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ABSTRACT In large content-based multi-attribute publish /subscribe systems, event matching is a key
component, which is in charge of finding all subscriptions that match events. However, the increasing user
scale, the enriching message diversity, and the aggravating QoS demands make the performance of event
matching severely challenged. Most existing event matching schemes cannot efficiently sustain in these
scenarios. The performance rapidly drops as the system load rises. In this paper, we propose GEM-Tree
(Geometrical Event Matching Tree), a novel tree-based analytic geometrical index structure for highly
efficient event matching in large-scale content-based publish/subscribe systems. To further improve the
event matching speed, a local-adjustment mechanism is designed to determine the deployment for each new
subscription registering into the GEM-Tree, and a global-adjustment mechanism is designed to optimize
the locations of the subscriptions already inserted in GEM-Tree. The experiment results in 8 scenarios
demonstrate that GEM-Tree is superior to 3 state-of-the-art reference schemes(BE-Tree, OP-Index, and
TAMA). Especially, the leading advantage of GEM-Tree is more significant in matching time for a large
number of subscriptions.

INDEX TERMS Event matching, event filter, publish/subscribe, data dissemination.

I. INTRODUCTION
Publish/subscribe(pub/sub) is an anonymous, many-to-many
asynchronous messaging model with full decoupling of
the communication parties in time, space and synchroniza-
tion [1]. Pub/sub is widely deployed in various scenarios,
such as online advertising [2], information filtering [3],
mobile message push systems [4]–[6], IOT transfer-
ring [7]–[9], content-based routing protocol [10], etc.

In a pub/sub system, subscribers can express their interests
in the form of subscriptions. Publishers can send events to
the system. When an event arrives at the system, it is then
delivered to subscribers whose subscriptions match the event.
The process of searching for subscriptions that match the
event is called event matching. The event matching is the core
component of pub/sub systems, and it is the key factor that
determines the system performance.

The associate editor coordinating the review of this manuscript and
approving it for publication was Miguel Jesus Torres Ruiz.

Pub/sub systems can be divided into three categories based
on the message type they aiming at: theme-based, type-based
and content-based. The differences between content-based
and the others are as follows: Firstly, the subscription is
described as a combination of multiple attributes, and each
attribute represents a unique aspect of the subscription’s char-
acteristics. Secondly, event matching is driven by content
rather than other factors (such as IP addresses, information
theme) of events and publishers; Thirdly, theme-based and
type-based systems are weak in expressing complex sub-
scriptions, in contrast, content-based systems have stronger
expression ability, which can describe the content of subscrip-
tions in detail.

Event matching in content-based pub/sub systems is meet-
ing some challenges such as exponential increasing user
scale, enriching message diversity, and aggravating QoS
demands. Besides, in large-scale systems, the registration of
subscriptions and the input of events occur with a very high
frequency, which means the load of the systems always keep
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at a high level. In this case, event matching becomes the bot-
tleneck since the search space expands and the search com-
plexity increases correspondingly. Therefore, how to match
events accurately and efficiently is the vital problem that
needs to be solved in the design and optimization works of
pub/sub systems.

Many event matching schemes have been proposed to
address the event matching problem in content-based pub/sub
systems in recent years. Proposing efficient index structures is
the mainstream approach to accelerate event matching. Some
research works are based on tree index structures [11]–[13],
which shrinks the search space of event matching by exploit-
ing the similarity between subscriptions, in order to reduce
the event matching time. Some works propose novel and
efficient index structures based on the characteristics of
subscriptions [14]–[19], which improve the matching per-
formance by reducing unnecessary search works. Partial
event matching is carried out in each dimension firstly, then
the single-dimensional matching results are summarized to
obtain the final matching results. Besides, reducing the num-
ber of subscriptions is another way to improve the match-
ing speed [20]–[24]. The merging, summarization, covering
and subsumption of subscriptions are utilized to reduce
the number of subscriptions. However, the performance of
most schemes, especially the event matching speed, dete-
riorates when the system scale increases, since their struc-
tures, schemes are still sensitive for search works in a large
number of subscriptions, and no targeted optimization tech-
niques are used. Therefore, investigating a new event match-
ing scheme has significant meanings for large-scale pub/sub
systems.

In this paper, we propose GEM-Tree (Geometrical Event
Matching Tree), a high-speed content-based multi-attribute
event matching scheme that supports exact event match-
ing (different with the approximate event matching such as
TAMA [15]) and unequal-attribute event matching (the set of
attributes of events includes that of subscriptions).

GEM-Tree uses a novel tree-based structure consisting of
multiple right triangle structure to efficiently organize the
subscriptions over multi-dimensional attribute space. A par-
titioning method is adopted based on analytical geometrical
techniques to fast partition matched subscriptions from the
structure. When a new subscription comes, its location in
GEM-Tree is determined by a local-adjustment mechanism,
which uses the ranking function to select the highest-ranking
node to insert. And the ranking function is based on the
matching time cost. When there are too many subscrip-
tions in the node, a split attribute is selected as the cri-
teria for subscription migration. The selection of the split
attribute also takes into account the matching time. When
GEM-Tree stores a large number of subscriptions, a global-
adjustment mechanism is then used to globally adjust the
location of the inserted subscription, based on the analysis
of the subscription distribution in the right triangle struc-
ture. Combinedwith the highly efficient filteringmechanisms

of the index structure, the partitioning method, and the
adjustment mechanism, GEM-Tree can shrink the search
space rapidly, further to boost the event matching speed.

Extensive experiments are conducted to compare GEM-
Tree with 3 state-of-the-art reference schemes (BE-Tree [11],
TAMA [15], OP-Index [16]). We use multiple criteria to
measure the performance of these schemes, including the
number of subscriptions, the number of attributes, the distri-
bution of subscriptions, the cardinalities of attribute values,
the matching rate of subscriptions, the proportion of equiv-
alent predicates, insertion time and memory consumption.
Performance of GEM-Tree is superior to other reference
schemes under matching time criteria, especially in the case
of high workloads.

