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ABSTRACT In this paper, a recursive closed-loop subspace identification method for Hammerstein nonlin-
ear systems is proposed. To reduce the number of unknown parameters to be identified, the original hybrid
system is decomposed as two parsimonious subsystems, with each subsystem being related directly to either
the linear dynamics or the static nonlinearity. To avoid redundant computations, a recursive least-squares
(RLS) algorithm is established for identifying the common terms in the two parsimonious subsystems, while
another two RLS algorithms are established to estimate the coefficients of the nonlinear subsystem and the
predictor Markov parameters of the linear subsystem, respectively. Subsequently, the system matrices of
the linear subsystem are retrieved from the identified predictor Markov parameters. The convergence of the
proposedmethod is analyzed. Two illustrative examples are shown to demonstrate the effectiveness andmerit
of the proposed method.

INDEX TERMS Hammerstein-type nonlinear system, subspace identification, closed-loop identification,
recursive identification, hierarchical identification.

I. INTRODUCTION
Hammerstein systems can effectively represent and capture
the nonlinearity and linear dynamics of many real-world
nonlinear processes, e.g., turntable servo systems [1], volt-
age management systems [2], and blast furnace ironmak-
ing systems [3]. A number of identification methods have
been well recognised for identifying Hammerstein systems,
including the stochastic approximation methods [4], [5], the
blindmethods [6], [7], the frequency domainmethods [8], [9],
and the subspace methods [10], [11], and the least-squares
based methods [12]–[14].

Presently, the focus of this paper is on the subspace identifi-
cation methods (SIMs) for Hammerstein state space systems.
Various SIMs have been proposed for Hammerstein state
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space systems, which have captured a particular attention
in the control community. Existing Hammerstein SIMs in
the literature can be roughly divided into two categories:
the over-parametrization like SIMs (OPM-like SIMs) and the
parsimonious SIMs.

In the OPM-like SIMs a linear-time-invariant, over-
parametrized hybrid model is first estimated by using a con-
ventional SIM. Then, the underlying system matrices of the
nonlinear and dynamic linear elements are extracted from
the estimated hybrid model. A number of OPM-like SIMs
have been well recognised for identifying Hammerstein state
space systems, including the MOESP based Hammerstein
SIMs [15], the N4SID based Hammerstein SIMs [16], and
the parity-space based Hammerstein SIMs [10], [11]. A per-
sistent excitation input design procedure for OPM-like SIMs
for MISO Hammerstein state space systems was developed
in [17].Moreover, for Hammerstein state spacemodels whose
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parameters are slowly time-varying, recursive OPM-like
SIMs were proposed [18]–[20]. However, the OPM-like
SIMs assume an over-parametrized hybrid model containing
extra parameters, which may cause the inflated variance in
the estimates and the loss of model fidelity. To overcome this
problem, the parsimonious SIMs based on a truncated SVD
decomposition have been proposed to reduce the number
of unknown parameters to be estimated. These methods are
developed by using different regression iterative or recur-
sive algorithms to retrieve the underlying system matrices
of the nonlinear subsystem and dynamic linear subsystem,
separately. For example, the Gauss-Newton iteration based
SIM [21], the two-least-square based SIM [22], and the fixed
point iteration based SIM [23].

Note that most of the aforementioned subspace identifica-
tion methods for Hammerstein state space models are only
developed for systems operating in open-loop. For systems
operating in closed loop, due to the feedback controller, both
the future input and output are correlated with measurement
noise, and this gives rise to biased estimates. There are
no general methods for recursive subspace identification of
Hammerstein state space models in closed loop. A few efforts
have been done for iterative subspace identification, for
example, reference [21] developed a Gauss-Newton iteration
based SIM for closed-loop Hammerstein state space models
in innovation form. However, direct extension of the method
in [21] to the recursive context seems very complicated.

In this paper, a recursive parsimonious SIM is first pro-
posed for closed-loop Hammerstein state space models in
innovation form. The main idea is to model the system by two
sub-models rather than a single, overparameterized hybrid
model. The main contributions of this paper can be summur-
ized as following.

