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ABSTRACT The study compares the sensitivities of open-circuit airgap flux (OCAF) between a surface-
mounted permanent magnet (SPM) machine and a spoke-type PM machine based on variations in airgap
length including additional airgaps between permanent magnets and rotor core and between segmented stator
cores to achieve high quality electric machines. Analytical equations deduced from magnetic equivalent
circuits (MECs) are used to directly compare natural-born characteristics of the OCAF of the two machines.
First, the MEC of each machine is modeled by considering two additional airgaps between the PMs and rotor
core and between the segmented stator cores. Second, theOCAF equation of eachmachine is derived from the
MEC to analyze the effects of the design variables on the OCAF. Subsequently, the partial derivative equation
of the OCAF equation with respect to the airgap length is obtained for sensitivity analysis. A comparison
of the equations of the two machines indicates that the spoke-type PM machine exhibits inherently higher
sensitivity and average value of the OCAF when compared to that of the SPM machine. Finally, the results
are validated via a two-dimensional finite element method (FEM) by considering the variations in airgap
lengths.

INDEX TERMS Air-gap flux, magnetic equivalent circuit, permanent magnet machine, sensitivity, SPM,
Spoke-type.

I. INTRODUCTION
Recently, high efficiency of electric machines corresponds to
the most important performance metric to satisfy increased
energy regulations and standards in all application fields.
To achieve higher efficiency, permanent magnet (PM)
machines are widely used instead of induction or DC
motors [1]–[5]. Specifically, flux-concentrating structures,
such as spoke-type PM machines or V-shaped PM machines,
are continuously developed [6]–[12] because they can pro-
vide higher open-circuit airgap flux (OCAF) when compared
to the conventional PM machines.
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However, spoke-type PM machines also exhibit compli-
cated rotor structures that can cause higher performance
variation due to the manufacturing tolerances and higher
manufacturing cost. It weakens competitiveness by offsetting
the advantages of spoke-type PM machines. In severe cases,
the competitiveness of the normally designed spoke-type PM
machines is lower than that of the optimally designed SPM
machine. Hence, SPM machines are widely used for many
applications with the exception of high-speed applications
that normally adopt SPM machine [13]–[16]. Thus, it is
important to control performance variation due to the man-
ufacturing tolerances of spoke-type PM machines.

High-quality electric machines should satisfy lower prob-
ability of failure (POF) and higher performance [17], [18].
With respect to lower POF, a few studies investigated how
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manufacturing tolerances in SPM machines affect machine
performance [19]–[28]. Furthermore, some articles presented
a robust design for PMmachines for low POF [18], [29]–[31].

However, most of the aforementioned articles used compli-
cated analytical equations or regression equations, which can
be reasonable for the special case, obtained via finite element
method (FEM) to investigate the effects of uncertainties, such
as manufacturing tolerances and variations in material prop-
erties, on the cogging torque and torque ripple. The afore-
mentioned methods are not suitable to directly investigate the
effects of design variables on the machine performance.

Additionally, there is a paucity of research on the robust-
ness regarding OCAF characteristics although the OCAF is
a basic characteristic that determines machine performance.
Furthermore, only a few studies compare tolerance sensitiv-
ities of the OCAF between different types of machines such
as spoke-type PM machines and SPM machines.

The study compares tolerance sensitivities and magnitudes
of the OCAF between SPM and spoke-type PM machines
with manufacturing tolerances to compare their relatively
inherent tolerance sensitivity and the magnitude of the OCAF
and to analytically investigate the effect of design variables
such as airgap length, PM thickness, and PM width.

First, the magnetic equivalent circuit (MEC) of each
machine is modeled by considering the additional airgap
between PMs and rotor back yoke and between segmented
stator cores. Subsequently, the OCAF equation of each
machine is deduced from the MEC to analyze the effects
of design variables on the OCAF. Subsequently, the partial
differential OCAF equation with respect to the variation in
design variables of each machine is deduced from the OCAF
equation for the sensitivity analysis.

