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ABSTRACT Visualization of the small world network is an excellent challenge for classic layout algorithm,
which is highly connected, resulting in the shape of the hairball. Backbone extraction method can simplify
the classic layout to get better visualization, and it has become a significant approach in this field. However,
contemporary approaches have two primary defects. Centrality based method loses plenty of topology
information, and most contemporary approaches have the problem in low interactivity due to parameter
sensibility. We proposed a backbone method based on interactive edge selection (IES-Backbone) to solve
two problems for small world network visualization that mentioned above. The proposed method starts with
backbone extraction of the network and then apply the layout algorithm to get visualization results. A critical
approach of the backbone method is edge selection, which is based on the distance between vertices layout
of the binary stress model. Edge selection makes the simplified network a clear community structure feature
with more topological details. The simplified network is high in homophily and has closer average path
length to the original network. The visualization result is controlled by edge limit ratio r and sampling
rate s. Different choices of two parameters can change the results substantially on visual without affecting
the layout quality, which proves high interactivity for users. Experiments prove that IES-Backbone is an
interactive visualization method that presents community and sufficient topological features.

INDEX TERMS Visualization, graph layout, small world network, backbone.

I. INTRODUCTION
An essential feature of social networks is that the nodes in
networks are highly connected, and most of the nodes are
connected to each other. Large-scale complex social networks
have a large number of nodes, while the shortest distance
between vertices is small, and any two nodes are accessible
within a small number of hops. The complex social net-
works with such features are often referred to as small world
networks [1].

People hope to solve many sociological problems with
the method of network visualization [2]–[4]. Small world
network visualizationis a challenging task and a vital topic
in social network analysis [5]. Although there are plenty of
well-designed force-directedmethods to the layout at present,
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users cannot receive a satisfying result when applying exist-
ing layout algorithms because of the complication in the
node-link relationship. The example of Fig.1(a) shows that
the result displays in the shape of a hairball. It cannot reveal
the inherent structural features of the network, either can
people visually obtain any useful information. Therefore, it is
a visualization of reduced readability.

It is necessary to simplify the complex connection of net-
works so it will not be constrained by too many nodes and
edges during layout, allowing a more distinct small world
network. The proxy graph [6] presents a feasible simplifi-
cation approach. The rationale is to create a proxy graph
whose size is much smaller to replace the original graph. The
proxy graph makes it easier for people to analyze the original
graph, such as visualization. Various techniques can generate
proxy graphs, and graph filtering [7]–[9] is one of the most
common. Graph filtering gives weights to edges or nodes, and
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FIGURE 1. The comparison of hairball and backbone. (a) Visualization result using the graph drawing algorithm directly.
It displays a shape of hairball because the original network was not processed. (b) Visualization result after backbone
extraction, showing a clear structure to users.

filter the original graph to obtain a subgraph. The subgraph is
the backbone that is used to a layout.
There are two main problems with the current backbone

method. First, themethod causes amassive loss of topological
information in the network, although the simplified graph
is highly readable and shows the connections of vertices
well. This shortcomming will be shown in our experiments.
Second, as the visualization quality is sensitive to the parame-
ters, such as sampling rate, it is difficult to find an appropriate
value to obtain a satisfactory layout result [10]. In detail,
centrality based backbone method lost too much topological
information because they simply used a tree to organize the
backbone, which overly simplified the backbone. Moreover,
the incorporated filtering parameters of quadrilateral sim-
melian backbone method have to be selected manually and
individually for each input instance. This feature reduces the
interactivity of the algorithms.

Using the centrality of a graph to visualize small world
network can yield a good result. Removing high betweenness
edges will result in a structurally meaningful abstraction.
We found that most of the same community nodes are in the
same branches of the tree, achieving the simplified network
with high homophily, which is a terrific attribute in small
world network visualization. However, doing so will still lose
the intrinsic topology in the graph.

We present a small world network visualization technique
called IES-Backbone that can maintain good readability in
the layout while preserving the internal topology of the
network. Fig.1(b) is the visualization result of our method.
Compared to the previous works [8], [9], we designed a new
edge selection strategy based on the distance between vertices
to obtain backbone, and used bStress model to make this
backbone method more efficient. Our main contributions are
following:

1. We proposed an interactive backbone method based
on an edge selection approach to avoid hairball layout of
small world network visualization. By controlling the edge
length limit r and sampling rate s, users can easily change the
visualization result without affecting the layout quality.

2. Instead of using classic force-directed model, we chose
to use a more efficient binary stress model layout method in
graph drawing to make the visualization result more readable.

