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ABSTRACT Recently, there has been an increased interest in the deployment of continuum robots in
unstructured and challenging environments. However, the application of the state-of-the-art motion planning
strategies, that have been developed for rigid robots, could be challenging in continuum robots. This,
in fact, is due to the compliance that continuum robots possess besides their increased number of degrees
of freedom. In this paper, a Demonstration Guided Pose Planning (DGPP) technique is proposed to
learn and subsequently plan for spatial point-to-point motions for multi-section continuum robots. Motion
demonstrations, including position and orientation, are collected from a human via a flexible input interface
that is developed to command the continuum robot intuitively via teleoperation. A dynamic model based on
Euler-Lagrange formalism is derived for a two-section continuum robot to be considered while planning
for the robot motions. Meanwhile, a Proportional-Derivative (PD) computed torque controller with a
Model Reference Adaptive Kinematic Control (MRAKC) scheme are developed to ensure the tracking
performance against system uncertainties and disturbances. Also, the system stability analysis based on
Lyapunov quadratic equation is proven. Simulation results prove that the proposed DGPP approach, along
with the developed control scheme, have the ability to learn, generalize and reproduce spatial motions for
a two-section continuum robot while avoiding both static and dynamic obstacles that could exist in the
environments.

INDEX TERMS Continuum robots, motion planning, dynamic movement primitives, kinematic control,
dynamic modeling.

I. INTRODUCTION
Tremendous inspection and rescue operations have witnessed
the engagement of robots in their applications that are poten-
tially expected to grow further in the next few years [1].
Recently, inspired by the incredible capabilities of biologi-
cal appendages; such as elephant trunks and octopus arms,
continuum robots exhibit an impressive potential towards
the exploration of narrow and confined spaces. Their con-
tinually bending flexible backbones facilitate such kind of
maneuverability to shape their whole bodies to suit tight
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spaces [2] in contrary to rigid robots, such as in Minimally
Invasive Surgeries (MIS) or nuclear decontamination. Mean-
while, from a safety perspective, the compliance of such
robots enriches their applicability to safely interact close to
human, for instance in wearable assistive robots [3], [4].

Despite the growth potential of continuum robot applica-
tions, planning motions for such robots could be challeng-
ing and complex. This, in particular, is due to redundant
degrees of freedom especially if the robot composed of mul-
tiple flexible sections. In literature, several attempts have
been made towards planning safe paths for continuum robots
without taking into account their intrinsic compliance [5].
For instance, in [6], a points-based path planning (PoPP)
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algorithm was introduced to plan two-dimensional motions
for constant-curvature continuum robots. To improve the lim-
itations in the existing path planning techniques, the devel-
oped PoPP technique computes the path by considering
two safety parameters; namely, the step size and the mini-
mum marginal distance. In [7], an offline motion planning
technique was proposed for a two-section continuum robot
based on the closed-loop Jacobian pseudo-inverse method.
On the other hand, a proactive path planning approach of
multi-section continuum robot was presented in [8], where
a set of proximity sensors was mounted on discrete posi-
tions on the robot’s backbone to safely avoid static obstacles
that could exist within its environment. Other state-of-the-art
motion planning approaches that are originally proposed for
rigid robots, such as graphical model [9] and potential field
[10] techniques, could be utilized for planning motions for
continuum robots. However, these techniques mainly rely on
the robot parameters that have to be identified perfectly. Oth-
erwise, improper chosen parameters could excite the robot
dynamics which could be severe in continuum robots due to
their compliant behavior.

Recently, a general learning approach has been designed
for teaching rigid robots from human demonstrations on
how to plan and execute complex tasks [11]. In this regard,
state-action pairs of the required task were recorded during
the teacher’s demonstrations [12], that could be collected
either kinesthetically [13] or via teleoperation [14]. Satis-
factory results were obtained in applying Learning from
Demonstrations (LfD) approaches in different applications
such as in generating the whole body dancing motions for
a biped humanoid robot [15], handwriting robotic applica-
tions [16], obstacle avoidance of robotic arm [17] and mobile
robots [18].

However, so far, there has been a little discussion about
applying LfD approaches in planning motions for continuum
robots. For instance, in [19], a motion planning technique for
a multi-section flexible robot actuated by electromotive poly-
mers was developed in planar environments while assuming
static settings. The developed approach was built based on
LfD with Gaussian mixture model and Gaussian Mixture
Regression (GMR) for encoding the collected trajectories and
generating smooth paths. However, the human operator was
needed to adjust the voltage of each section using trial and
error method to accomplish the task which is a time consum-
ing process. A skill transfer of real octopus movements to
a constant curvature flexible surgical robot (STIFF-FLOP)
was presented in [20]. The learning skills were encoded
and reproduced using Dynamic Movement Primitives (DMP)
approach based on GMR which was used for learning the
basis functions and force behaviors. However, the collected
real octopus data was small and approximated by 7-order
polynomial which may cause ignorance of the real robot
dynamics. Moreover, in [21], the generated motion skills of
Shape Memory Alloy (SMA)- actuated flexible robotic arm
inspired by octopus armwas developed. Themovements were
learned based on different activation functions such as step,

Gaussian and positive sine functions. However, the designed
motion planning approach was too slow and the used acti-
vation functions were not generalized for the generation of
primitive behaviors.

