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ABSTRACT A gas path fault diagnosis scheme for turborfan engines based on deep belief network (DBN) is
presented. The scheme is constructed according to the diagnosis principles of gas path faults and is composed
of a turbofan engine reference model and a DBN diagnosis model. The DBN diagnosis model is a stacked
network of several restricted Boltzmann machines (RBM) and was trained with the contrastive divergence
algorithm and the back propagation algorithm. To optimize the DBN performance, the orthogonal tests Lys
(57) were adopted to determine the hyper-parameters, such as learning rate, hidden layer number, hidden
layer neuron number, etc. The proposed DBN-based scheme was applied to diagnose the gas path faults of
a turbofan engine model and compared with BP-based and SVM-based schemes. The results show that the
fault diagnosis accuracy of the DBN-based scheme is as high as 96.59%, and the DBN-based scheme has

dramatic performance advantages over the other two schemes.

INDEX TERMS Turbofan engine, gas path, fault diagnosis, deep belief network, orthogonal test.

I. INTRODUCTION
The turbofan engine is the main propulsion system for com-
mercial and military aircrafts. It is a safety critical sys-
tem and its performance directly affects the reliability and
safety of aircrafts. Gas turbine engine faults are mainly
divided into three categories: gas path faults, structural faults
and sensor/actuator faults. Gas path components usually
work under harsh temperature, speed and stress conditions.
Furthermore, they are affected by the problems of erosion,
corruption and foreign object damage. Therefore, gas path
components are prone to performance deterioration, and their
faults account for a large proportion of turbofan engine faults.
We study the gas path fault diagnosis method for turbofan
engines in this paper.
At present, the main difficulties of gas path fault diagnosis
are as follows [1]-[6]:
1) The measurable parameter number of turbofan engines
is less than the unmeasurable parameter number.
2) There is a strong correlation between different turbofan
engine faults, and it is difficult to distinguish similar
turbofan engine faults.
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3) There may be measurement noise in measurement
signals.

4) There is strong nonlinearity, uncertainty and complex-
ity in turbofan engine behavior, and the working envi-
ronment conditions tend to change with respect to time.

Because neural network (NN) has great advantages in deal-
ing with nonlinear problems and modeling complex and
nonlinear systems, it has been introduced to the field of
aero-engine fault diagnosis by many experts and scholars.
M. Zedda et al. proposed a NN-based diagnostic system
for a low by-pass ratio turbofan engine and found that the
system can quantify multiple faults affecting the engine
components by using few and noisy measurements [7].
S. O. T. Ogaji et al. applied multiple NNs method to diag-
nose and quantify single and dual-sensor faults in a two
shaft stationary gas-turbine [8]. On the basis of a bank of
eight dynamic NNs, S. Sina Tayarani-Bathaie et al. proposed
a fault detection and isolation scheme, which can detect dif-
ferent component faults for a dual spool turbofan engine in the
steady state [9]. However, conventional NNs’ generalization
ability is not good and they are prone to converge to local
optimal solutions.

Deep learning is a branch of machine learning which

allows computational models that are composed of multiple
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FIGURE 1. Schematic of turbofan engine gas path components.

processing layers to learn representations of data with
multiple levels of abstraction [10]. Recently, deep learning
has been adopted in various areas such as computer vision,
automatic speech recognition, natural language processing,
audio recognition and bioinformatics, and has achieved sig-
nificant achievements. As a result, deep learning has also
aroused great attentions in the field of fault diagnosis, and
is getting more and more research and application [11]-[12].

Deep learning models are the development of conventional
NNs and include several variants such as auto-encoders,
DBNSs, convolutional neural networks, recurrent neural net-
works and so on. DBN is a probabilistic generation model,
which generates a joint distribution of observed data and
labels compared with the traditional discriminant models.
To overcome the shortcomings of NNs, some researchers
tried to use DBN as the diagnosis tool for aero-engines.
P. Tamilselvan et al. proposed a multi-sensory DBN-based
health state classification model, which was verified in
benchmark classification problems as well as in aircraft
engine health diagnosis [13]. X. Lin er al. presented a
DBN-based algorithm (ad_DBN) to improve the malfunction
diagnosis accuracy of rotating components in an aeronautical
turboshaft engine [14]. Although DBN has achieved excellent
performance in many classification and feature extraction
applications, it has several hyper-parameters to be deter-
mined, which have great influence on the DBN performance.