Firstly, the over-parameterized model to characterize the
linear and nonlinear elements of the Hammerstein state
space system is decomposed into two sub-models with fewer
parameters. Secondly, a recursive least-squares (RLS) algo-
rithm is established for identifying the common terms in the
two parsimonious sub-models to avoid redundant estimates,
while another two RLS algorithms are established to estimate
the coefficients of the nonlinear sub-model and the predictor
Markov parameters of the linear subsystem, respectively.
Thirdly, convergence properties of the proposed method are
presented by using the existing analysis method based on
subtly reconstructed output.

The paper is organized as follows. In Section 2 the iden-
tification problem is presented. In Section 3 the proposed
method is presented, followed by the convergence analysis
in Section 4. Section 5 demonstrates the performance of the
proposed method. Finally, some conclusions are drawn in
Section 6.

II. PROBLEM STATEMENT
Consider a general class of closed-loop systems shown in
Fig.1. The plant P is a Hammerstein state space system in

FIGURE 1. The closed-loop Hammerstein nonlinear model structure.

the innovation form described as follows
x(t + 1) = Ax(t)+ Bf (t)+ Ke(t)
y(t) = Cx(t)+ e(t)
f (t) = w1f1(u(t))+w2f2(u(t))+· · ·+wr fr (u(t))

(1)

where x(t) ∈ <nx , u(t) ∈ <, y(t) ∈ <, e(t) ∈ < are the state
vector, the input signal, the output signal, and the innovation,
respectively, and (A,B,C,K ) are system matrices defined
with compatible dimensions. f (t) ∈ < is the static nonlinear-
ity function, which is considered to be a linear combination of
the known basis function fi(u(t)) with an unknown coefficient
wi. The feedback controller S is known. r(t) is the external
excitation signal specified by the user and is uncorrelated to
the measurement noise. We assume that both u(k) and y(k)
are rich enough to identify the plant.

Define the following vectors

w = [w1, · · · ,wr ] (2)

z(t) = [f1(u(t)), f2(u(t)), · · · , fr (u(t))]> (3)

Substituting (2) and (3) into (1), we have{
x(t + 1) = Ax(t)+ Bwz(t)+ Ke(t)
y(t) = Cx(t)+ e(t)

(4)

Further, substituting e(t) = y(t)− Cx(t) into x(t) yields{
x(t + 1) = Āx(t)+ Bwz(t)+ Ky(t)
y(t) = Cx(t)+ e(t)

(5)

where Ā = A− KC .
To address the concerned identification problem, the fol-

lowing assumptions are made in the paper.
A1 All the eigenvalues of Ā are within the unit circle.
A2 (A,C) is observable and (A,B) is controllable.
A3 The first-nonzero element of w is positive and ‖w‖2 =

1.
A4 The system is minimal and the system order nx is

known.
A5 The innovation sequence {e(t)} is a zero-mean white

noise sequence and uncorrelated with the input
sequence {u(i)} for t ≥ i.

By iterating x(t) in (5), we have

x(t) = Āpx(t − p)+ L1zp(t)+ L2yp(t) (6)
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with

L1 = [Āp−1Bw, Āp−2Bw, · · · ,Bw] (7)

L2 = [Āp−1K , Āp−2K , · · · ,K ] (8)

zp(t) = [z>(t − p), z>(t − p+ 1), · · · , z>(t − 1)]> (9)

yp(t) = [y>(t − p), y>(t − p+ 1), · · · , y>(t − 1)]> (10)

where p is the past window size, which is greater than the
system order nx in general.

Under the assumption A1, the term Āp−1 can be made
arbitrarily small by choosing p sufficiently large. Then the
first term on the right side of (6) can be neglected. Thus, by
substituting (6) into y(t), the following vector autoregressive
with exogenous inputs (VARX) model can be obtained

y(t) = CL1zp(t)+ CL2yp(t)+ e(t)

=

p∑
i=1

((z>(t − i))⊗ 1)vec(CĀi−1Bw)

+

p∑
i=1

((y>p (t)⊗ 1)vec(CĀi−1K )+ e(t)

= χ0(t)θ0 + χ1(t)θ1 + e(t) (11)

with

χ0(t) = [z>(t − 1), z>(t − 2), · · · , z>(t − p)] (12)

χ1(t) = [y>p (t − 1), y>p (t − 2), · · · , y>p (t − p)] (13)

