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ABSTRACT The statistics of disease spores is significant for early strategy design of disease control in
precision agriculture. To obtain the statistics information of spores in microscopic images, it is crucial to
segment spores from images. In this paper, we research a deep learning based method to segment spores,
taking anthrax spores as the research objects. We first built an anthrax spore dataset consisting of more
than 40,000 spores with accurate labeled spore boundaries to advance the state of the art technology of
spore statistics. Then on consideration of the complex class imbalances in actual anthrax spore images,
we investigate how class imbalances and hard examples simultaneously influence the loss during training
and we discover that hard examples are more likely to appear at the pixels of rare pixels, such as small
class pixels and contour pixels. Based on this discovery, we propose Constrained Focal Loss (CFL),
which focuses on small class objects, and has a constrained term related to hard examples. In addition,
we further propose CFL∗, where high importance is put on the pixels surrounding spore contours to improve
classification accuracy. The results show that the mean IoU of the DeepLabv3+ trained with CFL∗ (called
as CFL∗Net) achieves 91.0%, higher than original DeepLabv3+ with cross-entropy by 8.6 points, and the
DeepLabv3+ with Focal Loss by 10.4 points. Moreover, CFLNet∗ can achieve better performance than
original DeepLabv3+, using less than one-third of the training samples and half of the training steps.

INDEX TERMS Image segmentation, class imbalance, focal Loss, hard example, convolutional neural
networks (CNN).

I. INTRODUCTION
The diseases during the growth of crops and the
storage/transportation of fruits and vegetables are one of
the main reasons that cause the reduction of production in
agricultural [1]. For example, about 50% of citrus peel is
destroyed by diseases every year [2]. In the tropical and sub-
tropical regions, due to the environmental factors, the post-
harvest rot rate of fruits is as high as 50% [3]. The diseases
are mainly attributed to the pathogenic role of pathogenic
fungi, as an example 90% of crop diseases are caused by
fungal spores [4]. If the fungal spores causing the diseases
of crops, fruits and vegetables can be monitored, detected
and counted at the early stages of diseases, and certain
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preventive measures are taken, it will be more effective.
In addition, during the development of drugs for disease con-
trol, the statistics information of fungal spores can reveal the
degree of resistance and activity of spores [5], thus providing
strong technical support for the researches of new biological
or chemical drugs. Therefore, the statistics of spores are
of great significance for precision agriculture. The most
commonly used manual statistics method of spores relies on
naked eyes, which is time-consuming, laborious and is easy to
make mistakes.With the development of computer vision and
artificial intelligence, the automatic information statistics of
spores have gradually attracted the attentions of researchers.
Generally, they can be divided into two categories: traditional
automatic methods and deep learning based methods.

For the traditional automatic methods, researchers need to
design a suitable feature extractor to separate spores from
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background, and based on the segmentation result, perform
subsequent counting or recognition of spores. For exam-
ple, in [6], to detect rice blast spores the authors extract
edges of spore images and segment the edges with FCM,
followed by morphological operators and shape-based fil-
tering. In [7], morphological reconstruction filter and two-
dimensional threshold of intensity are used, and watershed
algorithm is employed to separate spores from background.
In [8], urediospores are automatically segmented by clus-
tering RGB pixel values with Kmeans, and then watershed
algorithm is used for counting. Similarly, in [9], the authors
segment spores by clustering pixel values with Kmeans, and
isolate touching urediniospores based on their shape and area
factors. In addition, Artificial Neural Network (ANN) is used
for the detection of spores. For example, in [10], a semi-
automated counting method of arbuscular mycorrhizal fungi
spores is proposed. In [11], ANN is employed to automati-
cally detect and count powdery mildew spores. These tradi-
tional methods are effective in their respective applications.
However, due to the poor handcrafted feature extractors, they
are successful only when the background is simple and must
be supported by complex image acquisition methods [9].
For complex and changeable scenes, traditional handcraft
features are no longer effective.

Different from traditional methods, deep learning can learn
how to extract the features from a large number of samples.
It emerges as an efficient technique, and becomes the main-
stream approach in recent years. At present, there are few
reports on the deep learning basedmethod for the information
statistics of spores. Only in the literature [12], the authors
train a deep convolutional network to identify 5 species of
spores. This work aims for the identification of spore species,
yet the segmentation of spores has not been reported. The
segmentation of disease spores is to find the boundaries sep-
arating the disease spores from the surrounding environment.
Actually, it is crucial to segment spores from microscopic
images for some information statistics, such as the density
and the number of spores. However, to the best of our knowl-
edge, currently there is a lack of anthrax spore dataset for
the network training. So we first construct an anthrax spore
dataset consisting of more than 40,000 spores with accurate
labeled spore boundaries. Then, we research a deep learning
based method for the segmentation of anthrax spores.