3. The IES-Backbone method not only maintains topolog-
ical details of the network but also reflects the community
attributes of nodes. The high homophily of the simplified
network also proves that this approach allows the network to
suggest good community features.

II. RELATED WORK
There are two primary tasks in small world network visualiza-
tion: backbone method and graph layout. Backbone method
chooses the most important edges from the original network
to simplify small world networks, and the graph layout algo-
rithm largely determines the visualization quality. In addition,
many evaluation criteria had been proposed to judge visual-
ization quality.

A. BACKBONE METHOD
Small world networks have a large number of edges, and
users can get a simplified network by performing edge fil-
tering while maintaining the number of nodes. The network
is called the backbone after filtering. There are usually two
steps in obtaining a backbone network. The first step is the
edge embedding. It assigns different importance to each edge.
The second step is edge filtering. It chooses which edge to
use as the backbone based on step one and all of the nodes
will be serving as the backbone. Edge filtering also affects
the final layout. The method of edge filtering emphasizes the
demonstration of the graph features, including retention of
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the structural features such as graph connectivity or cuts [11],
spectra [12], [13], distance preserving [14], [15], etc. Three
typical backbone methods are shown below.

According to Simmel’s sociological thinking [16],
Nick et al. [7] proposed the Simmelian backbone method.
They initialized the edge weights at first by using some
embedding criteria, such as the number of triangles contained
in edges. The edges were then re-weighted by comparing
the ordered neighborhoods of its two vertices to achieve
the final edge embedding process. The method removes the
relatively unimportant edges by setting a threshold of edge
weights. The extracted backbone was combined with the left
edges and all the nodes in the origin network. This method
effectively organizes nodes of the same cluster. Most of
the remaining edges are connected to nodes of the same
community, however, they do not maintain the connectivity
of the graph.

Based on the Simmelian backbone method,
Nocajet et al. [8] proposed an improved method called
quadrilateral simmelian backbone which generated a max-
imum spanning tree to connect the nodes, ensured that all
nodes were connected, and used sampling rate to extract
other edges. Also, they proposed a new criterion for edge
embedding based on the weighted accumulation of triangle in
quadrangles. By comparing to the utilization of the Jaccard
coefficient and density in edge embedding, they concluded
that applying this method with the maximum spanning tree
could yield better results. The improved method is still
slightly inadequate [10]: threshold setting greatly affected
network visualization, and it still needs to manually adjust the
parameters to optimize the effect of the backbone extraction.
Seeing the problem, they designed a method to choose the
threshold [10] adaptively.

Van Ham and Wattenberg [9] proposed using the graph
centrality indicators to give edge weights and the minimum
spanning tree to establish a simplified network as the back-
bone. The extent which nodes or edges in the network are
close to the center is called centrality, and it represents how
important they are in the network. Nodes or edges with
influential centrality act as a ‘‘bridges’’ in the network, and
they are usually located on paths connecting two different
clusters. This method can clearly express the structural results
of the visualization. However, it loses part of the topology
from origin network, and there are no edge compensation
mechanisms in user interaction, which ultimately leads to the
inability to see a detailed network structure. Edge et al. [17]
also used the betweenness centrality in the network as a edge
filtering strategy in thier work.

We have developed our new method by combining
the graph centrality indicators mentioned in Van Ham’s
method [9]. We also compared the quadrilateral simmelian
backbone [8] method with our IES-Backbone.

B. GRAPH LAYOUT ALGORITHM
Drawing a graph is of more efficiency in understand-
ing network relationships than only viewing data [18].

Numerous scholars have been attracted to study graph draw-
ing due to its high readability and intuitive visualization of the
node-link diagram. Research on the graph drawing is known
for its force-directed model, and various versions have been
developed to improve the layout quality.

Force-directed model follows the simulation of a spring
system, in which the length of the spring is proportional
to the force exerted by an extended spring [19]. The first
force-directed model was originally proposed by Eades [20].
He built a rigorous physics system that imagined the nodes
as rigid rings and the sides as springs. Kamada and Kawai
later proposed the KK model [21]. The model discussed
the concept of the ideal distance in the layout and defined
the total energy equation of the spring system. Fruchterman
and Reigold [22] also improved the models of Eades model.
They introduced the repulsive force between the nodes and
fixed the node coverage. This model, also known as the
FR model or the spring model, is the default layout algo-
rithm for many visualization software. The main problems of
such early models include high-level of computational com-
plexity, which is not conducive to the layout of large-scale
networks, and the possibility of falling into local optimum.
Some refined algorithms have been proposed to improve the
force-directed layout model. As an example, ForceAtlas2 was
proposed by Jacomy et al. [23] to obtain a layout for network
more quickly and precisely. This algorithm extends from FR
model.