θ0 = [(vec(CĀp−1Bw))>, · · · , (vec(CBw))>]> (14)

θ1 = [(vec(CĀp−1K ))>, · · · , (vec(CK ))>]> (15)

where ⊗ is the Kronecker product operator.
Note that the unknown parameters CL1 and CL2 in

the overparameterized model (11) can be directly esti-
mated by solving an LS problem. Furthermore, CL1
is the product of predictor Markov parameter vector
[CĀp−1B,CĀp−2B, · · · ,CB] and w. In view of this, we have
several difficulties to estimate the systemmatricesA,B,C,w.
Firstly, A,B,C,w cannot be directly retrieved from an esti-
mate of CL1. Secondly, the number of unknown parameters
in [CĀp−1B,CĀp−2B, · · · ,CB] and w is p + r , while the
number of unknown parameters in CL1 is pr . This implies
a redundancy in the number of identified parameters, which
may give rise to unnecessarily high variance, and also causes
a loss of model fidelity. Lastly, an SVD decomposition is
needed to retrieve the system parameters B and w from an
estimate of Bw. Under model mismatch and using noisy and
finite data, a truncated SVD decomposition will result in a
loss of model fidelity.

It can be seen that, to get rid of the above mentioned
problems, we need to avoid the estimation of CL1.With this
in mind, we are now in the position to state the objective of
this paper: develop a recursive method to estimate directly
the unknown linear subsystem parameters (A,B,C) and the
nonlinear subsystem parameter vector w from the observed
data {u(t), y(t)}Nt=1.

III. THE PROPOSED METHOD
In this section, a recursive computationally efficient SIM is
developed to identify closed-loop Hammerstein systems.

A. RECURSIVE ESTIMATION OF THE PREDICTOR MARKOV
PARAMETERS AND W
To circumvent the problems stemming from estimating CL1,
we suggest to split it into a linear part and a nonlinear part.
Then, (11) can be decoupled into two parsimonious submod-
els as following

y(t) =
p∑
i=1

((wz(t−i))> ⊗ 1)vec(CĀi−1B)+ χ1(t)θ1+e(t)

= χ2(t)θ2+χ1(t)θ1 + e(t) (16)

y(t) =
p∑
i=1

(z>(t − i)⊗ CĀi−1B)vec(w)+ χ1(t)θ1 + e(t)

= χ3(t)w> + χ1(t)θ1 + e(t) (17)

with

χ2(t) = [wz(t − 1),wz(t − 2), · · · ,wz(t − p)] (18)

χ3(t) =
p∑
i=1

(z>(t − i)⊗ CĀi−1B) (19)

θ2 = [(vec(CĀp−1B))>, · · · , (vec(CB))>]> (20)

Note that θ1 and θ2 include all of the predictor Markov
parameters for i = 1, . . . , p as following

h̄i = CĀi−1K (21)

ḡi = CĀi−1B (22)

To avoid redundant estimates of common parameter vec-
tor θ1 in parsimonious models, three objective functions of
prediction error with forgetting factors are defined for min-
imisation:

J1(θ̂1(t)) =
t∑
i=1

λt−i[y(i)− χ0(i)θ0(i)− χ1(i)θ̂1(i)]2 (23)

J2(θ̂2(t)) =
t∑
i=1

λt−i[y(i)− χ1(i)θ1(i)− χ2(i)θ̂2(i)]2 (24)

J3(ŵ>(t)) =
t∑
i=1

λt−i[y(i)− χ1(i)θ1(i)− χ3(i)ŵ>(i)]2 (25)

where J1(θ̂1(t)) is used to estimate the common parameter
vector θ1, J2(θ̂2(t)) and J3(ŵ>(t)) are for estimating the
predictor Markov parameters of the linear subsystem, and
the coefficients of the nonlinearity function, respectively.
λ ∈ (0, 1] is the forgetting factor to leave out the earlier
observation data.