Next, tolerance sensitivities of the two machines are
directly compared using the equations to verify inherently
different OCAF characteristics with an example study.

Finally, the analysis results are validated by an example
study performed via a two-dimensional (2D) finite element
method (FEM) and Monte-Carlo simulation (MCS) to visu-
alize distributions of the OCAFs with variations in design
variables.

II. SENSITIVITY ANALYSIS USING MEC EQUATIONS
The sensitivity analysis is performed by using the MEC
method considering the manufacturing tolerances of the air-
gap variations including additional airgap between PM and
rotor core since the MEC method provides a better under-
standing or some restricted general result with respect to
design variables irrespective of machine specifications such
as machine size and materials.

A. IMPORTANCE OF TOLERANCE SENSITIVITY
It is widely known in quality control engineering that perfor-
mance variations increase in a system with complex struc-
tures or a large number of components. Thus, the variation
increases even if the mean value of performance improves,
which can result in the absence of a statistical difference in

FIGURE 1. Effect of tolerance sensitivity (standard deviation or variation)
on performance before and after improvement (a) Statistically no
difference, (b) Difference.

performance from the existing one as shown in Fig. 1 (a).
Conversely, Fig. 1 (b) shows improved mean and variation
in the performance. The situation in Fig. 1 (a) can also occur
while developing electric machines, and thus machine engi-
neers should carefully consider tolerance sensitivity from the
design stage.

B. MODELING FOR MEC
Generally, the OCAFΦg and its variation significantly affect
machine performance such as the back-electromotive force
(Back-EMF), torque characteristics, and control strategy in
the flux weakening region. Thus, the tolerance sensitivity of
the OCAF should be examined with respect to design param-
eters in detail while analyzing and designing PM machines.

In the study, the OCAF of a SPM and a spoke-type PM
machines are compared with respect to mean value and its
variation caused by the manufacturing tolerances. It specif-
ically focuses on the effect of the airgap lengths variation
because the most effective factor of the manufacturing toler-
ances that affects performance variation or tolerance sensitiv-
ity of the electric machines corresponds to the airgap length
including additional airgaps generated while producing and
assembling each part of the machine.

The MEC method and its analytical equation are used to
compare the OCAF characteristics of the two machines in
the general case and not in the special one. This accounts
for additional airgaps described as A and B in Fig. 2. The
additional airgap A occurs between segments of the stator
core if a segmented core is used to increase the slot fill factor.
The other additional airgap B occurs between PMs and rotor
core while assembling them.

The stator is composed of a fractional-slot concentrated
winding with nine slots, and there are six poles in the rotor.
For the MEC analysis, as shown in Fig. 3, the slotted stator
core in Fig. 2 is replaced with a ring-type slotless core and
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FIGURE 2. Physical analysis models (a) SPM, (b) Spoke-type.

FIGURE 3. MEC models with ring-type stator model and flux lines
(a) SPM, (b) Spoke-type.

its effect on the airgap flux is mathematically expressed by
the carter coefficient, kC , in MEC to simplify the analytical
models.

TABLE 1 shows the common specifications of the two
analysis models.

TABLE 1. Specifications of the analysis models.

C. MEC ANALYSIS EQUATIONS
The basic MECs of the SPM and Spoke-type machines are
comprehensively described in [32]. In the study, the effects

of the additional airgaps A and B in the two machines
in Fig. 2 are included in the MECs.

Figure 4 shows the equivalent linear models and dimension
variables of the SPM machine and Spoke-type PM machine
corresponding to Fig. 1, respectively. As shown in the figure,
the additional airgaps A and B in Fig. 1 are expressed as lcg
and lmg, respectively.

FIGURE 4. Equivalent linear models with variables (a) SPM and
(b) Spoke-type.

Figure 5 shows the corresponding full MECs with the ring-
type stator core of the two machines in which two additional
airgaps are included. Subsequently, the full MECs are simpli-
fied via equivalent circuit transformations as shown in Fig. 6.