When De Leeuw and Michailidis [24] studied the KK
model, he found the model had the same mathematical
expression as the stress model in the field of multidimen-
sional scaling analysis. Later, Gansner et al. [25] used the
stress majorization to figure out the KK model and opti-
mized its final layout quality. Inspired by this advancement,
some layout algorithms based on stress model were pro-
posed. Koren and Çivril [26] proposed a binary stress model
(bStress), which aimed to arrange all the nodes, being as
close as possible, within a circle evenly. Also, the author
suggested using the Barnes-Hut structure in stress majoriza-
tion to deal with the Euclidean problem. The steps of the
distance are accelerated, and the efficiency of the method is
operational.

C. EVALUATION CRITERIA
A feature of graph layout is the match between structural
adjacency and graphical proximity [27]. However, the lay-
out algorithm often fails to depict the complex relationships
faithfully [28]. Typical indicators of visualization quality
(traditionally known as aesthetics in the field of graph layout)
are the number of edge crossings, the angular resolution at
vertices, the alignment of paths with straight lines connecting
their origin and destination, and more [29]. In addition, graph
layout algorithms are typically based on optimization of lay-
out objectives that can be interpreted as quality criteria [27].
These are some standard criteria for graph layout algorithms;
however, they do not provide a proper assessment of specific
visualization task.
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FIGURE 2. Edge selection process and secondary layout on Caltech36 with r = 0.15 and s = 0.25. Coloring nodes based on the results of
Louvain method and coloring does not enter the calculation of the layout. (a) Layout result of minimum spanning tree. (b) Layout result after
interactive edge selection. Most of the added edges connect vertices from the same cluster. (c) The final layout of the network.

There are two approaches in the evaluation of small world
network visualization. One is to evaluate them through quan-
titative metrics, and the other is to judge the visualization
results visually. In terms of quantitative metrics, homophily
of a graph is used to denote the ratio of intra-cluster edges
[7], [8]. The higher the value, the better the visualization
results represent the community structure feature of the net-
work. The average path length and clustering coefficient
can describe the structural feature of small world networks
[30], [31] well. On the other hand, users can observe the over-
lap of nodes between communities to judge the visualization
effect directly [17]. The two metrics are also used to evaluate
the visualization result of small world network [8], [10].

III. IES-BACKBONE METHOD
In this section, we will describe and explaine each key step
of our method at first and the flow of the algorithm will be
present at the end of this section. Fig.2 shows the process of
our method.

A. EDGE FILTERING BASED ON CENTRALITY
In graph theory and network analysis, indicators of cen-
trality identify the most important vertices or edges within
a graph. Betweenness centrality quantifies the number of
times a node or an edge acts as a bridge along the short-
est path between two other nodes. For small world net-
works, nodes or edges with high betweenness centrality mean
that they connect to different communities, and the edges
connecting different clusters have less centrality [9]. There-
fore, this indicator is going to be used to make edge filtering.

Centrality indicators identify the most critical ver-
tices or edges within a graph in graph theory and network
analysis. Betweenness centrality quantifies the number of
times a node, or an edge acts as a bridge along the short-
est path between two other nodes. For small world net-
works, nodes or edges with high betweenness centrality mean
that they connect to different communities, and the edges

connecting the same cluster have less centrality [9]. There-
fore, this indicator can be used for edge filtering.

For an undirected graph graph G = (V ,E), the between-
ness of a vertex v ∈ V in a graph is computed as follows [32]:

Cv(v) =
∑

s6=v6=t∈V

σst (v)
σst

, (1)

where σst is the number of the shortest paths from s to t
and σst (v) is the number of those paths that contain vertex v.
Similarly, the betweenness centrality of an edge e is defined
as the frequency at which one of the shortest paths between
two vertices occurs:

Ce(e) =
∑

s6=v6=t∈V

ρst (e)
σst

, (2)

where ρst (e) is the number of the shortest path from s to t
including edge e.
We assumed the input network was unweighted and con-

nected After calculating the betweenness centrality of all
edges in the network, we weighted each edge to obtain a
weighted graph that marked the importance of all edges.
We performed edge filtering by generating a minimum span-
ning tree, which enabled vertices of the same cluster to be
in adjacent branches. This minimum spanning tree is called
Tree = (V ,EMST). As the edge number of a tree is one less
than the node number, we minimized the size of the small
world network, and it was the smallest graph that maintained
its connectivity. The tree structure that was used to process the
graph can effectively reduce the complexity of a small world
network.