Taking the first derivative of J1(θ̂1(t)), J2(θ̂2(t))
and J3(ŵ>(t)) with respect to θ̂1(t), θ̂2(t) and ŵ>(t), and
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then equating them to zero, we obtain

θ̂1(t)

=

[
t∑
i=1

λt−iχ>1 (i)χ1(i)

]−1
×

[
t∑
i=1

λt−iχ>1 (i)[y(i)−χ0(i)θ0(i)]

]
(26)

θ̂2(t)

=

[
t∑
i=1

λt−iχ>2 (i)χ2(i)

]−1
×

[
t∑
i=1

λt−iχ>2 (i)[y(i)−χ1(i)θ1(i)]

]
(27)

ŵ>(t)

=

[
t∑
i=1

λt−iχ>3 (i)χ3(i)

]−1
×

[
t∑
i=1

λt−iχ>3 (i)[y(i)−χ1(i)θ1(i)]

]
(28)

Note that Equations (26), (27) and (28) cannot be computed
for the time being since w(t) and ḡi(t) for i = 1, . . . , p are
unknown. Inspired by the hierarchical identification methods
[24]–[27], it is proposed to replace w(t) and ḡi(t) in θ0(t)
by ŵ(t − 1) and ˆ̄gi(t − 1) for computing (26), replace θ1(t)
and w(t) in χ2(t) by θ̂1(t) and ŵ(t − 1) for computing (27),
and replace θ1(t) and ḡi(t)) in χ3(t) by θ̂1(t) and ˆ̄gi(t) for
computing (28). Then, (26), (27) and (28) admit the recursive
solutions as follows

θ̂0(t) = [(vec( ˆ̄gp(t − 1)ŵ(t − 1)))>,

· · · , ( ˆ̄g1(t − 1)ŵ(t − 1)))>]> (29)

θ̂1(t) = θ̂1(t − 1)+ K1(t)[y(t)− χ0(t)θ̂0(t)

−χ1(t)θ̂1(t − 1)] (30)

K1(t) = P1(t − 1)χ>1 (t)[λ+ χ1(t)P1(t − 1)χ>1 (t)]−1 (31)

P1(t) =
1
λ
[P1(t − 1)− K1(t)χ1(t)P1(t − 1)] (32)

χ̂2(t) = [ŵ(t − 1)z(t − 1), · · · , ŵ(t − 1)z(t − p)] (33)

θ̂2(t) = θ̂2(t − 1)+ K2(t)[y(t)− χ1(t)θ̂1(t)

− χ̂2(t)θ̂2(t − 1)] (34)

K2(t) = P2(t − 1)χ>2 (t)[λ+ χ̂2(t)P2(t − 1)χ̂>2 (t)]−1 (35)

P2(t) =
1
λ
[P2(t − 1)− K2(t)χ̂2(t)P2(t − 1)] (36)

χ̂3(t) =
p∑
i=1

(z>(t − i) ˆ̄gi(t)) (37)

ŵ>(t) = ŵ>(t − 1)+ K3(t)[y(t)− χ1(t)θ̂1(t)

− χ̂3(t)ŵ>(t − 1)] (38)

K3(t) = P3(t − 1)χ>3 (t)[λ+ χ3(t)P3(t − 1)χ>3 (t)]−1 (39)

P3(t) =
1
λ
[P3(t − 1)− K3(t)χ3(t)P3(t − 1)] (40)

To provide a unique solution based on assumption A3, let s
be the sign of first nonzero element of ŵ(t), the estimate ŵ(t)
can be obtained after normalization

ŵ>(t) = ŵ>(t)s/‖ŵ>(t)‖2 (41)

and then the estimate χ̂2(t) can be obtained as follows

χ̂2(t) = χ̂2(t)s (42)

To initialize the algorithm,we takeP1(0) = ηI ,P1(0) = ηI
and P3(0) = ηI with η normally a large positive number (e.g.,
η = 106) and θ̂1(0) = 10−6, θ̂2(0) = 10−6, and ŵ(0) = 10−6.

B. RETRIEVING THE LINEAR SUBSYSTEM PARAMETERS
To obtain the system matrices, we need to recover the sys-
tem Markov parameters gi = CAi−1B for i = 1, . . . , p
from predictor Markov parameters ˆ̄gi and ˆ̄hi in θ̂1(t) and
θ̂2(t), which can be calculated recursively as ĝ1 = ˆ̄g1 and
ĝi = ˆ̄gi +

∑i−1
m=1
ˆ̄hm ˆ̄gi−m for 2 ≤ i ≤ p. Then construct

following Hankel matrix and performing an SVD, we have

T̂ =


ĝ1 ĝ2 · · · ĝp/2
ĝ2 ĝ3 · · · ĝp/2+1
...