To investigate the influence of different hyper-parameters
on DBN performance and find the best combination of hyper-
parameters, the orthogonal test method can be chosen as a
suitable tool. The method is a statistical technique to arrange
tests and data analysis with an orthogonal table, which selects
a suitable number of representative test cases from many
test data, that have evenly dispersed, neat comparable char-
acteristics [15]. By applying the orthogonal test method,
the test times can be reduced and the optimized parame-
ters can be found quickly. Z. Li et al. proposed a wavelet-
NN diagnosis system for a vibrating screen, and the system
parameters were optimized through orthogonal tests [16].
D. J. Cai et al. optimized the operating conditions of the
extraction of flavonoid from Fructus Gardeniae by employing
orthogonal tests L9 (34) [17].
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In light of the above research work, a DBN-based fault
diagnosis scheme for the gas path components of turbofan
engines is proposed in this paper. Based on the analysis of
the diagnosis principles of gas path faults, the scheme is
constructed with a turbofan engine reference model and a
DBN diagnosis model. The turbofan engine reference model
is a component-level engine model. And the DBN diagno-
sis model is constructed by stacking multiple RBMs, and
then adding a full connection layer as the output layer.
Furthermore, the DBN model was trained with the contrastive
divergence pre-training algorithm and the back propagation
fine-tuning algorithm. And the model hyper-parameters were
optimized through the seven-factor and five-level orthogo-
nal tests L25 (57). In the end, the simulation experiments
were carried out to evaluate the diagnosis performance
of the DBN-based scheme, compared with BP-based and
SVM-based schemes. The results indicate that the scheme
has high diagnosis accuracy and can be used to find early
anomalies and faults for condition-based maintenance, thus
reducing maintenance costs.

The remainder of this paper is organized as follows.
In Section 2, the DBN-based fault diagnosis scheme for
the gas path components of turbofan engines are described.
In Section 3, the structure of the DBN diagnosis model and
the hyper-parameter optimization method are presented and
described in detail. Simulation results and the performance
comparison with other Al methods are presented in Section 4,
followed by the conclusions in Section 5.

Il. DBN-BASED FAULT DIAGNOSIS SCHEME
For turbofan engines with large bypass ratio, its gas path

components include a fan, a high pressure compressor, a com-
bustor, a high pressure turbine, a low pressure turbine, and so
on, as illustrated in Fig. 1. The engine station numbers are as
follows:

1 Inlet entry,

13 External duct entry,

16  External duct exit/ External duct nozzle entry,
18 External duct nozzle exit,

2 Inlet exit/Fan entry,
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Although the weight of these components only constitutes a Pisy
small part of the whole engine weight, their maintenance cost \\p;,;’
. T,
accounts for 60% of the total maintenance cost. Furthermore,

their faults usually account for about 90% of the engine
faults. So the reliability of gas path components is of great
importance for the whole engine [18], [19].

A. FAULT DIAGNOSIS PRINCIPLE

Compressor increases air pressure through high-speed rotat-
ing impellers. When the compressor performance changes, its
efficiency will change accordingly. Therefore, the compres-
sor efficiency can be used as the criteria for compressor fault
diagnosis.

The faults of combustor are mainly caused by the faults of
fuel control system, such as integrated controller failure, sen-
sor indication distortion, fuel supply regulator components
block, fuel supply pressure fluctuation, leakage at seal, fuel
nozzle block, insufficient fuel pressure, etc., which all show
the decline of combustion efficiency.

The high/low pressure turbines convert the energy of gas
flow into mechanical energy. Turbine blades are directly
impacted by high temperature and high pressure gas flow,
so the failure rate of turbines is very high. When the turbines
fail, their isentropic efficiency decreases and the performance
of the whole engine also decreases.