B. BINARY STRESS MODEL
Edge filtering simplifies the complexity of the network. We
used the binary stress model [26] to create a more readable
network layout. The stress function of bStress is:

B(p) =
∑

e(i,j)∈E

∥∥pi − pj∥∥2 + α ∑
i6=j∈V

(
∥∥pi − pj∥∥− 1)2 , (3)
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where e(i, j) is denoted as an edge connecting vertex i and j, pi
is the position of vertex i. The first part relates the layout to the
graph structure ensuring that edges are short, and the second
part makes the nodes evenly distributed within the circle. α is
a parameter that balances two terms. The stress function can
be solved by stress majorization [25]. The functions in (4)
were derived from (3) and made it equal to zero. They are
used to solve the problem iteratively.

(M + αL)x(t + 1) = bx(t), (M + αL)y(t + 1) = by(t) (4)

When calculating the derivation of the stress function, there
are two |V | × |V | matrices defined as L and M . They can be
constructed according to the structure of the input network.
In addition, bx(t) and by(t) are two vectors determined by
nodes’ position in the last iteration. Then the stress majoriza-
tion process can be solved by using the conjugate gradient
method.

Lij =


−1 e(i, j) ∈ E∑
k 6=i

Lik i = j

0 otherwise

(5)

Mij =

{
−1 i 6= j
|V | − 1 i = j

(6)

bxi =
∑
j6=i

xi − xj∥∥(xi, yi)− (xj, yj)
∥∥ (7)

byi =
∑
j6=i

yi − yj∥∥(xi, yi)− (xj, yj)
∥∥ (8)

This layout idea provides good initial conditions for edge
selection. The first layout result Pfirst is showed in Fig.2(a)
where we use Caltech36 as an example.

C. INTERACTIVE EDGE SELECTION
Although the layout result of the minimum spanning tree was
visually decent, the structure of the network was still too sim-
ple with many edges being filtered. It was difficult to capture
the inherent structural features of the network. Obviously,
more edges need to be reinserted into the network so that
users can get more useful information from the visualization
result. Our goal was to build a complex intra-cluster structure
of the network, which reflects more topological relationships.
We have made a good vertices position distribution in the step
of drawing the minimum spanning tree and placed vertices
from the same clusters in a closed position.

Next, we calculated the Euclidean length of all edges in the
original graph under the current layout.

dist(e(u, v)) =
√
(pxu − pxv)2 + (pyu − p

y
v)2 (9)

After applying bStress model to the MST, we considered that
the lengths of edges connecting vertices of the same clus-
ters were small while the edges connecting different clusters
of nodes were relatively long(later experiments can support
this). Therefore, if we choose a good upper limit ratio of edge

length r ∈ [0, 1], we can get an edge set Ebackup where most
of edges connect the same cluster nodes.

The sampling rate s ∈ [0, 1] controls the number of
reinserted edges. A certain number of edges were randomly
selected from Ebackup based on s to determine the complexity
of the final network. More edges were selected because of
the high sampling rate, as a result, providing more topology
information for the final network. The set of selected edges is
called Eselect. Figure 2(b) shows the effect of inserting edges
with r = 0.15 and s = 0.25.
In addition, the result of EBC and MST of a network are

identical, and we can save time by calculating EBC and MST
once when testing parameters.

After edge filtering and edge selection, the final network
G′ = (V ,EMST ∪ Eselect) contains the backbone of the
original network andmore details about topological structure.
Through the secondary layout, we will get the result of the
network visualization P ∈ R|V |×2 .

The position of each vertex already had an initial coor-
dinate in MST layout. These positions had been roughly
determined and did not require much adjustment. As the
added edges were mainly used to connect vertices from the
same cluster, the structure of the network did not change sig-
nificantly. A second layout can be done with fewer iteration.
Fig.2(c) shows the final result of the visualization algorithm.
When running the algorithm, the first layout can be iterated
up to 300 times, while the second layout can be iterated up to
50 times to save time for adjusting parameters.

The centrality based method can cluster the same class
nodes very well, but the simplified network is too simple
because they used a tree to organize the backbone, which
overly simplified the backbone. Sowe propose our interactive
edge selection approach to restore the topology details of the
network. At the same time, the method relies on an efficient
layout algorithm. After experimentation, we obtained the best
results using the bStress model. These twomain contributions
are at the heart of our approach.

Finally, we summarized the working flow of IES Back-
bone, as shown in alg1. The process begins with an input of
a small world network G and two parameters r and s. The
algorithm returns the position of each vertex P on the screen.
The process is as follows: first, we conducted edge filtering
based on edge betweenness centrality and got a minimum
spanning tree. Next, we applied the bStress model to obtain
the layout of the MST. Then, performed the interactive edge
selection to get the backbone of the network, and finally
performed the secondary layout to get the result.

