2p0), f (x) is a quadratic function

respect to x. Its two solutions are x1 =
−0.5−

√
p0−p20

1−2p0
and x2 =

−0.5+
√
p0−p20

1−2p0
, and its local maximum or minimum is obtained

at x0 = 1
2(2p0−1)

with f (x0) =
p0(1−p0)
2p0−1

. Furthermore, we can

get f (−0.5) = −p0 and f (0.5) = 1 − p0. With the above
facts, it can be easily proved that:

i) for a fixed p0 ∈ (0, 0.5), B(x, p0) is a decrease function
respect to x for −0.5 < x < x2, an increase function respect
to x for x2 < x < 0.5.
ii) for a fixed p0 ∈ (0.5, 1), B(x, p0) is a decrease function

respect to x for −0.5 < x < x1, an increase function respect
to x for x1 < x < 0.5.
The above conclusions indicate that B(x, p0) has its min-

imum at x2 for a fixed p0 ∈ (0, 0.5) and at x1 for a fixed
p0 ∈ (0.5, 1). For a fixed p0, the value of B(x, p0) tends
to increase as the prevalence problem becomes severe (i.e.
|x| → 0.5).
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TABLE 3. Interpretation of kappa value.

B. ERROR ANALYSIS IN KAPPA APPROXIMATION
From equations (27) and (28), the kappa approximation error
can be calculated as follows:

error =


e2(B− 1)
B(e+ Bh)

if e ≤
B

1+ B
h2B(B− 1)
e+ Bh

, otherwise
(34)

Considering the great complexity of the error function above,
an empirical study is conducted in this section to analyze the
kappa approximation error.

In the literature, the commonly used interpretation of
kappa [33] is shown in Table 3. It demonstrates that the inter-
pretation of kappa is defined for each step of 0.2. Therefore,
|error| ≤ 0.1 are considered as good approximation in this
study.

Figure 2 shows 3D plot of function |error(e,B)| for 0.5 ≤
B ≤ 2. As can been seen, when B = 1, error = 0. Moreover,
when B is fixed, |error| becomes higher when e → B

1+B ;
when e is fixed, |error| tends to smaller when B → 1.
Empirically, for |error| ≤ 0.1, we get e and B as follows:
1) 0 ≤ e ≤ 0.53, B ≥ 0.67;
2) 0.53 ≤ e ≤ 0.75, 0.5 < B ≤ 1.5;
3) 0.75 ≤ e ≤ 0.95, 0.5 < B ≤ 2; or
4) 0.95 ≤ e ≤ 1, 0.5 < B ≤ 7.87.

Note the results above only enumerate some (e,B)’s for
|error| ≤ 0.1, other (e,B)’s hold for |error| ≤ 0.1 as well.

IV. VALIDATION EXPERIMENTS
The relationship in equation (30) introduces error due to the
use of kappa approximation in the derivation. As demon-
strated in Section III-B, kappa approximation error is affected
by both prevalence and bias problems, therefore in this
section we will study the effect of bias and prevalence prob-
lems on the relationship approximation between kappa and
Youden’s J in equation (30), respectively. A synthetic dataset
is considered and the performance is evaluated by comparing
the true relationship between kappa and Youden’s J fitted by
a linear regression and the relationship approximation.

A. SYNTHETIC DATASET
To generate dataset withN instances satisfying the annotation
generation model in Section II-A, a synthetic data generation

FIGURE 2. 3D plot of function |error (h, B)|.

process is considered. Firstly, the ground truth (i.e. X2) is
generated as follows: a set of N random values are first
generated from uniform distribution in the range [0, 1], and
then compared with a threshold T2 (0 < T2 < 1) for
category assignment. The label is assigned as category 0 if
the corresponding random value is less than the threshold,
and category 1 otherwise. It can be easily shown that such
process yields P(X2 = 0) = T2.
Secondly, preset the proportion of easy instances e,

the annotation generation process for X1 is as follows: labels
of the last Ne instances are first copied from X2 to simulate
the easy instances, then the remaining labels are generated
by a process similar to the X2 annotation generation process
above with threshold T1. In the end, it yields P(l = E) = e,
P(X1 = 0|l = H ) = T1, and P(X1 = 0|l = E) = T2. More
importantly, it can be verified that conditions of equations (2),
(3) and (4) are satisfied as well.