In this paper, our main contributions are:
1) A novel tree-based analytic geometrical index struc-

ture is designed, which can provide high-speed event
matching in the scenario that scales to millions of
subscriptions, hundreds of dimensions, and dozens
of predicates per subscription and event. Through
the hierarchical structure of GEM-Tree, non-matched
subscriptions can be rapidly excluded layer by
layer.

2) A local-adjustment mechanism is proposed to dynam-
ically determine the location of subscriptions in
GEM-Tree during the subscription insertion pro-
cess, which uses the ranking function to select the
highest-ranking node to insert. It guarantees the system
can support massive workload without deterioration of
performance.

3) A global-adjustment mechanism is then used to glob-
ally adjust the location of the inserted subscription,
based on the analysis of the subscription distribution in
the right triangle structure, further improving the event
matching speed.

4) We evaluate the performance of GEM-Tree in 8
scenarios with multiple parameters, and it is com-
pared comprehensively with BE-Tree, OP-Index,
and TAMA.

Our paper is organized as follows. Section 2 discusses the
related works on content-based multi-attribute event match-
ing schemes. Section 3 defines several relevant terms used
in GEM-Tree. Section 4 shows the design and analysis
of GEM-Tree. Section 5 shows the experiment results and
evaluates the performance of event matching by comparing
GEM-Tree with the reference schemes. Section 6 concludes
the work in our paper.

II. RELATED WORKS
Recently, improving event matching performance is the focus
of attention and multiple representative schemes have been
proposed. They can be generally classified into two cate-
gories, (i) Increasing match efficiency by using a novel index
structure; (ii) Increasing match efficiency by reducing the
number of subscriptions.
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A. INCREASING MATCH EFFICIENCY BY USING
A NOVEL INDEX STRUCTURE.
Designing a fitted index structure based on the characteristics
of the subscription has been a hot issue. In recent years, many
excellent index structures have been proposed, and they can
be roughly divided into two categories: one is a tree struc-
ture and the other is a single-dimensional structure, which
means that subscriptions are matched separately according
to attribute dimension, and each dimension has same index
structure. The final matching result is obtained by summariz-
ing the results of single-dimensional matching.

BE-Tree [11] is a dynamic tree index structure designed
to efficiently retrieve subscriptions from a high-dimensional
discrete space. It utilizes a novel two-phase space-cutting
technique. Space partitioning can make a division of sub-
scriptions by using the attributes of the subscription. For each
partition, space clustering determines the best grouping of
subscriptions by the range constraints of the attribute. The
entire domain of attribute is divided into multiple bisected
intervals. Through the filtering of attributes and value con-
straints, BE-Tree can eliminate a large number of unsatisfied
subscriptions, thus reducing the number of subscriptions that
will eventually perform event matching. However, since the
division of the value domain is a halving method, BE-Tree
needs to perform event matching on the subscriptions of
multiple nodes from top to bottom. Also, the performance of
event matching is related to the insertion order of the sub-
scriptions. Because BE-Tree dynamically adjusts the index
structure based on the inserted subscriptions, the extra costs
brought by the above interval division will have negative
influences on event matching.

H-Tree [12] is a hash table in nature which is a combination
of hash lists and hash chaining. After the value domain of
each indexed attribute is divided into several partially over-
lapped cells, the hash lists of all indexed attributes are chained
into a hash tree. Hence, similar subscriptions are hashed
into the same bucket based on the center of multiple range
constraints. When matching events, 2 or 3 cells is figured
out for each indexed attribute. Because of this structural
feature of H-Tree, when the length of subscription increases,
the number of buckets will increase exponentially, which will
increase the cost of retrieval.

REIN [14] transforms the event matching problem into the
rectangle intersection problem. For each attribute, two bucket
lists are constructed. One bucket list is for the low values of
range constraints. Another is for the high values of the range
constraints. When matching events, a bit set is initialized. For
each attribute, REIN finds out non-matched subscriptions by
traversing the bucket lists and marks them in the bit set. The
unset bits in the bit set represent the matched subscriptions.
The abovematchingmechanism causes thematching result of
the previous attribute to have no acceleration on the matching
of the next attribute. Additionally, the matched subscriptions
need to obtain by traversing the bit set.

TAMA [15] uses a hierarchical index table to store sub-
scriptions. It bisects the range of each attribute into multiple

cells from the top to the bottom of the multilayer index
structure. TAMA places a subscription in the corresponding
cells according to its constraints. During event matching, for
each attribute, TAMA obtains the results of the partial match-
ing and then summarizes them by the counting algorithm to
obtain the final matching result. TAMA’s hierarchical index
structure allows a subscription to be stored in multiple cells,
which results in additional memory consumption. TAMA
utilizes a counting algorithm to integrate the partial matching
results, which means that subscriptions that do not match
the previous attribute are not filtered out. Besides, TAMA
only supports approximate matching, which means that its
matching result is false positive. Although the false positive
rate of matching events can be adjusted by tuning the size of
the matching table, it requires lots of extra cost.

OP-Index [16] consists of two components. The first com-
ponent is a two-level partitioning scheme, which consists
of a predicate partitioning level and an operator partition-
ing level. The second component is a collection of counter
arrays, corresponding to the collection of subscription lists.
The counter arrays are used by a counting-based algorithm to
detect matched subscriptions for an event. And it leads to low
efficiency of event matching performance since non-matched
subscriptions cannot be filtered out in time. Besides, due to
the list storage structure of OP-Index, the length of the list has
a great influence on the matching speed.

Among the above five schemes, BE-Tree and H-Tree are
tree structures. They use the combination of attributes and
constraints to find out candidate subscriptions that match the
event, which reduces extensive unnecessary event matching.
REIN, TAMA, and OP-Index first perform partial matching
of each attribute, then summarize the results of partial match-
ing to obtain the final matching result.