TABLE 2 describes magnetic reluctance components and
flux components used in Fig. 5 and Fig. 6.

TABLE 2. Magnetic reluctance and flux of the analysis model.
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TABLE 3. Comparison of the MEC equations between SPM and spoke-type PM machines.

FIGURE 5. Full MEC models with ring-type stator model (a) SPM,
(b) Spoke-type.

TABLE 2 describes magnetic reluctance components and
flux components used in Fig. 4 and Fig. 5.

By solving theMECs with respect to the OCAF, the OCAF
equations of the twomachines are deduced as (1) to (4) shown
in TABLE 3 where Am denotes the cross-sectional area of a
PM,Ag denotes the cross-sectional area of the airgap per pole,
Br denotes the residual flux density of PM, µr denotes the
relative permeability of PM, lm denotes the thickness of PM,

FIGURE 6. Simplified MEC models with ring-type stator model (a) SPM,
(b) Spoke-type.

lmg denotes the additional airgap between PM and rotor core,
lge denotes the effective airgap length calculated by Kclg by
considering the Carter coefficient Kc, Kl denotes the leakage
coefficient defined by 8g

/
8m, Kr denotes the reluctance

coefficient to consider magnetic reluctance of stator core,
Kc denotes the Carter coefficient, and Ka denotes the area
coefficient defined by Am

/
Ag.

In the study, we focus on and examine inherently different
characteristics of the airgap magnetic flux density of the
two machines due to manufacturing tolerances, especially,
variations in the airgap lengths which have a great influence
on the electrical machine characteristics.

To focus on the sensitivities of the two machines based
on the variations in the airgap lengths, lg, the sensitivity
of each machine can be performed by partially differentiat-
ing (3) and (4) with respect to lg assuming all variables are
independent of airgap length. We obtain the sensitivity Sg of
each machine as shown in (5) and (6), respectively.

D. ANALYTICAL STUDY USING MEC EQUATIONS
The main purpose of the study is to relatively compare the
OCAF characteristics between the spoke machine and SPM
machine. Therefore, we make and use indexes for comparing
the characteristics.

First, it is necessary to express the airgap length and PM
thickness as a variable for normalization. Hence, we use
the well-known permeance coefficient, Kpc, defined as (7)
where Kt denotes the thickness factor defined by lm/lge, Kac
denotes the additional concentration coefficient to consider
the magnetic concentration structure based on machine type,
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and K∅ denotes the magnetic concentration coefficient.

Kpc =
−Bm
µ0Hm

=
Aglm

KacAmlge
=

Kt
K∅

(7)

where Kac = 1(SPM )or2(Spoke− type) (8)

The concentration coefficient of the spoke-type PMmachine,
K∅,Spk , is twice that of the SPM machine, K∅,SPM , in case
of same machine size with the exception of rotor type,
i.e., K∅,Spk = 2K∅,SPM , and its permeance coefficient is half
that of the SPM machine as follows:

Kpc = Kpc,SPM = 0.5Kpc,Spk (9)

K∅ = K∅,SPM = 2K∅,Spk (10)

The permeance coefficient determines the operating point on
the B–H curve of the PM and permeance coefficients of the
two machines are shown in Fig. 7. Spoke-type PM machines
should be more carefully designed because they are more
easily demagnetized than SPM machines due to the lower
permeance coefficient.

FIGURE 7. Permeance coefficient and operating points based on machine
type.

Second, we investigate the term of the additional airgap
length lmg. Decreases in lmg improves machine performance
and its magnitude depends on machine manufacturing pro-
cess capability and assembly method. The additional airgap
length is typically less than 0.1 mm and PM thickness is
more than 2 mm based on demagnetization, productivity, and

manufacturing cost, and thus the term of the additional airgap
length,µr lmg

/
lm, is less than 0.2mm and is expressed by (11)

to simplify the equations in TABLE 3.

1.0 ≤ Kmg = 1+
µr lmg
lm
≤ 1.1 (11)

Finally, we substitute (7) and (11) into (3) to (6) to obtain
(12) to (15) in TABLE 4.