D. RUNNING TIME
There are four steps in the algorithm: EBC calculating
and MST generation, first layout, edge selection, secondary
layout. The following is an analysis of the running time of the
four steps.

It is necessary to calculate the shortest path between all
pairs of when calculating EBC, which is a time-consuming
process, costing in O(|V |3). Brandes [33] proposed a more
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FIGURE 3. (a) The running time of the edge selection. (b) The second layout step with the data of Facebook100.

Algorithm 1 IES-Bacbone Method
Input: original network G = (V ,E); upper limit ratio of

edge length r ∈ [0, 1]; edge sampling rate s ∈ [0, 1]
Output: Position of every vertex P ∈ R|V |×2

1: EBC(e)← betweenness centrality of every edge in G
2: Tree= (V ,EMST)← generate a minimum spanning tree

from G with EBC(e)
3: Pfirst ← compute the layout of the Tree with bStress

model
4: for each e ∈ (E − EMST) do
5: dist(e)← ‖Pfirst(e.source)− Pfirst(e.target)‖
6: end for
7: Ebackup ← {e : e ∈ (E − EMST) ∧ dist(e) ≤ r ×

max(dist(e))}
8: Eselect← Randomly select s|Ebackup| edges from Ebackup
9: P← layout the final graph G′ = (V ,EMST ∪ Eselect) by

bStress model with Pfirst as the initial position

efficient algorithm that for betweenness centrality, and EBC
can be computed in O(|V ||E|). Time complexity of MST
generation in this algorithm is smaller and it can also be
generated only in O(|E|log|V |) .

Solving bStress layout involves two steps: calculating
intermediate variables and solving the conjugate gradient,
which isO(|V |log|V |) andO(|V |+|E|) [26] for one iteration.
It takes several iterations to get a good drawing.

In edge selection, each edge needs to be traversed
twice. The first traversal computes the length of all edges,
and the second traversal selects edges randomly. Therefore,
the complexity in this step isO(|E|). The algorithm of the sec-
ond layout is completely identical to the first layout, so the
time complexity is the same. However, the secondary layout
does not need many iterations, so the running time will be
short. In our experiments, the secondary layout only spends
one-sixth time compared to the first layout.

Because the layout process is the most time-consuming
step, the running time of the algorithm depends mainly on
the layout algorithm. The time complexity of our method

is O(|V |log|V |). In other words, our edge selection operation
does not consume too much time. Fig.3(a) and Fig.3(b) show
the running time of the edge selection step and the secondary
layout step. The trend of the running time is in line with our
analysis of the time complexity.

IV. EVALUATION AND RESULTS
A. IMPLEMENT AND DATASET
We implemented the framework of visualization algorithm in
Python3 and also used NetworkX [34] to compute EBC and
generate the minimum spanning tree. The following exper-
iments were all run on an Intel Core i7-7700HQ computer
with 16 GB of RAM. We have uploaded the code of our IES-
Backbone at https://github.com/tomzhch/IES-Backbone.
We used the Facebook100 dataset [35] as real-world data

in our experiments. This dataset contains friendships of Face-
book users from 100 colleges in the United States. The size
of the 100 networks varies from 762 to 41K, and the number
of edges ranges from 16K to 1.6M. The dataset includes
various attributes of the node as well, such as gender, major,
dormitory, etc. Among attributes, ‘‘dormitory’’ is considered
to be important for the creation of social relationships in
many networks. However, it does not provide ground-truth
group structure. We planned to apply a community detection
algorithm which is Louvain method [36] to the network to get
an approximate ground-truth. The ‘‘dormitory’’ attribute and
community from Louvain method would be used to evaluate
our algorithm.

B. QUALITY METRICS
One of the causes of the low readability of a layout result is
visual clutter between communities [17]. A good backbone
should have more inter-cluster edges and less intra-cluster
edges. The ratio of homophily edges can illustrate how good
a backbone is. Therefore, we used homophily of a graph as
the quality metric.

homophily(G) =
#ho_edges

#ho_edges+ #he_edges
(10)
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#ho_edges is the number of homophily edges and #he_edges
is the number of heterophily edges. Homophily edges are the
edges whose source and target vertices are from the same
cluster, while heterophily edges are the opposite. For vertices
that lack attributes, the edges to which they are connected
are ignored when testing quality metrics of a graph using the
‘‘dormitory’’ attribute.