As illustrated in Fig. 2, the actual faults of the engine (such
as blade breakage or deformation, etc.) result in the perfor-
mance deterioration of the components, which leads to the
changes of the measurement parameters. If the above process
is regarded as a positive process, then the fault diagnosis
is its reverse process. There are two kinds of engine fault
diagnosis. Firstly, according to the changes of the engine
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FIGURE 3. DBN-based fault diagnosis scheme for turbo-fan engines.

measurement parameters to determine the performance of the
engine components, so as to achieve fault location. Secondly,
the physical faults of the engine can be directly judged by
the changes of the measurement parameters [20]-[21]. The
proposed fault diagnosis scheme in this paper belongs to the
former.

B. FAULT DIAGNOSIS SCHEME
The DBN-based fault diagnosis scheme is shown Fig. 3.

As shown in Fig.3, the fault diagnosis scheme is comprised
of an engine reference model and a DBN diagnosis model.
And here the engine reference model is a component-level
turbo-fan engine model.

Thirteen measurable variables are selected for fault diagno-
sis, including fuel flow W¢, low pressure spool speed nr, high
pressure spool speed np, total pressure after fan P,j, total
pressure after high pressure compressor P3, total temperature
and total pressure after combustion chamber T4, P4, total
pressure before high pressure turbine P41, total pressure after
high pressure turbine P44, total temperature and total pressure
before low pressure turbine 745, Pas, total pressure after low
pressure turbine Ps, and total temperature after nozzle Tg.
The difference between these sensor signals and the output
parameters of the engine reference model is calculated, and
the results are used as the input of the DBN diagnosis model.
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TABLE 1. Five typical fault modes and healthy mode of gas path
components.

Fault type Fault cause Diagnostic label
F00 Healthy mode [1,0,0,0,0,0]
FO1 Fan efficiency deterioration [0,1,0,0,0,0]
F02 Efficiency deterioration of high [0,0,1,0,0,0]

pressure compressor
Fo3 Combustor efficiency deterioration [0,0,0,1,0,0]
FO4 Efficiency deter}oratmn of high [0,0,0,0,1,0]
pressure turbine
FO5 Efficiency deterioration of low [0,0,0,0,0, 1]

pressure turbine

The DBN model outputs six working modes, including five
fault modes and a healthy mode. The five fault modes are
described in detail in the next subsection.

C. FAULT CLASSIFICATION

According to the deterioration degree of performance, gas
path faults can be divided into two categories, component per-
formance degradation and component fault. Generally speak-
ing, when the engine components work in high temperature
and high pressure for a long time, the component performance
will deteriorate to some extent. The deterioration is generally
characterized by the variation of the performance parame-
ters of components (fans, compressors, combustors, turbines,
etc.), which are called the gas path health parameters. The
serious deterioration of the health parameters denotes the
faults of the gas path components.

The objective of this research is the fault diagnosis of a
two-shaft turbofan engine with high bypass ratio. Its main gas
path components include inlet, fan, high pressure compressor,
combustor, high pressure turbine, low pressure turbine, noz-
zle, external duct, external duct nozzle, etc. Five typical fault
modes of gas path are studied in this paper, fan fault, high
pressure compressor fault, combustor fault, high pressure tur-
bine fault and low pressure turbine fault, as listed in Table 1.

llIl. DBN DIAGNOSIS MODEL

Deep Belief Network [22] is a deep neural network proposed
by Geoffrey E. Hinton in 2006. Because DBN has a proba-
bility framework with multiple (greater than or equal to 2)
hidden layers, it can learn representations of data through
multiple levels of abstraction, and it has better feature extrac-
tion ability and classification ability compared with conven-
tional machine learning algorithms, such as backpropagation
neural network (BP) and support vector machine (SVM).
In this paper, based on DBN and tensorflow platform [23],
the gas path fault diagnosis approach for turbofan engines is
studied. Fig. 4 shows the training and test flow chart of the
diagnosis model.