Henceforth, we relatively compare the airgap magnetic
flux densities and sensitivities of the SPMmachine and spoke
machine by assuming same machine dimension, i.e., magnet
size, airgap length, etc.

To relatively compare airgap flux density and sensitivity
between SPM machine and spoke-type PM machine with
respect to the permeance coefficient, we define three relative
comparison indexes using equations (12) to (15):
• The ratio of the airgap flux density of the spoke-
type PM machine to SPM machine, RB, is defined by
Bg,Spk

/
Bg,SPM and is calculated as follows:

RB≡
Bg,Spk
Bg,SPM

=
2(KpcKmg + µrKr )
KpcKmg + 4µrKr

(16)

The index is used to determine the permeance coeffi-
cient Kpc(RB) that indicates the value that Bg,Spk is greater
than or equal to Bg,SPM based on the permeance coefficient
as follows:

RB ≥ 1→ Kpc(RB) ≥
2µrKr
Kmg

(17)

As shown, Kpc(RB) is only the function of µr ,Kr , and
Kmg(lmg, lm).
• The ratio of the airgap flux density of the spoke-
type PM machine to SPM machine, RS, is defined by
Sg,Spk

/
Sg,SPM and is calculated as follows:

RS ≡
Sg,Spk
Sg,SPM

=
8

(
KpcKmg + µrKr

)2(
KpcKmg + 4µrKr

)2 (18)

The index is used to determine the permeance coefficient
Kpc(RS), which indicates that Sg,Spk is greater than or equal
to Sg,SPM based on the permeance coefficient as follows:

RS ≥ 1→ Kpc(SB) ≥
0.641µrKr

Kmg
(19)

TABLE 4. Comparison of MEC equations between SPM and spoke-type PM machines.
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It is observed that Kpc(RB) is only the function of µr ,Kr , and
Kmg(lmg, lm).
• The ratio of the sensitivity per airgap flux density of the
spoke-type PM machine to that of the SPM machine,
RSB, is defined by RS

/
RB or RSB,Spk

/
RSB,SPM as

follows:

RSB ≡
RS
RB
=

Sg,Spk
Sg,SPM

·
Bg,SPM
Bg,Spk

=
Sg,Spk
Bg,Spk

/
Sg,SPM
Bg,SPM

=
RSB,Spk
RSB,SPM

=
4

(
KpcKmg + µrKr

)
KpcKmg + 4µrKr

(20)

The index is used to determine the permeance coefficient
Kpc(RSB) that indicates the value that RSB,Spk is greater
than or equal to RSB,SPM based on the permeance coefficient
as follows:

RSB ≥ 1→ Kpc(SSB) ≥ 0 (21)

As shown, Kpc(RSB) is greater than or equal to zero, which
implies that the ratio of the sensitivity per airgap flux
density of the spoke-type PM machine, RSB,Spk , is always
higher or equal to RSB,Spk of the SPM.

By using the deduced equations, we specifically analyze
the relative characteristics based on the permeance coefficient
when the machine constants in TABLE 5, in which Kl,Kr ,
and Kc are referred to [20], vary between minimum and
maximum of the ranges.

TABLE 5. Ranges of Kl,Kr,Kc,Ka, lmg.

First, we examine general trends. Figure 8 shows the
comparison results of Bg, Sg, RB, RS , and RSB between the
SPM machine and spoke-type PM machine. In the figure,
the response values are divided by the residual flux density
of the PM, Br, to normalize characteristics irrespective of the
PM material.

As shown in Fig. 8, all responses, i.e., Bg, Sg, RB, RS , and
RSB of the spoke-type PM machine exceed those of the SPM
machine,.

Furthermore, it is observed that the variations in the airgap
flux densities and sensitivities of the spoke machine exceed
those of the SPMmachine at the same permeance coefficient,
which also implies that the magnetic characteristics related
to the airgap flux density of the spoke-type PM machines are
more sensitive than that of the SPM machines.