Finally, the synthetic dataset is generated as follows:
1) X2 is generated by the X2 annotation generation process
above with T2 = q0, 2) with a preset e, X1 is generated by
the X1 annotation generation process above with T1 = p0,
3) preset different e’s and repeat step 2) for each e to simu-
late the annotations obtained from different annotators, and
4) repeat steps 1)-3) for different (q0, p0)’s. In the experi-
ments, N = 105 and e is set in the range of [0.05, 0.95] with
step 0.05, yielding 19 sets of annotations for each (q0, p0).
(q0, p0) is set during experiments for different purposes.
Without loss of generality, q0 ≤ p0 is considered in the
experiments since B(q0, p0) = B(1− q0, 1− p0).

B. PERFORMANCE EVALUATION
To model the relationship between the statistical measures of
agreement, a linear regression analysis is conducted. Linear
regression models the linear relationship between a scalar
response (or dependent variable) and one or more explana-
tory variables (or independent variables). In linear regression
analysis, coefficient of determination, denoted by R2, is used
to measure the quality of the fit. The coefficient of determina-
tion varies between 0 and 1, where 1 indicates that the model
fits the ground truth perfectly.
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FIGURE 3. Relationship between kappa and Youden’s J for eighteen sets
of annotations with q0 = 0.3 and p0 ∈ {0.3, 0.5, 0.7, 0.9}.

V. RESULTS
A. THE EFFECT OF BIAS ON THE RELATIONSHIP
APPROXIMATION
To study the effect of bias on the relationship approximation,
Figure 3 shows the scatter plot of different sets of anno-
tations in the synthetic dataset for q0 = 0.3 and p0 ∈
{0.3, 0.5, 0.7, 0.9}, in which the x- and y-axes are kappa and
Youden’s J , respectively. In this plot, each point represents
the results obtained from a set of annotations, and sets of
annotations with same (q0, p0) but different e’s are denoted by
the same shape of markers. Moreover, in this plot, the hollow
markers denote the sets of annotationswhich satisfy condition
e ≤ B

1+B (denoted as condition #1), and the solid markers
represent the others (denoted as condition #2). For better
visualization, the line x = y is shown for reference.
As can be seen, for (q0, p0) = (0.3, 0.9), the Youden’s J

increases as kappa increases for the data points marked by
hollow pentagons. The same observation can be observed for
the data points marked by solid pentagons and other markers.

To quantitatively investigate the effect of bias on the rela-
tionship approximation, for data points in Figure 3, linear
regression analysis is conducted for each pair of (q0, p0) when
conditions #1 and #2 are employed, respectively. The results
are denoted as ‘‘regression’’ in Table 4 (3rd column), in which
coefficient of determination R2 is shown in the bracket.
As can be seen, R2 ≥ 0.99 for all linear regression results,
indicating that the linear models fit the true relationships
perfectly.

Finally, for comparison, the relationship approximation
calculated from equation (30) is shown in Table 4 (4th col-
umn), which is denoted as ‘‘approximation’’. As can be seen,
the relationship approximation is close to the true relation-
ship obtained from linear regression. Moreover, the absolute
difference of slope between approximation and regression
results for both conditions #1 and #2 become smaller when
the bias is less severe; the similar trend can be observed for the
absolute difference of intercept between approximation and
regression results for condition #1. These results indicate that

TABLE 4. Comparison of relationship between kappa and Youden’s J for
q0 = 0.3 and p0 ∈ {0.3, 0.5, 0.7, 0.9}.

FIGURE 4. Relationship between kappa and Youden’s J for eighteen sets
of annotations with q0 ∈ {0.1, 0.2, 0.3, 0.4} and p0 = q0 + 0.2.

there is only a negligible approximation error in the simplified
relationship when no major bias problems exist.

B. THE EFFECT OF PREVALENCE ON THE RELATIONSHIP
APPROXIMATION
To study the effect of prevalence on the relationship
approximation, Figure 4 shows the scatter plot of differ-
ent sets of annotations in the synthetic dataset for q0 ∈
{0.1, 0.2, 0.3, 0.4} and p0 = q0 + 0.2, in which the x- and y-
axes are kappa andYouden’s J , respectively. Note to decouple
the effect of bias problem, bias is set to be 0.2 in all sets of
annotations.Moreover, in this plot, the hollowmarkers denote
the sets of annotations satisfying condition e ≤ B

1+B (denoted
as condition #1), and the solid markers represent the others
(denoted as condition #2). For better visualization, the line
x = y is shown for reference.
As can be seen, for (q0, p0) = (0.1, 0.3), Youden’s J

increases as kappa increases for the data points marked by
hollow pentagons. The same observation can be observed for
the data points marked by solid pentagons and other markers.