...
. . .

...

ĝp/2 ĝp/2+1 · · · ĝp

 = USV>

=
[
Unx Us

] [Rnx 0
0 Rs

] [
V>nx
V>s

]
(43)

where Rnx is the largest nx eigenvectors of T̂ . Unx and V>nx
contain the corresponding left and right eigenvectors of U
and V>, respectively. Since the observability matrix and the
controllability matrix are [28], [29]

0 = [C>, (CA)>, · · · , (CAp/2)>]> (44)

1 = [B,AB, · · ·Ap/2B]> (45)

based on the assumption A2, we obtain

0̂ = UnxR
1/2
nx (46)

1̂ = R1/2nx V
>
nx (47)

Then, it is straightforward to obtain

B̂ = 1̂(:, 1 : nx) (48)

Ĉ = 0̂(1, :) (49)

Â = 0̂†(1 : p/2− 1, :)0̂(2 : p/2, :) (50)

where Matlab notation : is used for partitioning matrices.
The proposed Recursive Parsimonious Subspace Identifi-

cation Method, named as RPSIM, is summarized below.
1. Specify the initial values: p, λ, P1(0), P1(0), P3(0),
θ̂1(0), θ̂2(0), and ŵ(0).

2. Estimate the predictor Markov parameters and w(t)
2.1 Construct χ0(t) and χ1(t) as (12) and (13).
2.2 Compute θ̂1(t), θ̂2(t), and ŵ(t) as (29)-(40).
2.3 Perform a normalization operation to ŵ as (41).

3. Estimate the linear subsystem parameters

3.1 Extract ˆ̄gi and ˆ̄hi from θ̂1(t) and θ̂2(t).
3.1 Compute system Markov parameters ĝi.
3.3 Construct the Hankel matrix T̂ as (43).
3.4 Perform SVD for T̂ .
3.5 Compute 0̂ and 1̂ as (46) and (47).
3.5 Compute the linear subsystemmatrices from (48),

(49), and (50).
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IV. CONVERGENCE ANALYSIS
Note that the proposed method can be extended to iden-
tify time-varying Hammerstein state space systems without
changing any of the arguments or insights of the paper. We
will then establish the convergence properties of the proposed
method for time-varying Hammerstein state space systems.
For this purpose, the following corollary is first given.
Corollary 1 [30]: For the system in (2) and the proposed

algorithm in (29), (33) and (37), if there exist αj and βj for j =
1, 2, and 3 satisfying 0 < αi ≤ βi < ∞ and an integer N ≥
max(p, r) such that the following strong persistent excitation
(SPE) condition holds

α1I ≤
1
N

N∑
i=0

χ>1 (t + i)χ1(t + i) ≤ β1I (51)

αoI ≤
1
N

N∑
i=0

χ̂>o (t + i)χ̂o(t + i) ≤ βoI , o = 2, 3 (52)

Then Pj(t) in (29), (33) and (37) satisfies [30]

1− λ
βjN

I ≤ lim
N→∞

Pj(t) ≤
1− λ
αjλN−1

I (53)

�
Define the parameter changing rate vector of θ1(t)

θ̃1(t) = θ̂1(t)− θ1(t) (54)

and the parameter changing rate vector of θ1(t)

θ̄1(t) = θ1(t)− θ1(t − 1) (55)

and all other terms ˜(.) and ¯(.), such as, θ̃2(t), w̃>(t), θ̄2(t), and
w̄>(t) are defined in a similar way.
Then the convergence properties of the proposed method

can be directly established in the following theorem.
Theorem 1: For the system described by Equation (2),

with the SPE condition in Equations (51) and (52) and the
assumptions of E[||θ̃1(0)||2] = ξ1 < ∞, E[||θ̃2(0)||2] =
ξ2 <∞, and E[||w̃(0)||2] = ξ3 <∞, the estimation errors of
θ̃1(t), θ̃2(t), and w̃>(t) given in Equations (29), (33) and (37)
of the proposed algorithm satisfy for t ≥ N