In our previous work [22], [23], a demonstration-guided
path planning approach was developed for a constant cur-
vature two-section continuum robot. The human demon-
strations were collected intuitively via teleoperation of a
flexible input interface to suit the structure of the contin-
uum robot. The developed approach has addressed only the
end-effector position without considering its orientation that
could be necessary for different applications such as six
DOF pose tracking. In addition, the developed technique
assumed a kinematic-based teleoperation setting where the
robot dynamic aspects, such as compliance, friction, and
weight were neglected.

The contribution of this paper is twofold. First, it presents
a Demonstration-Guided Pose Planning (DGPP) approach
that addresses the pose of a multi-section continuum robot.
The proposed DGPP approach is mainly based on human
demonstrations that are collected by teleoperating the contin-
uum robot intuitively via a flexible rod interface. Thereafter,
the DMP [11] framework is applied over the demonstrated
motions to generate and generalize for the desired pose while
accounting for both static and dynamic obstacles that could
exist within the robot’s environment. The second contribution
of this paper is to derive the spatial dynamic equations that
describe the motion of a multi-section extensible continuum
robot. The derived model is based on the Euler Lagrange
formalism and aims to incorporate the robot dynamics in
the proposed DGPP approach in both learning and produc-
tion phases. Meanwhile, based on the derived dynamics,
a Jacobian-basedModel Reference Adaptive Kinematic Con-
trol (MRAKC) along with a Proportional Derivative (PD)
computed torque dynamic controller are proposed to track the
generated desired end-effector poses to ensure the robustness
against the model inaccuracies and the external disturbances.

In the remainder of this article, the kinematics of constant
curvature continuum robots is briefly reviewed in Section II,
while the dynamic modeling of an extensible two-section
continuum robot is derived in Section III. The proposed
Demonstration-Guided Pose Planning (DGPP) approach is
described in details in Section IV for both the position and
the orientation of the robot. The Model Reference Adaptive
Kinematic Control (MRAKC) along with a computed torque
dynamic control is presented in Section V. The system
stability analysis based on Lyapunov formulation is presented
in Section VI. The results of evaluating the proposed DGPP
and the derived dynamics-based control are presented and
discussed in Section VII. Finally, the conclusion and future
work are presented in Section VIII.

II. KINEMATICS OF CONTINUUM ROBOTS
Continuum robots are flexible structures that have the abil-
ity to bend smoothly through curvilinear paths by apply-
ing moment on its distal tip. Different actuation, such as
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FIGURE 1. Structure of a cable-driven one-section continuum robot.

cable-driven, pneumatically-actuated and hydraulically-
actuated are commonly used in continuum robots to achieve
the desired tip bending. In this research paper, the cable-
driven continuum robot is considered, However, applications
of the proposed DGPP approach can be generalized for
pneumatic-driven or hydraulically-driven continuum robots.

A. FORWARD KINEMATICS
The structure of a cable-driven continuum robot with one-
section is shown in Fig. 1. The moment on the robot’s tip can
be adjusted by varying the respective lengths of three cables
that attached to the robot’s end position through guidance
disks. To increase the dexterity of the robot, usuallymore than
one section are stacked up together. The constant-curvature
approach [24] is considered while deriving the forward kine-
matics that relates the pose of each section i to its configu-
ration space variables; namely, the arc length si, curvature κi
and the angle of curvature φi.
In this regard, the tip pose of each section i is computed

with respect to its base, or the section i− 1 tip, as follows,

i−1Ti =


cos2 φi(cos (κisi)− 1)+ 1
sinφi cosφi(cos (κisi)− 1)

cosφi sin (κisi)
0

sinφi cosφi(cos (κisi)−1) − cosφisin (κisi)
cos2 φi(1− cos (κisi))+cos (κisi) −sinφi sin (κisi)

sinφi sin (κisi) cos (κisi)
0 0

cosφi(cos (κisi)− 1)
κi

sinφi(cos (κisi)− 1)
κi

sin (κisi)
κi
1


(1)

In continuum robots withm sections, the distal end-effector
pose is computed by applying the transformationmatrix in (1)

along m, i.e.
m∏
i=1

i−1Ti. As noted, in each element of the last

column of (1), the denominator is divided by κi that could
be close to zero when the corresponding section is stretched
straight. This, in turn could cause mathematical singularity
that is tackled in this research by computing the 5th-order
Taylor Expansion of the Cartesian tip point position pi ∈ R3

of each section with acceptable error for the small range of
the bending angle as follows [25],

i−1pi =

xiyi
zi



=


κis2i cos(φi)(κ

2
i s

2
i − 12))

24
(κis2i sin(φi)(κ

2
i s

2
i − 12))

24
si − (κ2i s

3
i )