Our primary focus in this algorithm is to increase the
ratio of homophily edges and suppress the number of het-
erophily edges. So, we need a metric to measure the change
of homophily after our interactive edge selection. We hope
to find the combination of parameters that maximize the
addition of homophily edges based on the following metric.

diff_homophily(G) =
#ho_select

#ho_select+ #he_select
(11)

#ho_select and #he_select are the number of homophily
edges and heterophily edges in edge selection. Because the
final network is G′ = (V ,EMST ∪ Eselect), only the edges in
Eselect are included in the calculation of diff_homophily(G).
In other words, diff_homophily(G) measures how many
homophily edges are selected in the step of interactive edge
selection. In summary, homophily(G) suggests the quality
of the visualization algorithm and diff_homophily(G) shows
how much the edge selection contributes.

Homophily is a metric of the ability of an algorithms
to suggest network community feature. Compared to it,
the major metric that can describe the structure feature of the
small world network is average path length (APL).

APL(G) =
∑
s6=t∈V

d(s, t)
n(n− 1)

(12)

d(s, t) is the shortest path length from s to t and n is denoted as
the node number ofG. The nodes in small world networks are
highly connected with very few hops. Therefore, the average
shortest path length of such a network is only 2 to 3. Reducing
the complexity of the network allows for excellent visualiza-
tion, but it inevitably loses topology details. Therefore, it is
necessary to maintain as much topology as possible when
getting the backbone. The change in the average shortest
path length indicates the performance of different backbone
methods in maintaining topology details. The closer the APL
value is to the original network, the stronger the ability to
maintain topology details.

C. RESULTS AND DISCUSSION
1) RESULTS OF IES-BACKBONE
We applied the IES-Backbone method to Facebook100
dataset and compared the visualization results to the force-
directed model layout without the backbone method. The
force-directed layout model we used was the FR model [22]
and the KK model [21]. The bStress model is used in
IES-Backbone, and it is necessary to incorporate the model
into the comparison to demonstrate the necessity of the back-
bone method. We also tested the result of centrality based
visualization method [9].

At this part, we evaluated our method qualitatively by com-
paring the results on visual. Fig.5 displays the comparison.
As shown, the classic layout algorithm such as FR and KK
model cannot process the small world networks and result
in the shape of a hairball. The result of centrality based
method [9] is notably better than the classic layout algorithm.
The centrality based method simplified the network into a
tree, and the layout result shows a clear structure. However,
it was too simple to suggest the original structure of the small
world network. We will discuss this problem in the follow-
ing session. IES-Backbone method not only prevented the
hairball layout but also maintained topology and community
features of the network. The visual clutter of IES-Backbone
is the least, and the nodes of each community are clearly
distributed on the plane. Admittedly, the visualization used
by IES-Backbone method obtained the best visual result.

We also tested our approach in synthetical generation
networks using the Stochastic Block Model (SBM) [37].
This network has the basic facts of community attributes.
As shown in Fig.4, it provided a proper layout with sufficient
topology details after applying our IES-Backbone method.
Also, nodes belonging to different communities were sepa-
rated. Simplified network homophily reached 0.9308, which
means it had adequately reflected the characteristics of the
community network.

FIGURE 4. Visualization results of a synthetically generated network. The
network has 1000 nodes, 9318 edges, and 10 communities. The
visualization result provided an excellent layout with sufficient topology
details after applying our IES-Backbone method. Also, nodes belonging to
different communities were separated. Simplified network homophily
reached 0.9308, which means it had adequately reflected the community
characteristics of the network.

2) IMPROVEMENT ON TOPOLOGY DETAIL
Table.1 lists ten results of average path length (APL) in
Facebook100 using different backbone method. The original
network’s APL is very small due to the property of the
small world network. Centrality based backbone method [9]
increase the APL considerably, indicating a massive loss of
topology details and an overly simple visualization. Besides,
quadrilateral simmelian backbonemethod [8] performs better
than centrality based method, retaining more topology details
in the visualization result.
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FIGURE 5. Visualization result in Facebook100.
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FIGURE 6. CC and APL curves in Watts-Strogatz graph. We plotted the
curves of APL and CC in the original and simplified networks. Red and
olive green lines represent the changes of CC and APL of original
networks. The blue and green lines represent their changes in the
simplified networks. The trend of the lines in simplified network is similar
to that of the original networks. Therefore, the simplified network has
maintained the features of the small world network.

TABLE 1. Average path length(APL).

Regarding the IES-Backbone method, we chose two
configuration parameters in the experiment. In Table.1,
the parameter values of IES-Backbone (1) are r = 0.15,
s = 0.25 and the value of IES-Backbone (2) are r = 0.1,
s = 0.35. These two configurations approximate the edge
numbers to the edge numbers in quadrilateral simmelian
backbone method. The APL value in the simplified network
is substantially less than the value in centrality based method
and is generally less than the value in quadrilateral sim-
melian backbonemethod, whichmeans ourmethod can better
perserve topological details.