GEM-Tree is built on a tree structure. When the sub-
scription is inserted, the right triangle structure is respon-
sible for the division of the attribute values, and the
local-adjustment mechanism dominates the location of sub-
scriptions in GEM-Tree. The combination of them gives
an efficient index structure. Distinguished with H-Tree and
REIN, which strictly require the same length of subscrip-
tion and event, GEM-Tree has comprehensive and realis-
tic application scenarios. Different from the TAMA and
OP-Index that use the counting algorithm to summarize the
partial matching results to obtain the final matching result,
GEM-Tree can directly obtain the result in the matching
process through the recursive matching method. Compared
with BE-Tree, GEM-Tree uses a hash-like method to locate
attribute values, which can undoubtedly improve the match-
ing speed of the scheme.

B. INCREASING MATCH EFFICIENCY BY REDUCING THE
NUMBER OF SUBSCRIPTIONS
The matching time is decreased when the number of sub-
scriptions is reduced. Therefore, reducing the number of
subscriptions is another way to improve matching efficien-
cies. Schemes in [20]–[24] explore similarities between
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subscriptions and reduce the number of subscriptions by
merging, summarizing, covering, and subsuming subscrip-
tions. [20], [21] utilize space filling curves to represent con-
tent space, simplifying multidimensional search space into
one-dimensional space, for merging subscriptions with inclu-
sion relationships. To make summaries more compact and
effective, [22] compresses the routing table size by merging
and summarizing subscriptions. Reference [23] relies on a
divide and conquer strategy to wipe off subscriptions with
subsumption relationships. Reference [24] proposes a novel
approximate approach of covering detection at a low cost
without losing accuracy. However, subscription subsump-
tion is more efficient than covering. The preprocessing of
subscriptions reduces the overall system load and generates
traffic since the covered subscriptions are not propagated
in pub/sub systems. Hence, if preprocessing is carried out
before the subscriptions are inserted, the performance of
event matching will be improved. But the preprocessing of
subscriptions is not the focus of this paper, so it is not used in
our paper.

III. RELEVANT TERMS
An attribute represents a characteristic of an object, which
is composed of multiple characteristics. In addition, each
attribute corresponds to a value or interval. We call the com-
bination of attribute and value interval a predicate. Attribute
value can be integer or decimal. The interval is defined as the
left boundary value, the left boundary type, the right boundary
value, and the right boundary type. Boundary type can be
CLOSED or OPEN . Assuming a, b are two values in the
attribute value interval, and a ≤ b, so an interval can be
partitioned into 4 types based on its boundaries: left-open and
right-open (a, b), left-open and right-closed (a, b], left-closed
and right-open [a, b), left-closed and right-closed [a, b]. The
range of value is expressed as[0,Rm], where Rm is the maxi-
mum value. Attribute set is defined as A = {a1, a2, . . . , aM },
where M is the number of dimensions.

An object published by a publisher is called event. An event
is expressed as a conjunction of attribute-value pairs. That
is, an event can have multiple attributes. And each attribute
corresponds to an exact value, which is denoted as vl . As a
convention, each attribute can only occur once in an event.
In this paper, an event with L attributes is denoted by E =
{v1, v2, . . . , vL}.
A subscription shows subscriber’s interest in certain

events. In the pub/sub systems, subscribers can submit sub-
scriptions or unsubscribe. A subscription is expressed as a
conjunction of attribute-interval pairs. And it’s defined as
Sn = {p1n, p

2
n, . . . , p

K
n }, where K is the number of attributes.

The subscription set with N subscriptions is denoted by S =
{S1, S2, . . . , SN }.
If all the attributes in the Sn appear in the E , and the value

of the E falls into the interval of the corresponding attribute,
we say Sn matches E . In this paper, our scheme supports
unequal-attribute event matching. In other words, the set of
attributes of events includes that of subscription.

IV. THE DESIGN AND ANALYSIS OF GEM-TREE
The design and analysis of GEM-Tree are in this section.
Firstly, an overview of GEM-Tree is presented to give
a rough description of our scheme. Secondly, we intro-
duce GEM-Tree in detail, including the overall structure
of GEM-Tree, the attribute value interval is mapped to the
right triangle structure, which is the essential part of the
event matching performance improvement, the ranking func-
tion, which plays a key role in the dynamic construction
of GEM-Tree. Thirdly, the insertion algorithm and match-
ing algorithm of GEM-Tree are introduced. They are the
cornerstone of implementing GEM-Tree. Finally, a global-
adjustment mechanism is proposed to obtain amore outstand-
ing performance.

A. OVERVIEW OF GEM-TREE
GEM-Tree is a tree structure, and it consists of two types
of nodes. One is the attribute partition node(aNode), whose
role is to store subscriptions and maintain split attributes.
The other is a value mapping node(vNode), which contains
a right triangle structure and is bound with an attribute. The
right triangle structure is divided into multiple cells. And the
interval of each attribute is mapped to a cell. With the help of
the local-adjustment mechanism, the index structure will be
dynamically generated with the insertion of subscriptions.

The local-adjustmentmechanism is composed of two parts,
one is the selection strategy of the split attribute, and the
other is the ranking function. The capacity of a bucket is
limited. When it overflows, we need to separate a part of
the subscriptions into the new node, and the condition of
the move is that the subscription has a split attribute. The
local-adjustment mechanism proposes a selection strategy of
split attribute based on the matching time cost. The rank-
ing function is critical to the generation of the GEM-Tree.
When the subscription is inserted, the choice of inserting
the branch will have a great impact on the event match-
ing performance. Over-concentration and decentralization of
subscriptions slow down the matching of events. To this end,
we propose the ranking function based on the matching time
cost. Each attribute has a rank obtained by the ranking func-
tion. And the higher the rank, the more beneficial the event
matching. Therefore, the attribute with the highest-ranking
should be selected.

At the same time as the subscriptions are inserted, we col-
lect the distribution information of subscriptions. And a
global-adjustment mechanism is proposed that exploits the
information we collect to sort the attributes. We can rely
on the priority sequence to optimize the locations of the
subscriptions already inserted in GEM-Tree. This optimiza-
tion method has an improvement in the performance of the
pub/sub system.

For each incoming event, the entire GEM-Tree is searched
from the root node. For each aNode on the search path,
all subscriptions in aNode will be matched. Finally, we obtain
a subscription set that matches the event.
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FIGURE 1. The GEM-Tree structure.