6

 , for i = 1, 2 (2)

B. DIFFERENTIAL KINEMATICS
In the following, the section index i is omitted for simplicity,
while being implicitly included unless other is mentioned.
The tip linear velocity v = ṗ ∈ R3 of the robot end-effector
relative to the base frame is related to the time derivatives of
the configuration space variables of two sections continuum
robot, q = [si, κi, φi, si+1, κi+1, φi+1]T ∈ R6, where i = 1 as
follows,

ṗ = Jp(q) q̇ (3)

where Jp ∈ R3×6 is the Jacobian matrix which could be
computed analytically as follows,

Jp =
∂(p)
∂(q)
=

∂(p)
∂(si, κi, φi, si+1, κi+1, φi+1)

, for i = 1 (4)

The angular velocity vector ω of section i relative to its
base coordinate can be also computed as follows [25],

i−1ωi =
i−1 t̂ii−1 ṫi, for i = 1, 2 (5)

where i−1 t̂ i and i−1 ṫ i are skew symmetric matrix and deriva-
tive of the tangent vector respectively which represents the
last column vector of the rotation matrix i−1Ri [25].

The robot tip position relative to the base frame is com-
puted as:

0p2 =
0p1 +

0R11p2 (6)

where 0p1 and
1p2 is the position of endpoint of each section

relative to its base which obtained from (2) and 0R1 represents
the rotation matrix of the first section relative to the base
frame that can be easily computed from (1) for i = 1.
The linear velocity of the end-effector relative to the base

frame can also be derived by direct differentiation of (6) with
respect to time as follows:

0v2 = 0ṗ1 +
0Ṙ11p2 +

0R11ṗ2 (7)
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Also, the angular velocity of the end-effector relative to the
base frame can be calculated as follows:

0ω2 =
0ω1 +

0R11ω2 (8)

III. DYNAMIC MODELING
Despite the extensive research on kinematic modeling of
continuum robots, far too little attention has been paid to
derive their complete dynamic model that could be chal-
lenging due to the increased Degree of Freedom (DOF) of
continuum robots, especially in spatial environments. For
instance, in [26], [27], a three-dimensional dynamic model of
a non-extensible flexible manipulator was developed based
on Newton-Euler, Lagrange and regressor representations.
The flexible robot was considered as a set of stacked slices
where each slice was considered as a rigid link with an
infinitesimal width. The planar dynamics of a three-section
extensible continuum robot was obtained in [28], [29] without
considering the robot torsional effect. In [30], the dynamic
modeling of a pneumatic-driven continuum robot based on
the constant curvature kinematics and the Euler-Lagrange
formalism was developed. The developed model neglected
the rotational energies resulting from angular velocities that
could affect the overall equations of motion. The dynamic
model of planer continuummanipulator was proposed in [31],
considering its backbone as two circular arcs. The obtained
model was tested using practical thick NiTinol rod which
used as a continuous backbone. The results showed that the
error between the simulation and experimental tip trajectories
was significant. In [25], the dynamic modeling of a planar
two-section continuum robot was derived based on the Taylor
Expansion method to overcome the singularities appeared in
the robot’s kinematic model. A PID control algorithm with
trial and error selected gains was used for tracking the robot’s
tip trajectory. However, the results showed that the developed
dynamic model can not be used for extensible type robots.

In this section, the dynamic model of extensible
two-section continuum robot is introduced. The mass of
each section, which is assumed to be flexible solid cylinder,
is distributed along the section length, while the center of
mass of each section mi is assumed to be concentrated at the
end of each section as shown in Fig. 2. Each bending section
i is modeled as spring-damper model in the longitudinal
direction as well as in the bending direction about the center
of curvature. Namely, Hsi and Dsi are spring stiffness and the
damping in the longitudinal direction, while Hti and Dki are
those in the bending direction about the center of curvature.

To derive the dynamic equations of n sections continuum
robot, the Lagrange equations along the generalized coordi-
nates q ∈ R6 is given by

d
dt
∂L
∂ q̇
−
∂L
∂q
+ f δ = τ (9)

where L = K − P is the Lagrangian that denotes the
difference between the kinetic energy K and the potential
energy P, while τ represents the generalized forces acting
on the generalized robot coordinates and f δ represents the

FIGURE 2. Two-section continuum robot modeled as a spring-damper
system acting on its length.

dissipative forces which is the forces generated due to longi-
tudinal damping [Ds1 ,Ds2 ] and torsional damping [Dκ1 ,Dκ2 ]
respectively that can be computes as follows:

f δ =
1
2


Ds1 ṡ

2
1

Dκ1 κ̇
2
1

0
Ds2 ṡ

2
2

Dκ2 κ̇
2
2

0

 (10)

In this paper, the values of damping coefficients [Ds1 ,Ds2 ,
Dκ1 ,Dκ2 ] are assumed values.