We also proved through experiments that the simplified
network obtained by our method maintains the basic feature
of small world networks. Small world networks are defined
by two parameters, APL and clustering coefficient (CC).
Watts-Strogatz model is a typical method for generating
small-world networks [1]. In Watts-Strogatz model, during

the transition from a regular network to a random network,
APL begins to decline rapidly and then decelerates, while
CC begins to change slowly and then declines rapidly. Such
transition is a unique feature of the small world network.
The curves of APL(p)

APL(0) and
CC(p)
CC(0) express this rule [1]. p is a

parameter inWSmodel, the probability of reconnectionwhen
constructing small world network. When p = 0, the result
is a regular network, while when p = 1, the result is a
random network. The change of p describes the process of
WS small world network changing from regular network to
random network. As shown in Fig.6, Red and olive green
lines represent the changes of CC and APL of Watts-Strogatz
networks. The blue and green lines represent their changes in
the simplified networks. The trend of the lines in simplified
network is similar to that of the original networks. Therefore,
the simplified network has maintained the features of the
small world network.

In addition, we tested the changes in APL and CC val-
ues from low to highly simplified networks. By controlling
s and r , we choose four different simplified networks to
compare with the original network. The result are shown
in Fig.7(a) and Fig.7(b). As shown in Fig.7, when the original
network is closer to the random network, ourmethod can keep
the small-world-ness properties well. On the contrary, when
approaching the regular network, the ability to keep the small-
world-ness properties is weakened, and the more simplified
the network, the weaker the ability. This phenomenon is
especially obvious in APL. When p is close to 0, the trend of
APL and CC value in simplified network is not very similar
to that of the original networks. As the simplified network
becomes more complex, the trend of APL and CC value is
closer to the original network.

3) EXPERIMENTS ON EDGE SELECTION
Two parameters affect the quality of the network visualization
in edge selection: the upper limit ratio of edge length r and
edge sampling rate s. When r = 0 or s = 0, the final network
will be the simplest backbone, which is theMSTwe generate.
Also, when r = 1 and s = 1, the final network is the same
as the original network. The visualization layout is still a
hairball if both r and s are 1, as shown in Fig.1(a). Fig.2(a)
presents the result when r = 0 or s = 0, a layout of the MST,
without more details of the network. Neither of these two
configurations is ideal, and we need to find the best match in
experiments.

Intensive parameter selection reduces the efficiency of the
experiment, so we chose sparse parameters to test homophily
of the graph and observed the trend. Take Reed98 as an exam-
ple, as shown in Fig.8(a), the larger the r and s, the smaller
the homophily of the final graph. Specifically, homophily is
very sensitive to r . If r is too high, the layout result will
deteriorate inevitably. The heatmap on homophily and layout
figure shows that good results are concentrated in the area
of r ≤ 0.35. On the other hand, the effect of homophily on
sampling rate is not evident as what it does to edge length.
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FIGURE 7. APL and CC curves in different simlified networks in Watts-Strogatz graph. (a) The curves of APL in the
original and simplified networks. (b) The curves of CC in the original and simplified networks. Red lines represent the
original networks. The other lines are the different degrees of simplified networks. When the original network is closer
to the random network, our method can keep the small-world-ness properties well. On the contrary, when approaching
the regular network, the ability to keep the small-world-ness properties is weakened, and the more simplified the
network, the weaker the ability. This phenomenon is especially obvious in APL.

FIGURE 8. Trend in homophily and diff_homophily on Reed98. We used the heatmap to display the metric value under r and s. Red
area indicates a high value, and the blue area is the opposite. Diff_homophily is meaningless when r or s is 1, so the heatmaps show
the result starting at 0.05.

The trend of homophily also decreases with the increase of s,
and experiments with other data yielded similar results.

The next step is to evaluate the effectiveness of edge
selection. According to the result in testing homophily met-
ric, network visualization quality was high in the area of
r ≤ 0.35 and s ≤ 0.5. We conducted more experiments on
diff_homophily. As seen in Fig.8(b), high value results are
concentrated in areas where r and s are small, especially r.
Although the highest metric of one network is usually in the
lower-left corner of the heatmap, the complexity of the graph
does not increase too much. It can be concluded that it is most
effective to set a meager side length limit if users want to
maximize the homophily. The short length edges are almost
connecting the same cluster.