E[||θ̃1(t)||2] ≤
3λ2(t−N+1)(1− λ)2ξ1

α21η
2

+
3p(1− λ)σ 2

1

α1λN−1

+
3(Nβ)2σ 2

θ1

α21λ
2(N−1)(1− λ)2

(56)

E[||θ̃2(t)||2] ≤
3λ2(t−N+1)(1− λ)2ξ2

α22η
2

+
3p(1− λ)σ 2

2

α2λN−1

+
3(Nβ)2σ 2

θ2

α22λ
2(N−1)(1− λ)2

(57)

E[||w̃(t)||2] ≤
3λ2(t−N+1)(1− λ)2ξ3

α23η
2

+
3r(1− λ)σ 2

3

α3λN−1

+
3(Nβ)2σ 2

w

α23λ
2(N−1)(1− λ)2

(58)

where σ 2
j =

1
t

∑t
i=1 ε

>
j (i)εj(i) for j = 1, 2 and 3,

σ 2
θ1
=

1
t

∑t
i=1 θ̄

>

1 (i)θ̄1(i), σ 2
θ2
=

1
t

∑t
i=1 θ̄

>

2 (i)θ̄2(i), σ 2
w =

1
t

∑t
i=1 w̄

>(i)w̄(i), ε1(t) = −χ0(t)θ̃0(t)+ e(t), ε2(t) = e(t)−
χ̃2(t)θ2(t) − χ1(t)θ̃1(t) and ε3(t) = e(t) − χ̃3(t)θ3(t) −
χ1(t)θ̃1(t). And θ̃0(t), χ̃2(t), χ̃3(t) are defined similar to θ̃1(t).

Proof: In order to compute the difference between θ̂1(t)
and the true system parameters θ1(t), the output in (11) can
readily be elaborated to

y(t) = χ0(t)θ0(t)+ χ1(t)θ1(t)+ e(t)

= χ0(t)θ0(t)+χ0(t)θ̂0(t)− χ0(t)θ̂0(t)+χ1(t)θ1(t)+e(t)

= χ0(t)θ̂0(t)+ χ1(t)θ1(t)+ ε1(t) (59)

where

ε1(t) = −χ0(t)θ̃0(t)+ e(t) (60)

Note that the output is reconstructed as a function about
θ̂0(t) with estimate error term ε1(t) caused by hierarchical
computational procedure and noise terms. In this way, the
parameters estimated error can be easily derived based on the
standard convergence results of the forgetting factor recursive
least squares methods in [30], we only gives a brief conver-
gence proof process.
By substituting (59) into (29), we get

θ̃1(t) = (I − P1(t)χ>1 (t)χ1(t))θ̃1(t − 1)+ P1(t)χ>1 (t)

+ (P1(t)χ>1 (t)χ1(t)− I )θ̄1(t)ε1(t)

= λtP1(t)P
−1
1 (t)θ̃1(0)− P1(t)

t∑
i=1

λt−iP−11 (i)θ̄1(i)

+P1(t)H1(t)W1(t) (61)

where

8(t) = I − P1(t)χ>1 (t)χ1(t) = λP1(t)P
−1
1 (t − 1) (62)

H1(t) = [
√
λ
t−1
χ1(1),

√
λ
t−2
χ1(2), · · · , χ1(t)] (63)

W1(t) = [[
√
λ
t−1
ε1(1)]>, [

√
λ
t−2
ε1(2)]>, · · · , [ε1(t)]>]>

(64)

Referring to themethods in [30], and taking the expectation
on the norm of each term at the right-side of (61), respectively,
we have

E[||λtP1(t)P
−1
1 (t)θ̃1(0)||2] ≤

λ2(t−N+1)(1− λ)2ξ2
α22η

2

(65)

E[||P1(t)H1(t)W1(t)||2] ≤
p(1− λ)σ 2

1

α1λN−1
(66)

E[||P1(t)
t∑
i=1

λt−iP−11 (i)θ̄1(i)||2] ≤
(Nβ)2σ 2

θ2

α21λ
2(N−1)(1− λ)2

(67)

where the maximal eigenvalue of P1(t) is λmax[P1(t)], σ 2
1 =

1
t

∑t
i=1 ε

>

1 (i)ε1(i), σ
2
θ1
=

1
t

∑t
i=1 θ̄

>

1 (i)θ̄1(i).