A. KINETIC ENERGY
The total kinetic energy is the sum of translational and rota-
tional energies of the end point of each bending section which
can be calculated as follows:

K =
2∑
i=1

Kti + Kri (11)

where Kti represents the translational energy which is com-
puted as follows:

Kti =
1
2
0vi

T
mi0vi (12)

where mi is the mass of each bending section and 0vi rep-
resents the velocity of the center of mass of each bending
section relative to the base frame. By applying the first time
derivative of (2) for i = 1, the velocity of the center of mass
of the first bending section relative to the base frame can be
computed while that of the second bending section relative to
the base frame is obtained from (7).

Also, the rotational energy Kri is obtained as follows:

Kri =
1
2
0ωi

T
Ii0ωi (13)

where Ii is the inertia tensor matrix of each bending section.

VOLUME 7, 2019 166693



I. A. Seleem et al.: DGPP and Tracking for Multi-Section Continuum Robots Considering Robot Dynamics

B. POTENTIAL ENERGY
The potential energy P is obtained as follows,

P = Pg + Pe (14)

where Pg and Pe represents the gravitational part and the
elastic part respectively which are computed as follows:

Pg =
2∑
i=1

gT pimi (15)

Pe =
1
2

2∑
i=1

Hsi
(
si − si0

)2
+ Htis

2
i (κi − κi0 )

2 (16)

where pi = [xi yi zi]T is the robot’s tip position vector, g ∈
R3 is the gravitational acceleration vector, si0 represents the
initial arc length, while κi0 is the initial curvature. Hsi is the
stiffness [32] and Hti is torsional spring constant [25] which
can be obtained as follows:

Hsi =
EAi
si

Hti =
EIbi
2si

for i = 1, 2 (17)

where E is the modulus of elasticity, Ai is the cross sectional
area of each section and Ibi represents the second moment of
cross-sectional area of each section. However in this paper,
the values of Hsi and Hti are assumed values.

C. GENERALIZED FORCES
The generalized forces τ in (9) are the actuation forces acting
on the robot to change the robot length and configuration.
These forces are resulting from tension forces for the two
sections τ = [τ1, τ2, τ3, τ4, τ5, τ6]T ∈ R6 which are applied
by six servo motors to change the robot section lengths si,
curvatures κi and angles of curvature φi for i = 1, 2.

D. RESULTING DYNAMIC MODEL
By computing the Lagrangian L, it’s derivatives and the
generalized forces, the the equation of motion in (9) can be
represented in a matrix form as follows:

M (q)q̈+ C(q, q̇)q̇+ G(q)+ f δ = τ (18)

where M (q) ∈ R6×6 is the inertia matrix, C(q, q̇) ∈ R6×6

is the Coriolis and Centrifugal matrix and G(q) ∈ R6×1

represents the gravitational vector.

IV. DEMONSTRATION-BASED POSE PLANNING
A. COLLECTION OF DEMONSTRATIONS
Aflexible input interface consists of two flexible rods stacked
over each other to resemble precisely the kinematics of
two-section continuum robot. The flexible interface is made
of NINJA FLEX soft rubber material which is printed using
3D printer machine. Two 6050-MPUs IMU sensors are
mounted on the end of each flexible rod to collect the orienta-
tion trajectories of the interface in unit quaternion form during
motion as shown in Fig. 3. It is worth to note that the collected

FIGURE 3. Two-section flexible interface.

sensors data are measured relative to the base frame. Based
on the rotation matrix of the robot which is computed from
(1) and the orientation of the interface obtained from MPUs
sensors, the robot geometric parameters of each section κi and
φi are presented as in [22].

κi =
cos−1

(
1− 2(Q2

xi + Q
2
yi)
)

si
, κi > 0

φi = tan−1
(
QxiQwi + QyiQzi
qxiQzi − QyiQwi

)
, −π ≤ φi ≤ π (19)

where i = 1, 2, Qw and [Qx ,Qy,Qz]T are the scalar and
the vector components of the measured orientation input Q.
Based on the computed values of κi and φi in (19) with
each section length si for i = 1, 2, the positions of the
end-effector of the first and second sections of the flexible
interface relative to the base frame can be computed easily
from the last column of (1).

B. DYNAMIC MOVEMENT PRIMITIVES
The Dynamic Movement Primitives (DMP) is an effi-
cient way for learning and control of complex demon-
strated discrete or rhythmic robot behaviors [33]. In this
paper, the point-to-point discrete movement is considered for
multi-section continuum robots.