B. ANALYSIS OF GEM-TREE
1) GEM-TREE STRUCTURE
In general, the root node of GEM-Tree is an aNode, and
each aNode has a bucket for storing subscriptions. aNode
and vNode alternate on each path. The entire tree is dynami-
cally generated during the subscription insertion process. The
index structure of GEM-Tree is shown in Fig. 1.

GEM-Tree is a multi-tree, which stores subscriptions
inside nodes. We distinguish between two classes of nodes:
one attribute partition node and the other value map-
ping node. aNode is mainly composed of attribute direc-
tory(attrDirectory) and subscription container(Bucket). The
former’s role is to maintain the already split attributes, the lat-
ter is used to store the actual subscriptions. The role of vNode
is to divide the range of attribute value. The right triangle
structure in vNode is divided into cells, each of which can be
represented by a coordinate. Thus the value interval of each
attribute can be replaced by a point on the two-dimensional
plane. Moreover, vNode is actually bound with an attribute,
and there is an aNode in each cell. In fact, each attribute in
the aNode’s attrDirectory is a vNode, and each cell in the right
triangle structure is an aNode. That’s to say, aNode and vNode
will alternate in each layer of GEM-Tree.

Initially, an empty aNode performs as the root node of the
GEM-Tree. When the subscription arrives, the subscription
is inserted into the bucket of the root node until the number
of subscriptions in the bucket exceeds its maximum capacity.
Next, a new attribute is selected from the set of subscription
attributes in the overflowing bucket as the new split attribute.
That is, a vNodewill be generated, which will be placed in the
aNode’s atrrDirectory. After selecting the new split attribute,
all the subscriptions with the split attribute in the overflowing
bucket are moved to the new vNode. If the split strength of
the split attribute is not powerful enough, it may result in a

FIGURE 2. (a) The right triangle structure with 36 cells,(b) partitioning of
cells by graph division method.

small number of subscriptions in the newly generated vNode.
It causes the performance of the index structure to deteriorate.
So we need to set a threshold, which means that the split
attribute can only be selected if the number of subscriptions
with split attribute in the subscriptions in the overflowing
node is greater than it. If there are no attributes that satisfy
the criteria, we should increase the capacity of that node.

2) RIGHT TRIANGLE STRUCTURE(RTS) OF GEM-TREE
Mathematical expressions have a close relationship with geo-
metric. For example, in the one-dimensional coordinate sys-
tem, a directed line represents the range space, the points on
the line reflect different values. It is natural to associate the
interval with line segments. When it comes to the interval
matching in pub/sub systems, the value set can be described
by a line segment. In this case, the problem of dividing sub-
scriptions by interval on a single attribute is transformed into
the division of the line segment. Based on the above analysis,
we introduce a new structure, the right triangle structure as
follows.

Every interval has two bounds, lower and upper bounds,
such as[a, b]. If we take the lower bound as the vertical,
and take the upper bounds b as horizontal, the interval [a, b]
can be represented by a point (b, a) in a two-dimensional
cartesian coordinate system, which is mapped to range space.
On this basis, we design RTS to organize the interval points.
RTS is a planar triangular structure, which is used to further
divide subscriptions in ranges on a single attribute. RTS
is constructed with multiple cells. The number of cells is
configurable based on different granularities. For example,
Fig. 2(a) illustrates an RTS consisting of 36 cells. We define
the maximum number of cells in a row or a column as λ.
We set λ = 8 in Fig.2(a). We describe the position of a cell
in GEM by column c and row r . Therefore, we use (r, c) to
denote the index of the cell. In the RTS, c starts from 0, and
increases by 1 from the left to the right; r starts from 0, and
increases by 1 from the bottom to the top. The index of each
cell is shown in Fig. 2(a).

For an attribute, we get the index of cell by its value
interval. For the simplicity of the expression, we formulate
several notations, the maximum value of the value range(Rm),
the left boundary value of the interval (left), and the right
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boundary value of the interval (right). The location algorithm
computes the c and r by

c =


left
Rm/λ

left 6= Rm

λ− 1 left = Rm
r =


right
Rm/λ

right 6= Rm

λ− 1 right = Rm

Fig.2(b) illustrates the event matching implemented on
RTS of a single attribute. From the definition of matched
subscriptions on value domain, we know that pmn .left ≤ vm
and pmn .right ≥ vm. Lines l1, l2, generated from vm, divide the
triangle area into three subareas, A, B, andC . Cells in the RTS
are divided into two types, some cells are contained in the area
A or B or C , the other is the cells penetrated by l1 and l2, like
area A′ and B′. It is obvious that the subscriptions in area C
are matched on this single attribute. The subscriptions located
in A′ and B′ need to carry out further matching. Accordingly,
the subscriptions in subarea A and B are non-matched areas.
In this case, we get the areas consist of C , A′ and B′ that
cover all candidates of matched subscriptions. Subscriptions
in cells contained in A′ and B′ need further matching. RTS
can conveniently and efficiently get the candidate matching
area at one time, instead of traversing the cells one by one,
which will cost much more time.