In the field of computer vision, the object segmentation is a
task of pixel-level classification. For the task, the deep learn-
ing based methods have been pioneered by Long et al. [13],
who improves the image-level classification to pixel-level
classification. Later, many networks for pixel-level segmen-
tation arise, mainly considering two aspects: the integration
of local and global knowledge and the corresponding opti-
mization of network structure. In terms of the integration of
local and global knowledge, the authors of [14] put forward
a post-processing stage using a Conditional Random Field
(CRF); Zheng et al. [15] propose the reformulation of the
dense CRF as an integral part of network; Pu et al. [16]
propose GraphNet, which takes the graph that combines the

low-level spatial relation and high-level semantic content
as input and learns to predict image masks. In addition,
the use of multi-scale predictions is also a possible way to
deal with local and global knowledge integration [17], [18].
In terms of network structure, researchers often adopt
convolutional-deconvolution and pooling-unpooling struc-
tures, with various design details, such as pooled layer
index [19], convolution-like operation [20], gate function
based structure-aware convolution [21], and so on. Espe-
cially, in the famous DeepLab series [14], [22], the use of
atrous convolution improves greatly the network. However,
whatever from the view of integration of knowledge or net-
work structure, the focus of the researches is on feature
extraction at the front of the network, and the problem of
classification at the back is less studied.

Specifically, DeepLabv3+ [22] is considered to be
the state-of-the-art in pixel-level classification for natural
images. The mean IoU of deepLabv3+, trained on our
anthrax spore dataset, reaches 83%. Compared with those
traditional methods, it is a promising performance but still
leaves a lot of room for improvement. For those spores that
are adherent together, or close to each other, it is difficult to
segment them from background with DeepLabv3+.

In this paper, to address the above problems, we pay
attention to how to classify at the back end of network in
deep neural network, and we identify class imbalance during
training as the main obstacle impeding deepLabv3+ from
improving its performance. DeepLabv3+ is designed based
on the dataset with balanced class, such as PASCALVOC and
Cityscapes, where the problem of class imbalance is avoided
when the dataset is being created. However, our images are
taken randomly from real petri dishes, where the problem of
class imbalance is serious.

We consider a novel loss function, where the loss value
from the spore pixels is magnified. Then a natural question
to ask is how to determine the degree of magnification. Gen-
erally, the degree of magnification can be calculated based
on the ratio of the number of object pixels to that of the
background. However, we have verified that these methods
are not effective for our dataset. In another hand, in the field of
machine learning, the problem of hard example is also worth
paying attention to, which is demonstrated by the famous
Focal Loss (FL) [23]. In FL, the loss of sample is re-weighted
according to the probability value of its output. Using FL,
the performance of one-stage detector can be improved to
match the two-stage detector.

In this paper, instead of considering class imbalances or
hard example alone, we explore the relationship between
them. We found that hard examples are more likely to appear
at spore pixels. That is to say, the pixels of spores are not
only small class, but also hard examples. If we magnify their
losses only based on the frequency, the loss of small class will
dominate the whole loss, whichwould lead to over correction.
Based on the above observation, we propose a Constrained
Focal Loss function (CFL) that simultaneously takes into
account class imbalances and hard sample. The loss function
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focuses on the loss of the small class, meanwhile considers
the fact that samples from small class are also hard examples.
In addition to spore pixels, we discover pixels around spore
contours are also prone to become hard examples during
training. We further propose CFL∗, where high importance
is put on the pixels surrounding spore contours to improve
classification accuracy.

The results show that the mean IoU of the DeepLabv3+
trained with CFL∗(called as CFL∗Net) achieves 91.0%,
higher than the original DeepLabv3+ with cross entropy by
8.6, and the DeepLabv3+ with Focal Loss by 10.4 points.
Moreover, CFLNet∗ can achieve better performance than
original DeepLabv3+, using less than one-third of the train-
ing samples and half of the training steps.

Our main contributions are as follows:
(1) We propose CFL, where the problems of traditional

class imbalance and hard example are taken into account
simultaneously. With the CFL, the performance of trained
model can be improved significantly.

(2) In the proposed CFL∗, the imbalance between the
contour pixels and the non-contour pixels are considered, and
the losses of pixels surrounding the contours are automati-
cally emphasized in the overall loss, thereby improving the
classification rate. Further, with CFL and CFL∗, the depen-
dence of network on the number of samples can be signifi-
cantly reduced and the efficiency of training can be greatly
improved.

(3) We built a large dataset consisting of more than
40,000 anthrax spores with accurate spore contours,
to advance the state-of-the-art in fungus statistics by placing
the question of fungus spores segmentation.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related deep learning techniques. Section 3 illus-
trates the material and anthrax spores dataset built in this
paper. Section 4 presents our CFL and CFL∗ loss used to
train the deep neural network. In Section 5, we validate our
method by various experiments on the anthrax spores dataset.
Conclusions are drawn in Section 6.