The linear regression results for each pair of (q0, p0) are
shown in Table 5 (3rd column), in which coefficient of deter-
mination R2 is shown in the bracket. For each pair of (q0, p0),
results are provided for condition #1 and condition #2,
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TABLE 5. Comparison of relationship between kappa and Youden’s J for
q0 ∈ {0.1, 0.2, 0.3, 0.4} and p0 = q0 + 0.2.

respectively. As can be seen, R2 ≥ 0.97 for all of the linear
regression results, indicating that the linear models fit the true
relationships perfectly.

Finally, for comparison, the relationship approximation
calculated from equation (30) is shown in Table 5 (4th col-
umn). As can be seen, the relationship approximation is
close to the true relationship obtained from linear regression.
Moreover, the absolute difference of slope between approx-
imation and regression results for both conditions #1 and #2
become smaller when the prevalence is less severer; the
similar results can be observed for the absolute differ-
ence of intercept between approximation and regression
results for condition #2 as well. These results indicate that
there is only a negligible approximation error in the sim-
plified relationship when no major prevalence problems
exist.

VI. APPLICATION EXAMPLE: DIABETIC RETINOPATHY
DIAGNOSIS
In this section we demonstrate the validity and application
of the relationship in equation (30) on a real-life dataset col-
lected from a diabetic retinopathy (DR) screening study [32],
as described below.

A. ANNOTATED DR DATASET
The dataset consisted of 1,589 digital fundus images in 45◦

field-of-view, which were either macula-centered or optic-
disk-centered. The images were annotated by a group of
seven graders in terms of DR severity according to the
International Clinical Diabetic Retinopathy (ICDR) scale:
none, mild, moderate, severe, and proliferative DR. On this
scale moderate DR and above are clinically categorized as
referable DR. Patients diagnosed with referable DR are rec-
ommended for further examination. For this study, we con-
sider the binary classification task of detecting referable DR
based on the graders’ annotation, where moderate, severe
and proliferative grades are considered as the positive class
and the rest are considered as the negative class. Among
the seven graders, three were retinal specialists (G1, G2 and
G3) and four were general ophthalmologists (G4, G5, G6,
and G7).

FIGURE 5. Relationship between kappa and Youden’s J for seven graders
in detecting referable DR.

B. RELATIONSHIP EVALUATION
To verify the validity of the relationship in equation (30),
we conducted a linear regression analysis between kappa
and Youden’s J on the results from the seven graders.
For this analysis, a majority voting from G1, G2 and G3
(who were retinal specialists) was used as the ground truth
for the DR images. Figure 5 shows a scatter plot of the
DR classification results from the seven graders, in which
each circle represents the result from a grader. In this plot,
the x- and y-axes correspond to kappa and Youden’s J ,
respectively. The linear regression analysis on the scatter
points yields y = 1.09x − 0.09 with R2 = 0.997. These
results indicate that there is an almost perfect linear rela-
tionship between kappa and Youden’s J from the seven
graders. Moreover, since the intercept is nonzero, the rela-
tionship for condition #2 applies. In this case, the slope
term yields 1/B = 1.09, and the intercept term yields
(B − 1)/B = −0.09, both of which give the same B =
100/109. These results illustrate the agreement of the derived
relationship with the real-life dataset.

C. ANNOTATOR QUALITY EVALUATION
Annotator evaluation is an important task in data annota-
tion since poor quality annotation can adversely affect the
results [32]. Here we present an application example of the
relationship in equation (30) for annotator evaluation when
the ground truth is unavailable.

As demonstrated earlier in equation (31), we have J = κ
in unbiased annotations, and biased annotations will yield
a discrepancy between J and κ according to equation (30).
Thus, we can use this discrepancy to compare the annotation
results from a pair of annotators. Specifically, for annotator
i ∈ {1, 2} in the pair, define

di = |Ji − κ|/κ × 100% (35)

where Ji denotes the Youden’s J calculated by using anno-
tator i as the ground truth for the annotation results of the

VOLUME 7, 2019 164393



J. Wang et al.: Simplified Cohen’S Kappa for Use in Binary Classification Data Annotation Tasks

TABLE 6. Annotator evaluation results for pairs of graders.

other annotator, and κ is the kappa coefficient between the
two graders.