A. STRUCTURE OF DBN MODEL

DBN is a probabilistic generation model, which generates a
joint distribution of observed data and labels compared with
the traditional discriminant models. DBN is constructed by
stacking multiple RBMs, and then adding a full connection
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layer as the output layer according to application require-
ments. Fig. 5 shows a typical RBM structure, and Fig. 6 shows
the structure of a typical DBN with two RBMs [24].

The RBM consists of two layers of neurons, one visible
layer and one hidden layer. Each neuron is a binary neuron,
with only two values: 0 and 1. Value 1 indicates that the
neuron is active and value O indicates the neuron inactive.
The two layers are fully connected, and there is no connection
between neurons in the same layer.

The energy function E is defined as following [25], [26]:

n m

n m
E@,hl6) == ami—y bihi—y Y viwghy (1)
i=1 J=1

i=1 j=1

In (1), where 8 = {W, a, b} are the model parameters, i and
Jj are the indexes of visible and hidden neurons, respectively.
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a; is the bias of the 7 th visible neuron, and b; is the bias of the
Jjth hidden neuron, and wj; is the connection weight between
Vi and ]’lj.

The joint distribution over all visible and hidden neurons
is defined as:

Z(O) — ZE—E(V,M@)

v,h
o—E.hl6)
P, h|0) = ———— 2
(v, hl0) 70 @)
The condition probability that a neuron’s value is 1 can be
written as:

P(hj = 1Jv) = sigmoid(b; + Y _ viwy))
i

P@v; = 1|h) = sigmoid(a; + Zhng 3)
J

where sigmoid is the logistic function, which is defined as
sigmoid(x) = 1/(1 4+ e™). The sigmoid function has a good
explanation for the activation probability of neurons, from
complete inactivation (0) to full saturation activation (1). As a
result, it is widely used in many probability models and auto
encoder models.

The training of RBM is to estimate the parameters accord-
ing to the training samples, so that the inferred value of
a visible layer neuron can be as close as possible to the
real value of it. And the RBM parameters can be estimated
by using the maximum likelihood method. The derivate of
the log probability of the training data can be computed as
follows:

310 P(v)
_Tij = (vihj)a — (Vilj)m
d0lnP(v)
T = =
oln P
~2270 G i @)
a;

where (-)4 denotes an expectation with respect to the data
distribution and (-),, iS an expectation with respect to the
distribution defined by the model. The former term labeled
the positive phase increases the probability of training data
whilst the latter term dubbed the negative phase decreases the
probability of samples generated by the model.

However, the expectation (-),, is intractable to compute.
Therefore, in practice, an approximation to the gradient
so-called the contrastive divergence (CD) is used. The CD
algorithm has become the standard algorithm for training
DBN. The training process is divided into two stages. The
first stage is a bottom-up unsupervised learning and the
second stage is a supervised learning from top to bottom.
The specific process is as follows. Firstly, the connection
weights W and bias a, b are initialized randomly. Then the
input data are assigned to the neurons of the visible layer,
and the hidden layer is reconstructed with Gibbs sampling.
Thus the connection weights W and bias a, b are optimized
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repeatedly and all the RBMs are trained sequentially. The
second stage is a top-down supervised learning, in which
the DBN is further fine-tuned with back propagation (BP)
algorithm according to the labels of the training dataset. The
whole training process is shown in Fig. 7.

B. TRAINING AND TEST DATASET GENERATION

In this study, a component-level turbofan engine model was
used to generate the training and test dataset. The flight
altitude was 32,000 feet at cruise altitude, and the flight speed
set to 0.7 Mach at cruise speed. The efficiency degradation
range of each component was set to [0, 0.1], the degradation
step of 0.01 was selected to gradually reduce the efficiency
value for different components, and finally the dataset for
the engine with different performance was obtained. The
threshold value of engine faults was chosen to be 0.05 [27],
that is, if the efficiency degradation is greater than or equal
to the threshold value, the engine is in fault condition, oth-
erwise, the engine is in healthy working condition. With this
method, a dataset of 34,000 samples was obtained, includ-
ing 14,000 healthy samples (efficiency degradation within
threshold) and 20,000 faulty samples (efficiency degradation
beyond threshold, 4 fault types and 5000 samples of each
type).