According to Fig.8(b), the value of diff_homophily does
not change much when the edge length limit is the same.
However, the length limit has significantly affected the
homophily of the network. As shown in Fig.9, we selected
some layout results with the same edge length limit and dif-
ferent sampling rates. Each case has a different edge number
controlled by s. More topology information were revealed
with a higher sampling rate.

Although homophily is not optimal under this parameter
configuration, the higher the sampling rate, the better the lay-
out results would be. Therefore, once the ratio of edge length
limit that ensures relatively good homophily is set, users
can determine the complexity of the network by controlling
the sampling rate. In Fig.10, we listed other data’s heatmap
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FIGURE 9. Layout results on Reed98(|V | = 962, |E | = 18812) at different sample rates shows changes in network complexity.

FIGURE 10. Diff_homophily heatmap of 6 different networks in Facebook100. Red area indicates a high value of diff_homophily, and the
blue area is the opposite. The results on different networks are similar. A smaller edge length limit contributes more to diff_homophily,
and the sampling rate does not have much effect on it. The average diff_homophily of each network is shown after the network name. It
can be seen that almost selected edges are homophily edges.

of diff_homophily in the Facebook100 dataset. All the data
heatmaps corresponded to the previous analysis that a smaller
edge length limit contributes more to homophily, and the
sampling rate does not have much effect on it.

4) EXPERIMENTS ON BSTRESS LAYOUT
In our method, the quality of the MST layout is essential.
It initializes the vertex position and determines the edge selec-
tion to some extent. The bStress model allows the vertices to
be evenly distributed across the plane, and such layout gives
the IES-Backbone the desired results. Past methods only used
the classical force-directed model for the layout.

We conclude that it is better to apply the bStress model in
IES-Backbone rather than the force-directedmodel in the lay-
out step for obvious reasons. Using the bStress model achieve
improved visualization not only reflected in homophily met-
rics but also visual effects.

We run the bStress model and the force-directed model at
the same time to get the MST layout, and the results were
excessively different, which can be viewed in Fig.11(a) and
Fig.11(b). The result of the bStress model barely shows edge
crossing, and the tree structure is evenly spread out. It is
a proper initialization for the next step. If there were too
many edge crossings in the first step, the nodes from different
clusters would place nodes from different cluster too close,
which in turn would reduce homophily.

Fig.11(c) and Fig.11(d) show the comparison of the
final layout results, and the bStress model has presented
a more readable network. As shown in Fig.11(c), differ-
ent clusters do not overlap much, and the proportion of
heterophily edges is deficient. On the contrary, the result
of the force-directed model shown in Fig.11(d) is con-
fusing. Homophily metric also illustrates the advantage of
the utilization of the bStress model. Fig.12 indicates that
the homophily value of bStress model is generally higher
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FIGURE 11. Results of bStress and force-directed model on Bowdoin47. (a) MST layout with the bStress model. (b) MST layout
with force-directed model. The bStress model evenly distributes the MST get a better initialization. (c) Final layout result with
the bStress model. (d) Final layout result with force-directed model. Force-directed model makes more visual clutter than
bStress model.

FIGURE 12. The comparision of bStress model and force-directed model on homophily. Red area indicates a high value of homophily,
and the blue area is the opposite. (a) Distributions of homophily in Bowdoin47 applied by bStress model. (b) Distributions of
homophily in Bowdoin47 applied by force-directed model. Two heatmaps were colored in the same scale. As shown in the figures,
the layout quality of bStress is much better than the force-directed model as the value in bStress model is much higher than the other.

than the force-directed model. The bStress model can be
used to describe improved homophily metrics and visual
result.

V. CONCLUSION
We proposed an IES-Backbonemethod to prevent the hairball
layout when drawing a small world network. It solved two
main problems in the contemporary approaches of loosing
too much topology detail and low interactivity. We used an
edge selection approach based on the distance of the graph to
achieve a highly readable network layout. The complexity of
the simplified network can be controlled by edge length limit
and sampling rate so that users can interactively obtain results
from the visualization system. We also used bStress model
replacing the classic force-directed model in graph drawing
to ensure the quality of edge selection step and the final result.

We evaluated the IES-Backbonemethod with visual results
and metrics. As a result, the hairball layout was avoided,
and the topology structure was displayed clearly. The aver-
age path length was less than other approaches, maintaining
the topological detail pleasantly. The homophily of simpli-
fied network also performed ideally in the dataset of Face-
book100. Most of the edges connected vertices from the

same cluster. The two parameters are robust: the optimal
value of edge length limit ratio is approximately the same
in any network, and the value of the sampling rate is not
sensitive to the homophily so that users can determine the
complexity by controlling s without affecting the quality of
the layout.
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