To help understand the discrepancy term in equation (35),
let’s consider the scenario that the results from annotator 1 are
closer to the ground truth than that of annotator 2, i.e., anno-
tator 1 is better than annotator 2. With annotator 1 used as
the ground truth, J1 will be closer to the true performance of
annotator 2. As a result, it will yield a smaller d1 value.
To demonstrate the use of the discrepancy metric in equa-

tion (35), we applied it to assess the seven graders in the
DR dataset described in Section VI-A above. The results are
summarized in Table 6, where G1 is compared with each of
the rest six graders; similar results were also obtained for
other grader pairs, but omitted here for brevity.

As can be seen from Table 6, in grader pairs (G1,G2),
(G1,G3), and (G1,G4), both d1 and d2 are small in value,
indicating that both graders in each pair are equally good.
On the other hand, in the other three grader pairs, d1 is notably
smaller than d2, indicating that G1 is better than the other
grader in each pair. In particular, d2 is much larger than d1
in (G1,G6) and (G1,G7), indicating that G1 is substantially
better than G6 and G7.
For comparison, we also applied the pairwise kappa

method to evaluate the annotators in the DR dataset [32].
In this method, the kappa coefficient is calculated for each
possible pair among the seven graders. The results are shown
in Table 7. As can be seen, the pairwise kappa values are in the
range of [0.7660,0.8167] amongG1,G2,G3 andG4, suggest-
ing that these graders are in a high degree of agreement with
each other. On the other hand, the average kappa values are
0.6955, 0.6033, and 0.2285 for G5, G6 and G7, respectively,
indicating that G7 is in the least agreement with the others.
Note that these results are consistent with the discrepancy
metric results in Table 6.

VII. DISCUSSIONS
Based on the annotation generation model, this study derived
an approximation of kappa, and built a simplified, linear
relationship between kappa and Youden’s J , which is the
summation of sensitivity and specificity minus 1. The rela-
tionship shows that for fixed B, as kappa increases, Youden’s
J increases as well. The analysis of B indicates that major-
ity values of the slope in the relationship are in the range
of 0.5 and 2, and the large B happens when the severe

TABLE 7. Kappa coefficients obtained for different pairs of graders.

prevalence and/or bias problems are present. The error anal-
ysis for kappa approximation demonstrate that the kappa
approximation is less accurate when e is close to 0.5.

The relationship between kappa and Youden’s J provides
evidence for the kappa interpretation in Table 3. From the
relationship in equation (31) for the unbiased annotation, κ is
the lower bound of both sensitivity and specificity, and their
values are (κ + 1)/2 if sensitivity and specificity are equal.
For example, the almost perfect agreement κ > 0.8 indicates
both sensitivity and specificity are higher than 80% and their
values are higher than 90% when sensitivity and specificity
are equal. Similarly, the substantial agreement 0.6 < κ ≤ 0.8
suggests that both sensitivity and specificity are higher
than 60% and their values are higher than 80% but lower than
90% when sensitivity and specificity are equal.

The relationship between kappa and Youden’s J was also
validated to show a good agreement with annotation results
from seven graders in the DR dataset, demonstrating the
applicability of the relationship on real-life data. The discrep-
ancy between kappa and Youden’s J was demonstrated to be
an effective measure for annotator assessment, which yielded
consistent results with the traditional pairwise kappa method.
Interestingly, it is noted that this discrepancy measure can
be applied even when there are only two graders available.
In contrast, the traditional pairwise kappa method cannot be
applied for only two graders as it requires to compare the
kappa values of one grader versus a group of two or more
other graders.

VIII. CONCLUSION
Based on an annotation generation model, this study
developed a simplified, linear relationship of Cohen’s kappa,
sensitivity and specificity by employing 1st-order Taylor
approximation. The relationship was further simplified by
introducing Youden’s J statistic, a classification performance
summary for binary classification tasks. The analysis on
the linear coefficients in the relationship and the approxi-
mation error were conducted. A linear regression analysis
was applied to evaluate the relationship by using a synthetic
dataset. The results show that there is only a negligible
approximation error in the simplified relationship when no
major bias and prevalence problems exist. The relation-
ship between kappa and Youden’s J was also validated to
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show a good agreement with real-life dataset collected in
DR diagnosis. The discrepancy between kappa and
Youden’s J was applied for assessment of annotation quality,
and was demonstrated to yield consistent results with the
traditional pairwise kappa method.