1) POSITION BASED-DMP
A DMP for each DOF of the demonstrated motion is repre-
sented by the following set of differential equations [34],

λv̇t = β
(
γ (gp − xt )− vt

)
+
(
gp − x0

)
f (sd ) (20)

τ ẋt = vt (21)

where xt and vt are the position and velocity of each DOF
in the system, gp represents the goal position, x0 is the
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FIGURE 4. A one-dimensional DMP schematic diagram.

initial position, while λ, β, and γ are tuning parameters.
Three DMPs are incorporated for position coordinates in this
section. The forcing term f (sd ) in (20) is a linear function
composed of N nonlinear radial basis functions, which are
learned from the given demonstrations to allow the robot to
follow any arbitrary complex motions from initial position x0
to the goal position gp as follows,

f (sd ) =

∑N
j=1Wjψj(sd )sd∑

j ψj(sd )
(22)

In which

ψj(sd ) = exp(−hj(sd − cj)2) (23)

where cj and hj are the centers and width of radial basis func-
tion respectively and Wj represents the adjustable weights.
The phase variable sd is used to avoid the explicit dependence
on time. This variable is monotonically decaying from 1 to 0
during the movement which is computed by integrating the
following first order linear dynamic equation,

1
λ
ṡd = −αsd (24)

where α is a pre-defined positive constant.
The DMP is a spatial and temporal invariant; namely, it is

an adaptive learning technique to either any changes in the
initial and goal positions or the time scale with no need to
re-learn the weights Wj again. As shown in Fig. 4, to learn
movement from demonstration, the demonstrated position xt ,
velocity vt and acceleration v̇t are computed at each time step
t = 0, 1, 2, . . . ,T . Then, sd (t) is computed by integrating the
canonical system for a certain temporal scaling λ from equa-
tion (24). Using these variables, the target force ftarget (sd ) is
computed based on (20) as follows,

ftarget (sd ) =
λv̇t − β

(
γ (gp − xt )− vt

)(
gp − x0

) (25)

Learning is done by obtaining the set of weightsWj which
minimizes the sum of square error

∑
sd

(
ftarget (sd )− f (sd )

)2
between the generated force from (22) and the target force
in (25). By reusing the learned weights Wj, the observed
motion is generated by obtaining the corresponding acceler-
ation in (20). The velocity and position are obtained by the
first and the second time integration of (20).

a: GENERALIZATION TO NEW GOALS
New unobserved movements could be created for the contin-
uum robot from the learned DMP equations. In this regard,
by keeping on the so far learned weights Wj, new motions

could be obtained in terms of xt , vt and v̇t for each DOF by
changing either the spatial, (x0 or g), or the temporal λ scales
in (20).

b: OBSTACLE AVOIDANCE
To avoid static or dynamic obstacles that could exist on the
DMP generated path, a coupling term p(x, v) is added to the
differential equation in (20) [35],

λv̇ = β (γ (g− x)− v)+ f (sd )+ p(x, v) (26)

The obstacle avoidance form is described in 3D end-effector
space, therefore, the parameters g, x, v, v̇ and f are expressed
in vector form for the combined three DOF of the robot
tip position. The coupling term p(x, v) can be implemented
for the obstacle avoidance dynamics which is described as
follows [11],

p(x, v) = η1Rvϕ exp(−η2ϕ) (27)

where η1 and η2 are constants that can be selected based on
the obstacle size and ϕ is the angle between the position of
the tip of the robot x towards the position of the obstacle o
and the robot tip velocity v. The rotation matrix R(r, π/2) is
chosen with an axis of rotation r = (x − o) × v and with a
π/2 angle.

2) ROTATION BASED DMP
Describing the robot’s end-effector pose in the Cartesian
space needs specifying the position trajectories, as well as
orientation trajectory R(t) ∈ R3×3. The coefficients of the
rotation matrix R(t) could be represented by the DMP system
similar to (20)-(21). However, the coefficients of the orienta-
tion trajectory R(t) are dependent on each other. Therefore,
by integrating them independently, the obtained rotation tra-
jectory will gradually deviate from the actual one. By refor-
mulating (20)-(21) as presented in [34], the DMP system for
representing orientation trajectory is as follow:

λη̇ = β
(
γ log(RgRT )− η

)
+ fr(sd ) (28)

λṘ = [η]× R (29)

where Rg represents the goal orientation matrix, η is the
scaled angular velocity of ω which means η = λω, η̇ = τ ω̇,
[η]× is the skewmatrix of ηwhich obtained as [η]× = τ [ω]×
and fr (sd ) is the nonlinear forcing term which is computed as
follows:

fr (sd ) = Gr

∑N
j=1 w

r
jψj(sd )sd∑

j ψj(sd )
sd (30)

where Gr = diag(log(RgRT )) ∈ R3×3 is a scaling factor
matrix and wrj ∈ R3 are adjustable weights which need to
be computed for following any generated orientation trajec-
tory. The term wrj is computed by using linear least square
regression technique of the following equation:∑N

j=1 w
r
jψj(sd )sd∑

j ψj(sd )
sd=G−1r

(
τ η̇c + βηc − βγ log(RgRTc )

)
(31)
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FIGURE 5. Schematic diagram of rotation based DMP.

where Rc, ηc and η̇c are the collected rotation matrix, scaled
angular velocity and scaled angular acceleration vectors
respectively. The schematic diagram of rotation based DMP
is shown in Fig. 5.