FIGURE 8. Comparison of magnetic characteristics between SPM and
spoke-type PM machines whendesign constants in Table 4 varybetween
minimum and maximum ofeach range (a) airgap flux density,
(b) sensitivity (c) RB, RS, an RSB.

Second, we compare and investigate the equations, i.e.,
(17), (19), and (21) more quantitatively.

Most PM machines should be practically designed to sat-
isfy 4 ≤ Kpc ≤ 6 [20] to consider demagnetization of
PM and manufacturing cost among others, and the following
conclusions are obtained:
• Equation (17) indicates that the airgap magnetic flux
density of the spoke-type PM machine exceeds that
of the SPM machine from the point 2µrKr

/
Kmg.

The range of the permeance coefficient, Kpc (RB),
is 1.82 ≤Kpc (RB) ≤ 2.52 in which its maximum value
is 2.52 and less than 4. Therefore, it is considered that
the airgap magnetic flux density of the spoke-type PM
machine exceeds that of the SPM machine in the actual
design.

• Equation (19) indicates that the sensitivity of the spoke-
type PM machine exceeds that of the SPM machine
from the point 0.641µrKr

/
Kmg. The range of the
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permeance coefficient, Kpc (RS), is 0.58 ≤Kpc (RS) ≤
0.81 in which its maximum value is 0.81 and less than 4.
Therefore, the sensitivity of the spoke-type PMmachine
exceeds that of the SPM machine in the actual design.

• Equation (21) shows that the sensitivity per airgap flux
density of the spoke-type PM machine exceeds that
of the SPM machine from point 0. Spoke-type PM
machines are always more sensitive than SPM machine
in case of the same flux density irrespective of the per-
meance coefficient.

Third, we compare the characteristics for specific condi-
tions, i.e., Kl = Kr = Ka = Kc = µr = 1, lmg = 0 mm.
Figure 8 and Fig. 9 showmagnetic characteristics comparison
between the SPM and spoke-type PM machines based on the
ratio of the PM length to the airgap length,Kt , at lm = 1.0 mm
and at lg = 0.5 mm, respectively.
From Fig. 9, we observe the following:
• As shown in Fig. 9(a), the airgap flux density of
the spoke-type PM machine exceeds that of the SPM
machine when Kt increases (airgap length decreases).

• As shown in Fig. 9(b), the sensitivity of the spoke
machine also exceeds that of the SPMmachine when Kt
increases (the airgap length decreases), which implies
that the spoke-type PM machine is inherently more
sensitive to the variation in airgap length than that of
the SPM machine due to its magnetic concentration
structure.

From Fig. 10, we observe the following:
• As shown in Fig. 10(a), the airgap flux density of
the spoke-type PM machine exceeds that of the SPM
machine when Kt increases (PM thickness increases)
and Fig. 10(a) is identical to Fig. 9(a).

FIGURE 9. Magnetic characteristics comparisons between SPM and
spoke-type PM machines based on the airgap lengthat Kl = Kr = Kφ =
Kc = µr = 1, lmg = 0 mm, and lm = 1.0 mm (a) Bg/Br , (b) Sg/Br .

FIGURE 10. Magnetic characteristics comparisons between SPM and
spoke-type PM machines based on thePM length at Kl = Kr = Kφ =
Kc = µr = 1, lmg = 0.0 mm, and lg = 0.5 mm (a) Bg/Br , (b) Sg/Br .

• As shown in Fig. 10(a), the sensitivity of the spoke
machine exceeds that of the SPM machine irrespective
of the PM thickness with the exception that it is very
small, which implies that the spoke-type PM machine is
inherently more sensitive to the variation in the airgap
length than that of the SPM machine. In contrast to
the sensitivity characteristic with respect to the airgap
length, the sensitivity increases initially when PM thick-
ness increases although it decreases when PM thickness
exceeds a certain length irrespective of machine type.
Therefore, it is necessary to increase PM thickness to the
maximum possible extent to increase airgap flux density
and also decrease sensitivity. However, the method of
increasing PM thickness can lead to an increase in the
material cost.