3) LOCAL-ADJUSTMENT MECHANISM OF GEM-TREE
In order to maintain a stable performance of GEM-Tree under
different workloads, and the performance will not deterio-
rate rapidly with the increase of subscriptions, we propose a
local-adjustment mechanism to cripple the drawback, includ-
ing ranking function and selection strategy of split attribute.
For each RTS, we get the total number of subscriptions(n)
it has stored internally and the total number of attributes(h)
in the subscriptions that have not occurred in the path from
the root node to the current node. And we call the number of
attributes in the event the length of the event(lene), and the
number of attributes in the search path from the root node to
the current node is called the length of the path(lenp). Each
RTS has a matching rate(m) for the attribute corresponding
to the event, which can be obtained by low-cost calculation.
If the subscriptions follow the Uniform distribution, it is
effortless to inferm = 2vm(Rm−vm)

(Rm)2
. The cost of eventmatching

is directly related to the number of predicates that need to find
out whether the value of the event falls into the interval of
the subscription attribute value. So the cost of matching all
subscriptions in an RTS can be approximated as

cost = mnα + mh

The former is the matching cost of subscriptions in the inter-
section area, where α is a constant, and the latter is the
matching cost of the attributes that cannot be matched by
the graph partitioning matching method. And we know that a
vNode contains a RTS. For the ith vNode, it can be considered
as the root node of the GEM-Tree subtree, then the total cost

of matching all subscriptions in the subtree is

cost(vi) =


miniα + mihi if vNodei is a leaf

node or lene = lenp∑(
micost(vj)

)
+miniα + mihi otherwise

where vj is immediate descendants of vi. And The total num-
ber of subscriptions in the subtree is

num(vi) =

{
ni if vi is leaf node∑(

num(vj)
)
+ ni otherwise

Therefore, the average cost of matching a subscription in the
branch where vi is the root node is

rank(vi) =
cost(vi)
num(vi)

We name rank(vi) the ranking function, which computes a
ranking for each vNode over k events. rank(vi) is essentially
the matching cost, that is, the lower the matching cost of
the node, the higher it’s ranking. Hence, we ought to give
preference to the node with high ranking during subscriptions
insertion.

Another pivotal factor affecting the performance of
GEM-Tree is the choice of split attributes.We can also handle
the problem using a cost-based analysis similar to the above.
The difference is that here we only consider the change in
matching cost caused by the new node because the distribu-
tion of subscriptions in other nodes has not changed. Suppose
the parameters of the triangle area with an overflowing node
are n and h. After selecting a split attribute and generating
a new node, the parameters of the original triangle area
are noriginal and horiginal . The corresponding parameters for
the new triangle area are nnew, hnew respectively. There are
equations relation between them.

n = nnew + noriginal h = hnew + nnew + horiginal

The matching cost after generating a new node is

cost = moriginalnoriginalα + moriginalhoriginal

+mnewnnewα + mnewhnew

What is obtained by combining the above three equations is

cost = moriginalnα + moriginalh+ (mnew − moriginal)hnew

+(mnewα − moriginalα − moriginal)nnew

m is determined by the value of events, which is not a
constant, and we mainly consider the impact of the number
of subscriptions moved to the new node on the matching
performance. So we weaken the importance of m and con-
sider that mnew and moriginal are approximately equal, that
is, (mnew − moriginal) ≈ 0. Therefore, when selecting split
attributes, we prefer the most popular attribute.

164094 VOLUME 7, 2019



W. Fan et al.: GEM-Tree: Tree-Based Analytic Geometrical Multi-Dimensional Content-Based Event Matching

Algorithm 1 InsertSub
INPUT:sub, aNode, vNode
01. foundAttr = false
02. if aNode.atrrDirectory.size != 0 then
03. for each attr in sub do
04. if !inPath(attr) then
05. for each node in attrDirectory do
06. if node.attr == attr then
07. foundAttr = true
08. if node.ranking > vNodeoptimal .ranking then
09. vNodeoptimal = node
10. if foundAttr then
11. c = location(sub[vNodeoptimal .attrID].left)
12. r = location(sub[vNodeoptimal .attrID].right)
13. aNodenext = vNodeoptimal .RTS[r][c]
14. InsertSub(sub, aNodenext , vNodeoptimal)
15. UpdateRanking(aNodenext )
16. else
17. aNode.storage(sub)
18. if aNode.isOverflowing then
19. attrsplit ← selectMostPopularAttribute
20. Call MoveSubs (attrsplit , aNode, vNode, vNodenew)
21. aNode.attrDirectory.storage(vNodenew)

C. GEM-TREE IMPLEMENTATION
The algorithm for inserting subscriptions dominates the
dynamic variability of GEM-Tree, which is the basis for
efficient and feasible index structure. In Algorithm 1, we take
sub, aNode, and vNode, vNode is the parent of aNode,
as input. Initially, the aNode is the root node and the vNode
is null. In general, the insertion is recursively implemented
in two steps. Firstly, we search the attribute in atrrDirec-
tory, which did not appear in the path from the root node
to the current node(line 4). If there are several candidates,
we choose the one with the highest ranking(line 5-9). When
the attribute is found, we also get an optimal vNode. And
then the location algorithm is used to locate the cell that
the interval of the attribute belongs to in the RTS(line 13).
The insertion is not accomplished yet. The sub, aNode cor-
responding to the cell, and the optimal vNode are passed to
the InsertSub. Algorithm 1 is executed again from scratch
again(line 14).

On the other hand, if the attribute is not found, the current
aNodemaintains this subscription(line 17).When the number
of subscriptions in aNode exceeds its maximum capacity,
GEM-Tree will generate a new vNode(line 19). Primarily,
the most popular attribute is selected as the split attribute in
the overflowing node. The subscription including the split
attribute in the overflowing node is then moved to the new
vNode(line 20) and the corresponding subscription in the
original vNode is deleted. The pseudo code in Algorithm 2
embodies this process.

The MatchEvent algorithm can be divided into two steps.
One is the matching subscription(line 1) and the other is a

Algorithm 2 MoveSubs

INPUT:attrsplit , aNode, vNode, vNodenew

1. for each sub in aNode do
2. for each attr in sub do
3. if attr == attrsplit then
4. c = location(sub[attrID].left)
5. r = location(sub[attrID].right)
6. vNodenew.RTS[r][c].storage(sub)
7. vNode.RTS[r][c].erase(sub)
8. break

Algorithm 3 MatchEvent
INPUT: event, aNode, vNode, matchedSub, intersectionAttr
OUTPUT:matchedSub
01. Call CheckaNode with inputs
02. for each attr in event do
03. if aNode.attrDirectory.contains(attr) then
04. index = location(event[attrID].value)