The rotation matrix is obtained by integrating technique of
(29) as follows:

R(t +1t) = exp(1t
(
[η]x
λ

)
R (t) (32)

V. CONTROL ALGORITHM
A. MODEL REFERENCE ADAPTIVE KINEMATIC CONTROL
The model reference adaptive kinematic control (MRAKC)
is developed here to solve the inverse kinematics of the
continuum robot. The generated motion from DMP approach
is expressed as a set of position, velocity and acceleration
vectors which the robot end-effector needs to follow to reach
the desired goal. Due to redundant DOF of the continuum
robot, it’s a challenging problem to transform the joint space
trajectory to the configuration space variables (s, κ , φ) of the
robot. So, a Jacobian- based kinematic control is used to find
incrementally the robot’s configuration parameters to make
the continuum robot track the obtained reference trajectories
by the DMP.

Regarding the robot orientation, unit quaternion is used for
representing the continuum robot rotation. Rather than repre-
senting the robot rotation by the traditional methods such as
Euler angels, Axis-angle and rotation matrices, representing
this rotation using unit quaternion provides a lot of advanta-
geous such as singularity free, efficient and compactness [36].

The relations between unit quaternion vector Q =[
Qw Qx Qy Qz

]T and rotation matrix in (1) can be written
as [37]:


Qw
Qx
Qy
Qz

 =


√
R11 + R22 + R33 + 1

2
R32 − R23

2A
R13 − R31

4A
R21 − R12

4A


(33)

where Rij is ijth the element of the rotation matrix.
The MRAKC scheme is developed here with the following

key steps as follows,

a: JACOBIAN-BASED CONTROLLER
The robot’s configuration parameters are related to robot tip
velocity Ż =

[
ṗ Q̇

]T
, where ṗ and Q̇ represent the linear

velocities vector and the rotation angles velocities vector
respectively, as follows:

q̇ = J†(q) Ż (34)

where J† ∈ R6×7 represent the pseudo inverse of the Jacobian
matrix J ∈ R7×6 that is not a square matrix and can be
computed as follows:

J =
∂(Z)
∂(q)
=

∂(Z)
∂(si, κi, φi, si+1, κi+1, φi+1)

for i = 1 (35)

To eliminate the numerical drift while following the
desired trajectory, a feedback correction term is introduced
here [38]. Then, the configuration velocities vector is intro-
duced as follows,

q̇ = J†(Żd + Kek ) (36)

where ek = Zd − Z is the error between the reference and
the actual tip position and rotation angles vectors, while K ∈
R7×7 is a positive definite gain matrix, which is selected to
be diagonal for stability analysis purpose. The configuration
parameters of two sections robot si, κi, φi, si+1, κi+1 and φi+1
for i = 1, are determined by integrating (36) with respect to
time.

b: ADAPTATION MECHANISM
Due to the external disturbances and the model uncertainties
that could exist, the gains K in equations (36) respectively
have to be adapted as follows,

K =
∫ t

0
γa

∣∣∣eTa Z̄ ∣∣∣ dt (37)

where |.| represents the absolute value, γa determines the rate
of adaptation, ea = Z − Z̄ denotes the difference between
the reference model output Z̄ and the actual behaviors of
the system as depicted in Fig. 6. It is worth to note that the
reference behavior is arbitrary selected based on the desired
performance in terms of overshoot, settling time. In this
paper, the referencemodel is chosen as a second order transfer
function.

B. DYNAMIC CONTROL
The computed torque controller is a feedback linearization
technique of nonlinear systems in which the original nonlin-
ear system is transferred into a fully or partly linear system by
inserting the system nonlinearities into the control signal [39].

From dynamic model (18), the acceleration is computed as
follows

q̈ = M (q)−1
(
τ − C(q, q̇)q̇− G(q)− f δ

)
(38)

The actuation force τ is obtained from the following equa-
tion [40]:

τ = M (q)
(
q̈d − u

)
+ C(q, q̇)q̇+ G(q)+ f δ (39)

where the control signal u is chosen as proportional-derivative
(PD) feedback as follows:

u = −Kpe− Kvė (40)
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where ė ∈ R6×1 is the error vector between the reference and
actual configuration parameters of the robot, Kp ∈ R6×6 and
Kv ∈ R6×6 represent the proportional and derivative gains
matrices which are chosen positive gain matrices for ensuring
the system stability [40]. The schematic of PD computed
torque dynamic control with adaptive kinematic control is
shown in Fig. 6.

FIGURE 6. Dynamic with adaptive kinematic control for the robot tip
position tracking.

VI. STABILITY ANALYSIS
Starting with the stability analysis of the kinematic control,
the Lyapunov function is chosen as a quadratic function [41]
as follows:

V (ek) =
1
2
eTk ek (41)

For ensuring that the system is global asymptotically sta-
ble, the first time derivative of V (ek) must be negative defi-
nite and the error ek exponentially decreases to zero [39]. The
time derivative of V (ek) can be written as:

V̇ (ek) = eTk ėk (42)

where ėk = Żd − Ż.
By substituting the values of Żd from (36) and Ż from (34)

in (42), the following can be obtained:

V̇ (ek) = eTk [(J q̇− Kek)− J q̇]

= −eTk Kek (43)

According to (43), the diagonal gain matrix K must be
positive definite diagonal matrix to make the system global
asymptotically stable while applying the kinematic control.