Figure 11 compares the three comparison indexes between
the SPM machine and spoke-type PM machine when the
machine constants vary between minimum values and max-
imum values (indicated by ‘‘org’’ in parentheses), as shown
in Fig. 8(c), and when they correspond to specific conditions,
i.e., Kl = Kr = Ka = Kc = µr = 1, lmg = 0 mm (indicated
by ‘‘con’’ in parentheses).

As shown in the figure, the overall trend is consistent with
the previous results; Kpc (RB), point ¬, Kpc (RS), point ,
and Kpc (RSB), point ®, correspond to 2.0, 0.641, and 0,
respectively, and the values are equal to those calculated
by (16), (18), and (20).

III. VERIFICATION USING 2D-FEM
To verify the MEC results, 2D-FEM is performed based on
the variations in the airgap length and PM thickness.
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FIGURE 11. RB, RS, and RSB based on the permeance coefficient at
Kl = Kr = Kφ = Kc = µr = 1, lmg = 0 mm.

FIGURE 12. Comparison of the airgap flux densiyand sensitivity analyzed
by the FEM and MEC based on the airgap lengths (a) Distributions of the
airgap flux density of the SPM, (b) Distributions of the airgap flux density
of the spoke-type.

A. AIRGAP FLUX DENSITY IN SLOTLESS STATOR
Figures 12(a) and 12(b) show the airgap flux density distri-
butions of the two machines based on the airgap lengths of
the ring-type stator models with a PM thickness of 9.0 mm
as shown in Fig. 3, respectively. As shown in the figure,
the values and variations in the airgap flux densities of the
spoke-type PM machine exceed those of the SPM machines.

Figure 13 shows the normalized airgap flux densities, sen-
sitivities, and three relative comparison indexes of the two
machines based on airgap lengths, and the values obtained
from the FEM are also compared to those of MEC analysis,
in which the labeled ‘‘MEC1’’ denotes the specific result
that is calculated when Kl = 0.9,Kr = 1.2,Ka = 0.84,
Kc = 1.0, µr = 1.05,Kmg = 1.0 in the MEC for comparison
with corresponding FEM results.

FIGURE 13. Comparisos of the normalized airgap flux densities,
sensitivities, and magnetic indexes, analyzed by FEM and MEC, between
SPM and spoke-type PM machines based on the ratio of the PM thickness
to the airgap length, Kt lm = 9.0 mm() a) normalized airgap flux density,
b) normalized sensitivit, and (c) relative comparison indexes, i.e., RB, RS,
and RSB.

Figure 13(a) compares the normalized airgap flux density
between the SPM and spoke-type PM machines. The trends
of the FEM results of the two machines are consistent with
the MEC analysis results as shown in Fig. 8(a). In terms of
analysis errors between MEC and FEM, it is observed that
the FEM values of the two machines are included in the
analysis ranges obtained by MEC. The magnitudes of the
errors between FEM and MEC1 range from 7.7% to 8.8%
for the SPM machine and 0.1% to 5.1% for the spoke-type
PM, and the errors appear as reasonable.

Figure 13(b) compares the normalized sensitivities
between the SPM and spoke-type PM machines. The trends
of the FEM results of the twomachines are consistent with the
MEC analysis results shown in Fig. 8(b). In terms of analysis
errors between FEM and MEC1, it is observed that the FEM
results are included in the analysis ranges obtained by MEC.

However, the magnitudes of the sensitivity errors between
FEM and MEC1 range from 20.3% to 45.3% for the
SPM machine and 9.5% to 31.3% for the spoke-type
PM machine although the errors of the airgap flux densi-
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FIGURE 14. Histogram of the airgap lengths following the normal
distribution, i.e., lg ∼ N(0.5884, 0.0882).

ties of the two machines are less than 10%. Specifically,
the error increases as the airgap length decreases or Kt
increases, thereby implying that some magnetic constants,
e.g., Kl and Ka, are a function of the airgap length and should
be treated as a variable as opposed to a constant. Sensitivity
is obtained by differentiation, and thus it can significantly
vary even with a small difference and it is not easy to fit
correctly. Hence, the accuratematching of the constants based
on magnetic theory constitutes another issue of the MEC
theory and requires significant data analysis and experience.
Themain objective of the study involves verifying the relative
sensitivity of the airgap flux density between SPM and spoke-
type PMmachines, and thus an accuratemodeling study is not
performed.