VOLUME 7, 2019 173519



J. Hou et al.: Recursive Parsimonious Subspace Identification for Closed-Loop Hammerstein Nonlinear Systems

Taking the expectation on the norm of (61), we have

E[||θ̃1(t)||2] ≤ 3E[||λtP1(t)P
−1
1 (t)θ̃1(0)||2]

+ 3E[||P1(t)H1(t)W1(t)||2]

+ 3E[||P1(t)
t∑
i=1

λt−iP−11 (i)θ̄1(i)||2] (68)

Substituting (65), (66), and (67) into (68), gives rise to (56)
shown in the theorem.

To obtain the estimation errors of θ̃2(t) and w̃>(t), we
rewrite the outputs in (16) and (17) as following,

y(t) = χ̂2(t)θ2(t)+ χ1(t)θ̂1(t)+ ε2(t) (69)

y(t) = χ̂3(t)w>(t)+ χ1(t)θ̂1(t)+ ε3(t) (70)

with

ε2(t) = e(t)− χ̃2(t)θ2(t)− χ1(t)θ̃1(t) (71)

ε3(t) = e(t)− χ̃3(t)θ3(t)− χ1(t)θ̃1(t) (72)

The results (57) and (58) shown in the theorem can
be easily obtained based on a similar proof procedure
for θ̃1(t). �

From the above theorem, we can draw the following con-
clusions.

• For time-invariant systems, the first terms are equal to
zero when t → ∞, the second terms are equal to zero
when λ → 1, and the third terms are equal to zero
in (56), (57) and (58). Namely, the proposed algorithms
in (29), (33) and (37) can give a consistent parameter
estimation for λ→ 1 and t →∞.

• For time-varying systems, due to λt → 0 for t →
∞, the error upper bounds of the parameter estimates
approach to the second and third terms in (56), (57)
and (58).

The estimation errors of Ã(t), B̃(t) and C̃(t) are linear
functions of θ̃1(t) and θ̃2(t) based on the first-order sensitivity
analysis as clarified in the references [31]–[35], which have
similar convergence rates with θ̃1(t) and θ̃2(t).

V. ILLUSTRATIVE EXAMPLES
In this section, the performance of the proposed method is
illustrated by two examples. One is a benchmark example in
[36] and the other is an industrial injection molding precess
studied in [23], [37].
Example 1: Consider the following time-varying system

with abrupt change and different parameter changing rates
extended from [36]

x(t + 1) = A(t)x(t)+ [ 1 0 ]>f (t)+ v1(t)

y(t) = [0.6804 0.6303]x(t)+ v(t)
f (t) = w1(t)u(t)+ w2(t)u2(k)

where the noises v(t) and v1(t) are assumed to be Gaussian
white with zero-mean and variance of 0.1. The time-varying
system matrices are given as following

FIGURE 2. Comparison of estimated real part of eigenvalues for Example
1 using RPSIM and HRLS-SIM. The true values are indicated with the red
lines.

FIGURE 3. Comparison of estimated imaginary part of eigenvalues for
Example 1 using RPSIM and HRLS-SIM. The true values are indicated with
the red lines.

The input is given by

u(t) = r(t)− 0.1y(t)

where the external input r(t) is taken as Gaussian white noise
with zero-mean and variance of 7. The signal-to-noise ratio
(SNR) of the process is 24 dB.

To empirically study the statistical properties of RPSIM, a
Monte-Carlo (MC) test with 20 runs is carried out. The model
parameters (A,B,C,w) are estimated from an input/output
data set of length N = 6000 by using RPSIM with p = 10
and λ = 0.99. The proposed method is compared with a SIM
by estimating ŵ>, θ̂1 and θ̂2 from (16) and (17) using HRLS
[38], named as HRLS-SIM.

Figs. 2 and 3 shows the estimation results of the eigen-
values of A(t). Fig.4 shows the estimation results of w of
the nonlinear subsystem. Fig.5 shows the identified model
transfer function matrix (TFM), i.e.

Ĝ(t) = ||Ĉ(t)(zI − Â(t))−1B̂(t)||2

From Figs. 2-5, we can draw the following conclusions.