Regrading applying the PD computed torque dynamic con-
trol, the Lyapunov function is considered as follows [42]:

V (e, ė) =
1
2
ėT ė+

1
2
eTKpe (44)

where the first and the second terms represent the kinetic
energy and potential energy of the robot induced by the first
time derivative of the error and the error of the controller
equation (39).

Differentiating of V (e, ė) with respect to time yields:

V̇ (e, ė) = ėT ë+ eTKpė (45)

By substituting the control signal (39) in the dynamic
model (18), the closed loop system equation is as follows:

M
(
q̈d − q̈

)
+MKvė+MKbe = 0

M
(
ë+ Kvė+ Kpe

)
= 0 (46)

Since the inertia matrix M is positive definite matrix,
soM−1 exists and it is bounded, thus the closed loop system
equation (46) can be written as:

ë+ Kvė+ Kpe = 0 (47)

By multiplying the both sides of (47) by ėT , and then
substituting the resulting equation into (45) yields:

V̇ (e, ė) = −ėTKvė (48)

Since Kv is chosen as a positive diagonal matrix, then
V̇ (e, ė) becomes negative semi-definite matrix and the closed
loop system is asymptotically stable.

VII. RESULTS AND DISCUSSION
The considered parameters of the proposed DGPP approach
for teaching a two-section continuum robot how to plan it’s
motion are listed in Table 1. Via teleoperation, a flexible
interface consists of 20 cm two rods stacked over each other is
used to demonstrate the motion of the simulated two-section
continuum robot. Six point-to-point demonstrations are car-
ried out. In each demonstration, the teacher is asked to move
the tip of the flexible rod from unknown pose to another,
while detecting the corresponding motion of the simulated
robot.

TABLE 1. Chosen values for the DGPP parameters and system dynamics.

For instance, the robot tip trajectories in Cartesian space
are fed to DGPP to reproduce and generalize the observed
motions. The proposed DGPP successfully reproduced the
robot tip position trajectories, as shown in Fig. 7, compared
with the given demonstration with initial position x0 =
[−5.0729, 9.5311, 15.3555]T cm and goal position g0 =
[11.8447,−0.6337, 14.0723]T cm. The motion simulation of
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FIGURE 7. Reproduction of the observed motion through the proposed
DGPP. Th optimized gains [β, γ, α] = [40.89,18.86,5.487].

FIGURE 8. Snapshots of the generated motion.

FIGURE 9. Error between the learned and demonstrated robot tip
positions.

the robot tip is shown in Fig. 8. The errors between the learned
and demonstrated motions are shown in Fig. 9.
Moreover, the generalization capability has been evalu-

ated using the proposed DGPP by changing the initial and
goal positions of the robot tip, while keeping on the learned
weights, as shown in Fig. 10 and Fig. 11, respectively. The
generated motion has successfully adapted to the new initial
and goal positionswhile keeping on the learned point-to-point
pattern. This operation could be useful in repetitive tasks
applications with different initial or goal positions such as

FIGURE 10. Adaptation of the learned motion to a set of new initial
positions.

FIGURE 11. Adaptation of the learned motion to a set of new goals.

pick and place objects with no need to retrain the robot for
each task individually.

Furthermore, the DGPP approach has successfully avoided
a spherical shape obstacle which is placed in the same way
of the robot tip path as shown in Fig. 12. The Cartesian
position of obstacle is given to DGPP approach which could
be obtained easily using range sensor or Kinect camera in
real environment. In this phase of reproduction, the DGPP
technique can balance between avoiding the fixed obstacle
and moving towards the target. Also, DGPP can easily avoid
a moving obstacle which is introduced along a segment of
the given demonstration as shown in Fig. 13. The maximum
velocity of the robot tip while avoiding the moving obstacle
is 19.4702 cm/sec which is larger than the obstacle velocity
18.7742 cm/sec to reach successfully to the target position
without any obstacle collision.

It is worth noting that, although the similarity between
the demonstrated and the generated movements, there is
no guarantee to shape the robot in the same way as the
flexible interface shape during demonstrations. This, in fact,
is due to the robot redundancy where infinite values of cable
lengths can produce the same tip position in task-space. This
encourages us to apply the proposed DGPP framework in

166698 VOLUME 7, 2019



I. A. Seleem et al.: DGPP and Tracking for Multi-Section Continuum Robots Considering Robot Dynamics

FIGURE 12. Adaptation of the demonstrated path to avoid novel obstacles
in the environment. Th optimized gains [β, γ, α] = [20,5,6.9078].

FIGURE 13. Adaptation of the demonstrated path to avoid moving
obstacles. Th optimized gains [β, γ, α] = [15,15,6.9078].