In order to ensure the reliability of the diagnosis results, it is
necessary to normalize all the input parameters. We adopt the
min-max normalization method as shown in (5) [28].

X — Xmin

= S mn ®)

Xmax — Xmin

In (5), Xmin and xpax denote the minimum and the maximum
of the input parameter x, respectively, and x* denotes the
normalized value of x. Thus the input parameter x is re-scaled
within the range [0, 1].
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TABLE 2. Orthogonal test design (seven factors and five levels).

Factor

. Number
Level Pre- Fine- of Hidden
eve ini i
traiming tuning hidden layer B?mh Dropout  Momentum
learning  learning 1 S size
ayer’s number
rate rate
neurons
1 0.0001 0.0001 10 2 100 0 0
2 0.0005 0.0005 15 3 500 0.01 0.1
3 0.001 0.001 20 4 1000 0.05 0.2
4 0.005 0.005 25 5 1500 0.1 0.3
5 0.01 0.01 30 6 2000 0.15 0.4

After the normalizing process, the original dataset is
divided into one training subset and one test subset. The
partition ratio between the training subset and the test sub-
set will affect the fault diagnosis performance to a certain
extent. In general, when the training subset becomes larger,
the training accuracy of the DBN model may also be higher.
But if the test subset is too small, the generalization ability of
the DBN model cannot be verified effectively. Based on our
experience, it is determined that there are 30,000 samples in
the training subset and 4000 samples in the test subset. And
all the samples are randomly grouped into the two subsets.

C. HYPER-PARAMETER OPTIMIZATION

When we construct the DBN model for aero-engine fault
diagnosis, there are several hyper-parameters need to be
determined. These hyper-parameters include learning rate,
number of neurons in each hidden layer, number of hidden
layers, regularization factor, dropout and so on. They dramat-
ically affect the training effects of the DBN model.

The traditional hyper-parameter selection approach is seg-
mental search, which selects the hyper-parameters accord-
ing to the training results with different hyper-parameter
combinations randomly selected in different segments. The
approach is not a good choice when the hyper-parameter
number increases.

To optimize the DBN hyper-parameters, the orthogonal
tests Los (57) were used and the test conditions are shown
in Table 2. The seven factors are pre-training learning rate,
fine-tuning learning rates, number of hidden layer’s neurons,
hidden layer number, batch size, dropout and momentum.
Every factor has five levels to be optimized. So twenty-five
tests were carried out when the pre-training learning rates
and the fine-tuning learning rate were 0.0001, 0.0005, 0.001,
0.005 and 0.01, the numbers of the hidden layer neurons were
10, 15, 20, 25 and 30, the hidden layer numbers were 2, 3, 4,
5 and 6, the dropouts were 0, 0.01, 0.05, 0.1 and 0.15, and the
momentums were 0, 0.1, 0.2, 0.3 and 0.4.

Table 3 is the results of the orthogonal tests and the extreme
difference analysis. Every diagnosis accuracy is the average
of 10 diagnosis results. Furthermore, an orthogonal analysis
was carried out. As shown in Table 3, K i was obtained by
adding any number of columns corresponding to i factor, and
ki is the average accuracy of the same factor in different
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levels. R is the difference between the maximum value and
the minimum value of k i of any columns. As seen in Table 3,
the hidden layer number is found to be the most important
factor. The best diagnosis accuracy is obtained when the
hidden layer number is 3, the pre-training learning rate is
0.0005, the fine-tuning learning rate is 0.005 and the number
of hidden layer neurons is 25, etc.

According to the results of Table 3, the diagnosis accuracy
trend chart of each factor was drawn in Fig. 8. It can be found
that the learning rate between 0.0001 and 0.0005 is more
appropriate because large learning rate may cause the global
optimum to be skipped in the training process. It also can be
seen that the DBN models with more hidden layers do not
necessarily have better performance and the accuracy of the
2-hidden-layer DBN model is the best. And the optimal range
of hidden layer neuron number is between 20 and 25.