• All methods can track the time-varying system parame-
ters with high accuracy. While the proposed algorithm
shows better performances in terms of initial conver-
gence speed and computational efficiency compared to
HRLS-SIM.

• All methods are able to detect and track the sys-
tem parameter jumps. The RPSIM show better perfor-
mances in terms of initial convergence speed compared
to HRLS-SIM.
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FIGURE 4. Comparison of estimated w for Example 1 using RPSIM and
HRLS-SIM. The true poles are indicated with the red lines.

FIGURE 5. Comparison of estimated TFM for Example 1 using RPSIM and
HRLS-SIM. The true poles are indicated with the red lines.

Example 2: Consider an injection moulding process stud-
ied in the reference [23], [37]:

x(t + 1) = A(t)x(t)+ [ 1 0 ]>f (t)+ v2(t)

y(t) =
[
1.69 1.419

]
x(t)+ v3(t)

f (t) = 0.8593u(k)− 0.5115u2(k)

where

A(t)=

1.582−
0.1e−(t−1)/2000 − 1

e−1 − 1
−0.5916

1 −
0.1e−(t−100)/2000−1

e−1 − 1



FIGURE 6. Comparison of estimated eigenvalues for Example 2 using
RPSIM and HRLS-SIM. The true poles are indicated with the red lines.

FIGURE 7. Comparison of estimated w for Example 2 using RPSIM and
HRLS-SIM. The true poles are indicated with the red lines.

and the input is given by

u(t) = r(t)− 0.01y(t)

where the external input r(t) is designed as a Pseudo-
Random-Binary-Sequence (PRBS) to ensure proper excita-
tion, and the noise is taken as white noise with variance of 1%.
The SNR of the process is 20 dB.

The initial conditions are chosen as follows: p = 10,
λ = 0.99 and N = 2000 for the RPSIM and HRLS-SIM
algorithms. Figs. 6, 7, and 8 show the estimated eigenval-
ues, w, and G(t), respectively. As can be seen from Fig. 7,
both the considered algorithms yield consistent estimates:
the estimated w converge to the true ones. The results

A(t) =



[
−0.4120 −0.3090

1 0

]
t ∈ [1, 2000]−0.6−

0.1e−(t−1)/2000 − 1
e−1 − 1

−0.2

1 −
0.1e−(t−100)/2000 − 1

e−1 − 1

 t ∈ [2001, 4000]

 0.5−
0.2e−(t−600)/2000 − 1

e−1 − 1
0.5

1 −
0.3e−(t−600)/2000 − 1

e−1 − 1

 t ∈ [4001, 6000]

wx(t) =


[0.8593,−0.5115] t ∈ [1, 2000]

[0.866 0.5e−(t−1)/6000−1
e−1−1

, 0.5− 0.5 0.1e−(t−1)/6000−1
e−1−1

] t ∈ [2001, 4000]

[0.866 0.5e−(t−6000)/4000−1
e−1−1

, 0.5− 0.5 0.1e−(t−4000)/6000−1
e−1−1

] t ∈ [4001, 6000]

w(t) = wx(t)/‖wx(t)‖2
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FIGURE 8. Comparison of estimated TFM for Example 2 using RPSIM and
HRLS-SIM. The true poles are indicated with the red lines.

(see Figs. 6 and 8) show that both techniques present inter-
esting abilities to track variations in the system parameters.
On the other hand, in the considered example, the proposed
algorithm shows a better performance in terms of transient
behaviour with respect to HRLS-SIM. It is again seen that the
proposed method can track the time-variant system parame-
ters with high accuracy.

VI. CONCLUSION
In this paper, a recursive computationally efficient SIM for
nonlinear Hammerstein state space model identification has
been presented. The first step of the proposed identification
method is to estimate the coefficient vector of the nonlinear
subsystem and the predictor Markov parameters of the linear
subsystem separately by using a computationally efficient
three-stage RLS based method. Then the system matrices are
extracted from the identified predictor Markov parameters
using a SVD based method. Convergence of the proposed
method has been analyzed by using existing analysis method
based on subtly reconstructed output. The applications to two
time-varying illustrative examples have well demonstrated
the effectiveness and merit of the proposed method.
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