FIGURE 14. Reproduction of of the observed robot tip orientation
trajectories.The optimized gains [β, γ, α] = [6.247,4.703,28.675].

the configuration or actuation spaces that could guarantee
generating similar shapes. The rotation representation by roll,
pitch and yaw angles using DMP based on (20)-(21) is shown
in Fig. 14. The errors between the learned and demonstrated
roll, pitch and yaw trajectories are shown in Fig. 15. More-
over, the first time derivative of desired and actual roll, pitch
and yaw angles are shown in Fig. 16. It can be noted that, it is
difficult to reproduce or generalize the end-effector orienta-
tion using the same method as that of the position. So, the ori-
entation represented as roll, pitch and yaw trajectories based

FIGURE 15. Error between the demonstrated and learned of the robot tip
orientation trajectories.

FIGURE 16. First time derivative of desired and actual roll, pitch and yaw
angles.

FIGURE 17. Adaptation of the demonstrated path to avoid novel obstacles
in the environment.The optimized gains [β, γ, α] = [46.43,49.24,3.25].

DMP is represented using (28)-(29) as illustrated in Fig. 17.
The errors between the learned and demonstrated of roll, pitch
and yaw trajectories are shown in Fig. 18. Also, the reference
and actual time trajectories of the nine components of the
rotation matrix are shown in Fig. 19. Finally, the first time
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FIGURE 18. Error between the learned and demonstrated robot tip
orientation trajectories.

FIGURE 19. Desired and actual trajectories of nine components of
rotation matrix.

FIGURE 20. First time derivative of desired and actual roll, pitch and yaw
angles.

derivative of desired and actual roll, pitch and yaw angles are
shown in Fig. 20.
The performance of the developed MRAKC with PD com-

puted torque control has been also evaluated towards tracking
the robot tip position and orientation. The dynamics and
control parameters are listed in Table 1.

FIGURE 21. Reference and actual tip position trajectories.

FIGURE 22. Error between reference and actual tip position trajectories.

FIGURE 23. Reference and actual tip orientation trajectories.

First, regarding the robot tip position, the reference tip
position trajectory versus the actual one are shown in Fig. 21.
The tracking errors between the desired and actual tip
position trajectories can be depicted in Fig. 22. Secondly,
regarding the robot orientation, the desired and actual ref-
erence trajectories of the robot orientation represented by
unit quaternion are shown in Fig. 23. The errors between the
reference and actual orientation are shown in Fig. 24.
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FIGURE 24. Error between reference and actual tip orientation
trajectories.

FIGURE 25. Reference and actual tip position trajectories after adding
disturbance to (a) the controller signal. (b) the actual measured position.

FIGURE 26. Tracking errors with disturbance to (a) the controller signal
and to (b) the actual measured position.

As indicated, the actual trajectories follow precisely the
reference trajectories except at the initial conditions of the
robot since it is unknown to the controller. Meanwhile,
the robustness of the proposed controller is evaluated by
individually add a step disturbance to each of the con-
trol signal which is known as input disturbance and to the
actual end-effector position of the robot. The reference and
actual tip position trajectories after adding input and output
disturbances are shown in Fig. 25(a) and Fig. 25(b) respec-
tively. The error between the reference and actual tip trajec-
tories after adding input and output disturbances are shown
in Fig. 26(a) and Fig. 26(b) respectively.

VIII. CONCLUSION
In this research paper, a Demonstration Guided Pose
Planning (DGPP) approach is developed to teach an extensi-
ble two-section continuum robot how to plan for it’s point-

to-point movements including position and orientation of
the robot. The DGPP approach is used to reproduce the
recorded movements with a set of nonlinear differential
equations. Also, it can generate new motions with different
initial and goal locations while avoiding fixed or movable
obstacles which may exist in the environment. Via teleop-
eration, a two-rod flexible interface is used to intuitively
demonstrate motions for the robot while the simulation of
a two-section continuum robot is carried out to evaluate
the feasibility of the proposed DGPP. Moreover, a complete
dynamic model for extensible two-section continuum robot
is developed based on Euler-Lagrange formalism with the
Taylor expansion approach to avoid singularities. Finally,
Model Reference Adaptive Kinematic Control (MRAKC)
and Proportional-Derivative (PD) computed torque control
are developed to ensure robustness of the kinematic and
dynamic control of the robot against system perturbations and
external disturbances that could exist. Moreover, the system
stability analysis has been discussed based on Lyapunov
quadratic function. The results have shown that the proposed
DGPP approach is effective for reproducing the demonstrated
position and orientation of the robot end-effector and also
for generating movements with new initials, goals, fixed and
moving obstacles. Also, results have shown superior perfor-
mance towards generating spatial motions for the robot with
a human-like adaptation to new goals, obstacles, and distur-
bances. As well as, the results have shown the performance
of the adaptive kinematic and PD computed dynamic control
against system uncertainties and disturbances.

In future work, the continuum robot tip position and ori-
entation will be incorporated simultaneously in DMP based
on dual-quaternion approach to improve the performance and
speed of the motion planning approach. Furthermore, a prac-
tical validation of the proposed motion planning technique
and the dynamic control will be carried on.
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