{match in the partial matching cell}
05. for (r = index + 1; r<λ; r ++) do
06. for (c=0; c<index; c++) do
07. aNodenew=aNode.attrDirectory[attrID].RTS[r][c]
08. vNodenew=aNode.attrDirectory[attrID]
09. Call MatchEvent(event, aNodenew, vNodenew,

matchedSub, intersectionAttr)
{match in the intersecting cell}

10. intersectionAttr.storage(attr)
11. for (r = index; r<λ; r++) do
12. aNodenew =aNode.attrDirectory[attrID].RTS[r][index]
13. Call MatchEvent(event, aNodenew, vNodenew,

matchedSub, intersectionAttr)
14. for (c=0; c < index; c++) do
15. aNodenew =aNode.attrDirectory[attrID].RTS[index][c]
16. Call MatchEvent(event, aNodenew, vNodenew,

matchedSub, intersectionAttr)

recursive call MatchEvent . We take event , aNode, vNode,
matchedSub, and intersectionAttr as input. matchedSub is
used to store matched subscriptions, and intersectionAttr
aims to mark attributes that need to be further matched.
During the matching process of CheckaNode, each attribute
in the subscription is checked. If the event does not contain
any of the attributes in the subscription, then it can be directly
determined to be non-matched(line 16). Alternatively, if the
attribute is found in the subscription(line 4), it will be more
complicated. First, if the attribute is not in the path from the
root node to the current node(line 6), the result of the partial
match is based on whether the value of the event falls into the
interval of the attribute value(line 7). If the attribute appears
in the path and intersectionAtrr doesn’t contain it(line 11),
it is a partial match. Otherwise, a further match is performed.
Finally, if each attribute in the subscription matches partially,
then the subscription matches the event(line 18). The detail
of the above process is shown in Algorithm 4.
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Algorithm 4 CheckaNode
INPUT: event, aNode, vNode, matchedSub, intersectionAttr
OUTPUT: matchedSub
01. for each sub in aNode do
02. isMatched = true
03. for each attr in sub do
04. if event.contains(attr) then
05. value = event[attrID].value
06. if !inPath(attr) then
07. if !sub[attrID].interval.covers(value) then
08. isMatched = false
09. break
10. else
11. if intersectionAttr.contains(attr) then
12. if !sub[attrID].interval.covers(value) then
13. isMatched = false
14. break
15. else
16. isMatched = false
17. break
18. if isMatched then
19. matchedSub.storage(sub)

The second part of the MatchEvent algorithm is to con-
tinue exploring potential matching subscriptions. For each
attribute in the event, if the attrDirectory of aNode con-
tains it(line 3), then there may be subscriptions that match
the event in the subtree. It’s easy to obtain candidate cells
by the value of attribute. And they are divided into two
categories, one is the partial matching cell, and all sub-
scriptions in it are partial matching with the event without
any additional calculations(line 5-9). The other is the inter-
secting cell(line 10-16), which must be further evaluated at
CheckaNode(line 10-17).

D. GLOBAL-ADJUSTMENT MECHANISM OF GEM-TREE
In essence, the order of attributes on the search path has a
big impact on matching performance. The local-adjustment
mechanism simply makes a locally optimal choice on
the attribute because of the shortage of subscription dis-
tribution information. And if we obtain more informa-
tion about the distribution of all inserted subscriptions in
each dimension, we can get a better order of attribute
selection.

There are some notions relevant to our global-adjustment
mechanism of GEM-Tree: the average length of the subscr-
iption(lavg), the RTS is divided into k cells(k), the number
of subscriptions(ni) and predicates(pi) in the ith RTS on
the insertion path, the matching rate of ith RTS(mi), and
dispersion(di), which is the standard deviation of the number
of subscriptions in a cell. For RTS, the worst case is that
each cell has a child aNode and each vNode layer is a same
attribute. Under this assumption, we analyze the matching
cost of a path of length lavg. The matching cost of the ith

attribute of the path from top to bottom is

PartCosti = (pi − ini + αni)
1

k i−1
k i−1

i∏
l=1

ml
β

di−1

pi − ini is the matching cost of the attributes that cannot be
matched by the graphics division. αni is the matching cost of
the intersection area. The ith layer has a maximum of k i−1

RTS. After each RTS filter on the path, the matching rate on
the ith layer is

∏i
l=1 ml . The greater the di, the more con-

centrated the subscription, the fewer branches are generated
and the corresponding matching cost is reduced. It indicates
that the matching cost is inversely proportional to the di. And
the relationship between ni and pi can be approximated as
pi = ρni. So,

PartCosti = (ρ − i+ α)ni
i∏

l=1

ml
β

di−1

And the cost of matching on a path of length lavg is

Cost =
lavg∑
i=1

PartCosti

This shows that the matching cost is mainly determined
by ni

∏i
l=1 ml and di. It is proportional to ni

∏i
l=1 ml and

inversely proportional to di. The larger i of
∏i

l=1 ml is,
the smaller

∏i
l=1 ml will be. The number of preceding RTS

is less, which causes it to be more likely to overflow, so the
di has a greater impact on the attributes in the back. Thus,
we conclude that it is more advantageous to reduce the cost
of matching by arranging attributes with a larger sum of ni
and di in later spot.
When the subscription is inserted, an RTS is built for each

attribute, and each attribute of the subscription is traversed for
insertion. Through the sum of ni and di, we can get an order
of attribute selection. All inserted subscriptions are inserted
by a new priority order again.

V. EXPERIMENT RESULTS AND
PERFORMANCE EVALUATION
Our experiments are implemented in 8 scenarios with multi-
ple parameters so that the performance of GEM-Tree can be
evaluated extensively. GEM-Tree is compared with 3 state-
of-the-art reference schemes, BE-Tree [11], TAMA [15] and
OP-Index [16]. We also simulate the scheme that doesn’t
use global optimization, which is used GEM-Tree (noOpt)
to represent. We compare the matching time of the various
schemes under different criteria because matching time is a
critical performance indicator for the pub/sub systems. The
insertion time and memory consumption are tested as well.
In the experiments, we implement GEM-Tree in the C++
programming language. The programs are executed on server
with Linux 3.8.0-29-generic, Ubuntu 12.04.3 LTS, gcc 4.6.3,
and 64GB RAM.