In the end, according to the diagnosis accuracy trend
chart in Fig. 8, all the hyper-parameters were decided as
shown in Table 4. The structure of the optimized DBN
model is shown in Fig. 9. There are four layers in the DBN
model. The neurons in the input layer correspond to the
13 measurement parameters. The neuron numbers in both
hidden layers are 20. And the six neurons in the output
layer correspond to one healthy mode and five gas path fault
modes.

Through the above analysis and calculation, we can see that
DBN diagnosis models with different hyper-parameters have
different diagnosis performance. With the change of the neu-
ron numbers of hidden layers and the dropouts, the relation-
ship between different layers will change accordingly. The
orthogonal test results show the strength of interaction among
different layers, thus partly reveal the internal mechanisms of
DBN diagnosis models.

IV. SIMULATION EXPERIMENTS

The hyper-parameters of the DBN diagnosis model were
selected as shown in Table 4. And the dataset produced in
Section III was employed for model training and testing.
To simulate real engine sensory signals in working envi-
ronment, all input data are contaminated with measurement
noise. The noise injection formula is shown in (6) [29].

x =x9+ lo - rand (6)

In (6), xp is the clean input parameter; [ is the noise con-
trol factor, indicating the severity of the measurement noise,
where /| = 0.02, o is the standard deviation of the training
data; rand is the function used to produce a random number
subject to normal distribution.

Fig. 10 shows the training results of the DBN model using
the training dataset contaminated with measurement noises.
The solid red line indicates the training accuracy. And the
black dotted line indicates the loss during the training process,
which is the mean squared error (MSE) between target labels
and diagnosis results.
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TABLE 3. Results of orthogonal tests and extreme difference analysis.

Factor
. Number
Pre- Fine- .
Test it . of Hidden
Accurac
No. [lraming tuning hidden layer Batch Dropout  Momentum Y

learning  learning size

layer’s number

rate rate neurons
1 1 1 1 4 1 1 1 0.6231
2 1 2 2 3 5 4 5 0.5216
3 1 3 3 2 4 2 3 0.8052
4 1 4 5 5 3 3 2 0.1121
5 1 5 4 1 2 5 4 0.6104
6 2 1 2 5 4 5 5 0.1340
7 2 2 3 1 3 1 3 0.9143
8 2 3 5 4 2 4 2 0.1340
9 2 4 4 3 1 2 4 0.9959
10 2 5 1 2 5 3 1 0.7268
11 3 1 3 3 2 3 4 0.6024
12 3 2 5 2 1 5 1 0.4752
13 3 3 4 5 5 1 5 0.1000
14 3 4 1 1 4 4 3 0.5432
15 3 5 2 4 3 2 2 0.1255
16 4 1 5 1 5 2 4 0.8417
17 4 2 4 4 4 3 1 0.1146
18 4 3 1 3 3 5 5 0.3192
19 4 4 2 2 2 1 3 0.2742
20 4 5 3 5 1 4 2 0.1000
21 5 1 4 2 3 4 5 0.6181
22 5 2 1 5 2 2 3 0.1000
23 5 3 2 1 1 3 2 0.7700
24 5 4 3 4 5 5 4 0.1024
25 5 5 5 3 4 1 1 0.4904
K1 2.6723 2.6853 2.3123 3.6796 29642  2.4020 1.9549 2.6723
K2 2.9050 2.1257 1.8253 2.3814 1.7210  2.8683 1.2416 2.9050
K3 1.8463 2.1284 2.5243 2.9295 2.0892  2.3259 2.6369 1.8463
K4 1.6497 1.4846 2.4390 1.0996  2.0874 1.9169 3.1528 1.6497
K5 2.0809 2.0531 2.0534 0.9365  2.2925 1.6412 1.6929 2.0809
k1 0.5345 0.5371 0.4625 0.7359  0.5928  0.4804 0.3910 0.5345
k2 0.5810 0.4251 0.3651 04763  0.3442  0.5737 0.2483 0.5810
k3 0.3693 0.4257 0.5049 0.5859  0.4178  0.4652 0.5274 0.3693
k4 0.3299 0.2969 0.4878 0.2199 04175 0.3834 0.6306 0.3299
k5 0.4162 0.4106 0.4107 0.1873  0.4585  0.3282 0.3386 0.4162
R 0.2511 0.2401 0.1398 0.5486  0.1754  0.2454 0.3822 0.2511
The formula for calculating the loss is shown in (7). In (7), yﬁ is the jth element of the diagnosis result of the ith
1 N 6 . 2 sample, f/l the jth element of the target label of the ith sample,
Loss = N Z,-Zl ZFI(){' o yi') v and N the number of samples.
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TABLE 4. The selected hyper-parameters. 16 41.0
- =] 0ss -4 0.9
Hyper-parameter Value ]
= Accuracy
Pre-training learning rate 0.0005 108
Fine-tuning learning rate 0.0001 407 o,
. Q
Number of hidden layer neurons 20 s
. 406 2
Hidden layer number 2 é:‘ﬁ
Batch size 100 405
Dropout 0.01 04
Momentum 0.3
403
.
1 " 1 " 1 " 1 " 1
Output 80 100 120 140 160
fayer Epochs
Hidden FIGURE 10. The training results of the DBN model.
layer2