APPENDIXES
APPENDIX A
KAPPA DERIVATION
In this appendix, we demonstrate the derivations of kappa
and its range in details. First, the probability of instances in a
category c for X2 is:

P(X2 = c) = P(X2 = c, l = E)+ P(X2 = c, l = H )

= P(X2 = c|l = E)P(l = E)

+P(X2 = c|l = H )P(H = E)

= qce+ qch

= qc

Similarly, the probability of instances in a category c for
X1 is:

P(X1 = c) = P(X1 = c, l = E)+ P(X1 = c, l = H )

= P(X1 = c|l = E)P(l = E)

+P(X1 = c|l = H )P(H = E)

= qce+ pch

The chance agreement between the two annotators is:

pE = P(X1 = 0)P(X2 = 0)+ P(X1 = 1)P(X2 = 1)

= q0(q0 e+ p0 h)+ q1(q1 e+ p1 h)

= (1− 2q0q1)e+ phh

The relative observed agreement between the two annota-
tors is:

pA = pee+ phh = e+ phh (36)

Therefore, Cohen’s kappa coefficient is obtained as:

κ =
pA − pE
1− pE

=
(e+ phh)− (1− 2q0q1)e− phh

1− (1− 2q0q1)e− phh

=
2q0q1e

2q0q1e+ (1− ph)h

=
e

e+ 1−ph
2q0q1

h

For the range of kappa, if e = 0, κ = 0; otherwise

κ =
1

1+ 1−ph
2q0q1

h
e

Since the two terms in the above kappa expression satisfy

1− ph
2q0q1

=
1
2

(
p0
q0
+
p1
q1

)
> 0.5

and

h
e
≥ 0

thus 0 < κ ≤ 1. In the end, the range of kappa is

0 ≤ κ ≤ 1

APPENDIX B
DERIVATION IN SENSITIVITY AND SPECIFICITY
The probability of the two annotators agree on the instances
in category c is as follows:

P(X1 = c,X2 = c) = P(X1 = c,X2 = c, l = E)

+P(X=c,X=c, l = H )

= P(X1 = X2 = c|l = E)P(l = E)

+,P(X1 = X2 = c|l = H )P(l = H )

= P(X2 = c|l = E)P(l = E)+

+P(X1 = c|l = H )

×P(X2 = c|l = H )P(l = H )

= qce+ pcqch

APPENDIX C
PROOF OF |B−1

B e| < 1
Proof: Since B = 1−ph

2q0q1
=

p0q0+p1q1
2q0q1

, then

B− 1
B
=

p0q0+p1q1
2q0q1

− 1
p0q0+p1q1

2q0q1

=
p0q0 + p1q1 − 2q0q1

p0q0 + p1q1

For 0 < q0 < 1, we have p0q0 + p1q1 > 0 and q0q1 > 0.
Thus the equation above has:

B− 1
B

< 1 (37)

Therefore, we have proved that the upper bound of B−1B is 1.
The next step is to prove the lower bound of B−1

B is -1.
Recall

B− 1
B
=

p0q0 + p1q1 − 2q0q1
p0q0 + p1q1

=
(q0 − p0)(2p0 − 1)
q0(2p0 − 1)− p0

If p0 = 0.5, then B−1
B = 0, satisfying B−1

B > −1. If p0 6=
0.5, then we have

B− 1
B
=

p0 − q0
p0 − q0/(2q0 − 1)

=
p0 − q0
p0 − f (q0)

where f (q0) = q0/(2q0 − 1). f (q0) has the following
properties:

a) if q0 > 0.5, f (q0) is monotonically decreasing with
f (q0) > q0 > 0.5;
b) if q0 < 0.5, f (q0) is monotonically increasing with q0 >

f (q0) > 0.
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To prove the lower bound, we analyze B−1
B in four different

settings with respect to p0 and q0 as follows:
1) if q0 > 0.5 and p0 > q0: since f (q0) − p0 decreases

much faster than p0 − q0, therefore

B− 1
B
=

p0 − q0
p0 − f (q0)

= −
p0 − q0
f (q0)− p0

> −1

2) if q0 > 0.5 and p0 < q0: we get f (q0) > q0 > p0,
therefore,

B− 1
B
=

p0 − q0
p0 − f (q0)

=
q0 − p0
f (q0)− p0

> 0

3) if q0 < 0.5 and p0 > q0: we get p0 > q0 > f (q0),
therefore,

B− 1
B
=

p0 − q0
p0 − f (q0)

> 0

4) if q0 < 0.5 and p0 < q0: since p0 − f (q0) decreases
much faster than q0 − p0, therefore

B− 1
B
=

p0 − q0
p0 − f (q0)

= −
q0 − p0
p0 − f (q0)

> −1

In conclusion, we have proved |B−1B | < 1. Therefore,∣∣∣B−1B e
∣∣∣ < e < 1. Done.
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