In our experiments, we generate a subscription dataset
and event dataset for the performance evaluations for dif-
ferent purposes. The workload is determined by the number
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TABLE 1. Parameters used in experiments.

FIGURE 3. The event matching time with different number of
subscriptions.

of subscriptions, which is given by N . And the number of
attribute dimensions is denoted as M . The attribute values of
interval in subscriptions and events are generated from the
value domains of multiple attributes with varying cardinal-
ities, which are denoted by τ . The number of attributes in
subscriptions is defined as ξ . The property of the ratio of
event matching subscriptions in the system is called match
rate, which is donated as θ . If the left boundary value of the
interval equals the right boundary value of the interval, it is
called the single value interval. And the ratio of single value
interval in subscriptions is given by µ. The settings of the
above parameters are summarized in Table. 1.

A. EVENT MATCHING TIME
The matching time is the most important metric to evaluate
the performance of matching schemes. It is influenced by
many parameters and comprehensive experiments are con-
ducted to observe the impacts of these parameters. 500 events
are sent to measure the average matching time in each exper-
iment. In the experiments, interval value, event value and
attributes are generated uniformly unless stated clearly.

1) DIFFERENT NUMBER OF SUBSCRIPTIONS
As is shown in Fig. 3,N increases from 1million to 3 million,
while the other parameters are M = 50, τ = 32, ξ = 7,
θ = 0.01 and µ = 0.3. In general, matching time increases
with the number of subscriptions and GEM-Tree has the best
performance. When the number of subscriptions is 1 million,
GEM-Tree is almost 1.6, 13.3 and 17.2 times faster than
BE-Tree, OP-Index and TAMA, respectively. As the sub-
scriptions increase, the superior performance of GEM-Tree is

FIGURE 4. The event matching time with different number of
subscriptions under Zipf distribution.

more obvious. Moreover, GEM-Tree improves the matching
time of GEM-Tree(noOpt) by 16%.

2) DIFFERENT DISTRIBUTION OF SUBSCRIPTIONS
In reality, the distribution of subscriptions is probably not
uniform, but rather close to the Zipf distribution. This brings
about an increase in the concentration of the subscription
distribution, and a large number of subscriptions are stored
in a local area of the index structure, which will undoubtedly
increase matching cost. Under Zipf distribution, we measure
the event matching time of the 4 schemes with the increase of
N from 1 million to 3 million, and the other parameters are
M = 50, τ = 32, ξ = 7, θ = 0.01 and µ = 0.3. As shown
in Fig. 4, the matching time of all schemes is increased.

The reason that GEM-Tree receives the least impact
on subscription distribution is its adjustment mechanism.
Because the local-adjustment mechanism is a local optimal
adjustment for the index structure, under the Zipf distribu-
tion, the frequency of overflowing node increases. GEM-Tree
selects the optimal attribute through the local-adjustment
mechanism to generate a new node to minimize the negative
impact.

3) DIFFERENT NUMBER OF DIMENSIONS
From the results in Fig. 5, where M grows from 20 to 100,
and other settings are N = 1M , τ = 32, ξ = 7, θ =
0.01 and µ = 0.3, M has a great impact on all schemes.
Because as M increases, subscriptions are distributed more
uniformly. On the one hand, for the tree index structure,
it reduces the height of the tree. On the other hand, the number
of subscriptions in the TAMA bucket is reduced, and the
list in OP-Index is shortened, which is beneficial for event
matching. When M = 40, the performance of OP-Index
and TAMA is reversed. Because when M is small, the list in
OP-Index is very long, and the search in the list is very time
consuming. However, the length of the list rapidly decreases
with an increase of dimensions, and the performance of the
OP-Index also recovers.

4) DIFFERENT CARDINALITIES OF ATTRIBUTE VALUE
As τ grows, the value of subscriptions and events is more
diverse. In other words, there are more options for the left
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FIGURE 5. The event matching time with different number of dimensions.

FIGURE 6. The event matching time with different number of cardinalities
of attribute value.

and right boundary value of the subscription interval and the
value of the event. As is shown in Fig. 6, we measure the
matching time with different cardinalities of attribute value.
In the experiments, τ increases from 16 to 80, while the other
settings areN = 1M ,M = 50, ξ = 7, θ = 0.01 andµ = 0.3.
Generally speaking, the curve has almost no fluctuations and
the effect of τ parameter on all schemes can be ignored.

5) DIFFERENT NUMBER OF ATTRIBUTES IN SUBSCRIPTIONS
The number of attributes in subscriptions also affects the
performance of the event matching. Increasing the number
of attributes increases the workload because, to find all the
matched subscriptions, more attributes in the subscriptions
need to be matched. In the experiments, the average number
of attributes per subscription is set from 4 to 20, and other
parameters are N = 1M , M = 50, τ = 32, θ = 0.01
and µ = 0.3, and the performance of schemes are shown
in Fig. 7. TAMA and OP-Index is more sensitive to subscrip-
tion size than BE-Tree and GEM-Tree. When the number
of attributes is low, the performance of OP-Index is just
below the BE-Tree and GEM-Tree, as the average number
of attributes in subscriptions increases, it is obvious that
event matching time grows rapidly. Because unlike BE-Tree
and GEM-Tree divide the subscriptions on both attribute and
value domain, OP-Index divides subscriptions on their typical
attribute and operators. This method is destined to cost more
time on excluding non-matched subscriptions under more
attributes in subscriptions. It is no surprise that OP-Index has

FIGURE 7. The event matching time with different number of attributes.

FIGURE 8. The event matching time with different match rate of
subscriptions.

poor performance when the size of attributes in subscriptions
extend. Among the schemes in the experiments, GEM-Tree
has the best performance with the extension of attributes size.