FIGURE 9. Structure of the optimized DBN model.

It can be seen from Fig. 10 that the loss of the DBN model is
rapidly falling during the training of the first 30 episodes, and
a turning point appears when the loss approaches 0.1, after

170340

Hidden
layerl

that the loss begins to decrease gradually. The change trend of
the accuracy is almost the opposite of the change trend of the
loss. After 30 episodes, the change of the accuracy becomes
gentle, and the accuracy approaches 98%.

Fig. 11 shows the partial prediction results of a fault diag-
nosis test. Only 2 of the 34 randomly selected results are
diagnosed wrong.

To further demonstrate and illustrate the performance of
the DBN diagnosis model, it was compared with two other
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FIGURE 12. Comparison of the prediction results of the three diagnosis
models.

Al diagnosis approaches, backpropagation neural network
(BP) and support vector machine (SVM) [30]-[32]. BP neural
network adopts the structure of single hidden layer, with the
learning rate 0.01 and the hidden layer neuron number 20.
SVM uses Gauss kernel function, the regularization factor C
is 0.01, and the width of Gauss kernel y is 0.001. The training
results of the three models are shown in Fig. 11.

It can be seen from Fig. 12 that the accuracy of the DBN
diagnosis model tends to be stable after about 40 training
episodes. Although there are still some small fluctuations
in the later stage of training, the accuracy is maintained
around 98%. In contrast, the traditional BP network has the
poorest diagnosis performance, and its accuracy is as low as
87%. The SVM accuracy is slightly higher than the BP net-
work, but its convergence speed is slowest, and the required
training episodes for convergence is much larger than DBN.
Furthermore, the DBN’s fluctuation range is also the smallest
after convergence, which indirectly reflects the DBN model’s
robustness against external interference. Table 5 shows the
average training accuracy and test accuracy of the three
models. Apparently, the DBN model shows the best diagnosis
performance.

VOLUME 7, 2019

TABLE 5. Average training and test accuracy of the three diagnosis
models.

Model  Training accuracy (%)  Test accuracy (%)
BP 87.12% 86.05%

SVM 93.84% 91.76%

DBN 98.13% 96.59%

V. CONCLUSION

A DBN-based gas path fault diagnosis scheme for turbofan
engines, which is composed of a turbofan engine reference
model and a DBN diagnosis model, is proposed in this
paper. The DBN diagnosis model is composed of several
RBMs and was trained with the contrastive divergence algo-
rithm and the back propagation algorithm. To optimize the
performance of the DBN diagnosis model, the orthogonal
tests were adopted to determine the hyper-parameters, such
as learning rate, hidden layer number, hidden layer neuron
number, etc. The DBN-based scheme proposed in this paper
was applied to diagnose the gas path faults of a gas turbofan
engine model and compared with BP-based and SVM-based
schemes. The results show that the fault diagnosis accuracy
of the DBN-based scheme is as high as 96.59%. Although
the proposed scheme is designed for turbofan engines, it can
also be used for fault diagnosis of other types of aero-engines
through a little expansion.
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