Figure 13(c) compares the three comparison indexes,
i.e., RB, RS, and RSB, between the SPM and spoke-type
PM machines. The trends of the FEM results of the two
machines are consistent with the MEC analysis results shown
in Fig. 8(c), and all responses exceed one.

Hence, the spoke-type PM machine exhibits higher air-
gap flux density and sensitivity than those of the SPM
machine. In terms of analysis errors between FEM and
MEC1, it is observed that the FEM results are included in
the analysis ranges obtained by MEC and magnitudes of the
errors between FEM and MEC1 range from 9.8% to 13.9%
for RB, 1.1% to 18.1% for RS and 2.3% to 11.5% for RSB,
respectively.

B. PERFORMANCE SENSITIVITY IN SLOTTED STATOR
Using the 2D-FEMwith rotor rotating condition for the char-
acteristics comparison between the two machines, we exam-
ine more actual cases via the Monte-Carlo simulation [7]
by considering the slotted stator in Fig. 2 and variation in
the airgap length due to the manufacturing tolerance. The
variation in the airgap length follows the normal distribution,
i.e., lg ∼ N (0.5884, 0.0882) and are examined with 11 cases
as shown in Fig. 14.

Figure 15 compares the OCAF and its standard deviation,
which is proportional to the sensitivity between the two

FIGURE 15. Comparison of open-circuit airgap fluxes (OCAFs)analyzed by
FEM between SPM and spoke-type PM machines inslotted stator based
on the PM thicknessand variations in airgap length due to manufacturing
tolerance (a)Probability distributions, (b) Mean values, (c) Standard
deviations, and (d) Relative comparison indexes.

machines based on the PM thickness (MT) and the same
rotor magnetic pole angle (MPA). As shown in the figure,
means and standard deviations of the spoke-type PMmachine
exceed those of the SPM machine. Additionally, increases in
PM thickness increases the OCAF mean value although the
standard deviation decreases irrespective of machine type.

Figure 16 compares the average torque and its stan-
dard deviation between the two machines based on the
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FIGURE 16. Comparison of average torquesanalyzed by FEM between
SPM and spoke-type PM machines inslotted statorbased on the PM
thickness and the variations of the airgap length due to manufacturing
tolerance (a)Probability distributions, (b) Mean values, (c) Standard
deviations (d) Relative comparison indexes.

PM thickness (MT) and the same rotor magnetic pole angle
(MPA). As shown in the figure, the trend of each term is
similar to that of the OCAF.

The overall trends agree well with those of the MEC
results.

IV. CONCLUSION
The study focused on comparing the airgap flux density and
its tolerance sensitivity caused by the variations in the airgap

lengths including additional airgap lengths between spoke-
type PM machine and SPM machine by using the MECs and
their deduced equations. Subsequently, the results are verified
via 2D-FEM.

The analysis and investigation results indicate that the
spoke-type PMmachines exhibit inherently higher sensitivity
of the open-circuit airgap flux density and its mean value
when compared to those of the SPM machines while assum-
ing the same machine size.

Thus, it is very difficult to achieve both higher airgap
flux density to increase torque/power density and its low
sensitivity for a lower POF of the spoke-type PM machines.

A method to increase airgap flux density and decrease
sensitivity involves adopting a thicker permanent magnet.

However, the method increases the material cost of the PM.
In conclusion, machine design engineers must perform the

robust optimal design process between airgap flux density
and its sensitivity and total solution design accounting for
uncertainty, e.g., variations in the airgap length and PM
dimensions due to manufacturing tolerances.
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