6) DIFFERENT MATCH RATE
The matching rate is another indispensable factor that affects
the event matching time. When the match rate increases,
the number of candidate subscriptions also increases.
It means more time will be paid on event matching. In order
to fully evaluate schemes’ performance, the number of sub-
scriptions in the dataset is set to N = 1M , dimensionality is
d = 50, the number of attributes in subscriptions is ξ = 7 and
the single value interval rate is µ = 0.3. Under a workload
with medium expressiveness, while keeping the match rate
below 10%, GEM-Tree outperforms other schemes. For the
match rate below 4%, OP-Index is more outstanding than
TAMA. Larger match rate means more subscriptions that
match event. Because the OP-Index counting algorithm is
performed after the predicate of the subscription partially
matched event, which is different from TAMA’s central-
ized integration of all partial matching results. Therefore,
OP-Index is more sensitive to match rate than TAMA. The
experiment results are shown in Fig. 8.

7) DIFFERENT SINGLE VALUE INTERVAL RATE
The lowest cost of checking whether the predicate of
subscription partially matched the event is the graph

164098 VOLUME 7, 2019



W. Fan et al.: GEM-Tree: Tree-Based Analytic Geometrical Multi-Dimensional Content-Based Event Matching

FIGURE 9. The event matching time with different single value interval
rate of subscriptions.

FIGURE 10. The total insertion time with different number of
subscriptions.

division method, and the worst is the left and right bound-
ary verification of the value interval. However, if the value
interval is a single value interval, only one check is required.
That means that the matching cost is halved, so the single
value interval rate helps to reduce the matching time. In the
experiments, we set N = 1M , M = 50, ξ = 7, θ = 0.01
and τ = 32, respectively.And µ is equidistantly chosen from
[0.1, 0.6]. The experimental result in Fig. 9 also confirms that
increasing the single value interval rate can speed up event
matching.

B. MAINTENANCE COSTS
1) INSERTION TIME
Event matching schemes organize the subscriptions by their
unique structures. The time of constructing their index struc-
ture is also the parameter to evaluate the schemes. When
the number of subscriptions increases, construction time
increases as well. As is shown in Fig. 10, experiments are car-
ried out to measure the event matching time of the 4 schemes
with different N from 1M to 3M, where the other settings
are M = 50, τ = 32, ξ = 7, θ = 0.01 and µ = 0.3.
From Fig. 10, GEM-Tree is no longer the best scheme in
terms of insertion time, it only surpasses TAMA. The reason
for the slow construction of TAMA is its multi-layered index
structure. The amount of calculation for each subscription
insertion is large, which translates into time cost. Building
the index structure of GEM-Tree is more expensive because
the structure used to organize subscriptions in GEM-Tree

FIGURE 11. The memory consumption with different number of
subscriptions.

is more complicated than structures in BE-Tree and
OP-Index.

2) MEMORY CONSUMPTION
In addition to insertion time, memory is another metric for
evaluating the maintenance costs. The results are shown
in Fig. 11, where N increases from 1M to 3M, and other
settings are M = 50, τ = 32, ξ = 7, θ = 0.01 and µ = 0.3.
The average memory consumptions of GEM-Tree, OP-Index,
TAMA, and BE-Tree per subscription are 1.53KB, 1.0KB,
2.0KB, 0.80KB, respectively. For TAMA, each subscription
is stored in multiple dimensions and stored multiple times in
each dimension, which is why it consumes a lot of memory.
And the larger d , the more memory consumption. Theoret-
ically, the space complexity of OP-Index for storing N sub-
scriptions with M attributes is O(1.5NM), because, on each
attribute, a subscription is stored once or twice. OP-Index
storage is relatively memory-saving. However, GEM-Tree
memory consumption is very large. The reason is that the
cells in the RTS are not all used, which causes a lot of space
waste, but it is precisely because of the special structure of the
RTS that the GEM-Tree matching time is much faster than
other schemes.

3) PERFORMANCE ANALYSIS OF THE
GLOBAL-ADJUSTMENT MECHANISM
The local-adjustment mechanism only makes a local optimal
adjustment for GEM-Tree because the available information
is deficient. However, if the subscription distribution infor-
mation is recorded when inserting the subscription, we can
analyze and extract feature information to further adjust the
index structure. Therefore, a global-adjustment mechanism
is proposed to achieve a global adjustment to GEM-Tree to
improve its performance. In all experiments, we also eval-
uate the performance of the GEM-Tree optimized by the
global-adjustment mechanism, and the parameters are the
same as other schemes. It can be seen from the experimental
results that the optimization of GEM-Tree is always the best
in matching time. Compared to GEM-Tree without optimiza-
tion, its matching speed can be increased by about 16%. This
is due to the fact that the purpose of the global-adjustment
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mechanism is to find a global optimal index structure with-
out being affected by the subscription insertion order. But
this adjustment definitely increases the insertion time of the
subscription. Surprisingly, however, the extra memory con-
sumption is light. Because each cell in the RTS only needs to
store the number of subscriptions without storing any other
information. So each cell consumes 4 bytes, and the space
complexity of the extra memory is O( k(k+1)2 M ) = O(k2M ).
Compared to the memory occupied by GEM-Tree, the extra
memory required by the optimization mechanism is negligi-
ble. As shown in Figure. 11, the curves of GEM-Tree(noOpt)
and GEM-Tree coincide.

VI. CONCLUSION
This paper introduces GEM-Tree, an efficient index structure
to improve the event matching for multi-dimensional content-
based pub/sub services. GEM-Tree is implemented by tree
structure and right triangle structure. Overall, GEM-Tree
is a tree structure. When inserting subscriptions, the local-
adjustment mechanism assists in the dynamic generation of
the index structure, enabling GEM-Tree to have an excel-
lent performance. And right triangle structure shrinks search
space rapidly, which excludes non-matched subscriptions
hierarchically, the two of them realize high performance of
GEM-Tree among other event matching schemes. Moreover,
the global-adjustment mechanism of GEM-Tree makes a
global adjustment to GEM-Tree by analyzing all the inserted
subscriptions. The event matching speed of GEM-Tree is fur-
ther improved at an acceptable cost. Extensive experiments
are conducted to evaluate the performance of GEM-Tree and
experimental results show that GEM-Tree outperforms its
counterparts to a large degree, especially in the case where
the number of subscriptions is large.
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