II. RELATED WORKS
In the field of deep learning, researchers are more interested
in exploring the network structures to improve its perfor-
mance and there are few work on the research of class imbal-
ance. However, in real datasets for training, class imbalance
is widespread [24], [25]. With the extensive application of
deep learning to various practical fields, the class imbalance
problems will be paid more and more attention.

A. CLASS IMBALANCE
In general, class imbalance refers to a large difference in the
amount of data between different categories. Without correc-
tion mechanisms, classifier trained with imbalance dataset
tends to be bias towards the majority classes. There exist two
kinds of methods to correct this bias effect: data-level and
algorithm-level [26].

At the data-level, the common way is to re-sample the
training data, e.g., by the over-sampling of minority classes
or under-sampling of majority classes or their combina-
tion [27], [28], [29]. Such approaches are known to change
the underlying data distributions and may result in increased
computational effort and risk of over-fitting. Another way
to re-sample the training data is the ensemble of classi-
fiers, where each classifier is induced by different samples
from the original dataset [30], [31]. In order to better learn
the distribution of dataset, the Generative Adversarial Net-
work is employed to augment the dataset for the training of
model [32], [33]. In addition, other techniques are employed
for training the deep neural network, such as iterative sam-
pling [34] and incremental rectification of mini-batches [26].

Compared with the data-based methods, the algorithm-
based methods are more intuitive. By introducing weight
for each category or each sample, more emphasis is put on
the minority classes in the objective, thereby the algorithmic
behavior changes. The simplest way is to define the weight
parameter as a hyper parameter of category [23], yet it is dif-
ficult to obtain an optimal heuristic value. Commonly, weight
parameters are set as statistics based cost-sensitive matri-
ces [35], [36], or additional learnable parameters [37], [38].
However, the complexity of the model and the training cost
will be increased, and generally it is difficult to optimize the
cost matrix [26].

B. HARD EXAMPLES
Hard example mining is another concern in the community
of machine learning and has been exploited in many tasks,
e.g., object detection [23], [39], [40], face recognition [41],
and image categorization [42]. In the hard example mining,
it is argued that model can learn much from hard exam-
ples than easy examples, so the network can learn better
by assigning higher weights to hard examples. The hard
example mining can be conducted by solving two prob-
lems: (1) how to distinguish hard examples; (2) how to
use hard examples to improve network performance. For
example, an additional network [43], or additional enhance-
ment images technique [44] are employed to distinguish
hard examples. In [39], the authors use the model output
probability to select hard examples, and then the network
parameters is updated only according to the hard examples.
More commonly, in FL [23], a reverse function of sample
output probability was used to adjust the weights for each
sample loss in the whole loss. Currently, the networks using
the technique of hard example mining have been greatly
improved, especially in the task of object detection [23], [40].
Yet, the problems of hard example are considered only from
the view of the difficulty degree of samples itself.

To the best of our knowledge, the joint influences of
class imbalance and hard example on loss value are rarely
studied. In [23], [40], the problems of class imbalance and
the hard example are both considered, by adding two inde-
pendent parameters which represent class balance and dif-
ficulty degree respectively, into the loss function. However,
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the two parameters are independent and the best parameters
are obtained through multiple testing the combinations of the
two parameters, which causes the parameter debugging dif-
ficulty. Actually, the relationship between the hard example
problem and the class imbalance problem is also worth atten-
tion. During training, samples from small class are always
ignored, their feature cannot be well updated into the model
through learning and they are likely to become hard samples
gradually.

III. MATERIALS AND DATASET
Considering that crops, fruits and vegetables are susceptible
to anthrax disease, we take anthrax spores as our research
objects. It is well known that a large number of samples are
a necessary prerequisite for the effective application of deep
learning methods. However, to the best of our knowledge,
at present the fungal spore dataset is only reported in the
literature [9]. In their dataset, there are 40,800 spores, but
the annotations of spore boundaries are missing for training.
Moreover, the morphology of their Penicillioides, Restrictus,
Versicolor, Cladosporium and Eurotium spores differs greatly
from that of anthrax spores.

In order to advance the latest technology of spore statistics,
we construct a new anthrax fungal spore dataset by proposing
the problem of fungal spore segmentation. We have collected
1600 (resolution:1920∗1080) images of anthrax spores and
construct a dataset by data augmentation. In our dataset, there
are 12800 images and more than 40,000 spores with accurate
labeled spore boundaries. In order to enhance the robust-
ness of network to complex conditions, the interferences are
included in our dataset, such as hyphae (as shown in the red
ellipse of Fig.1(a)), impurities (as shown in the blue ellipse of
Fig.1(b)) and stains (as shown in the red ellipses of Fig.1(b)).

FIGURE 1. Samples of anthrax fungus dataset.

Spore culture vessel and experimental image acquisition
device are shown in Fig.2. The process of obtaining anthrax
spores images is described as follows. Firstly, 10 strains and
blocks of anthrax with a diameter of 6mm are taken by using a
hole punker, which are respectively connected to 50mL liquid
PD medium and then are cultured for 2 days by shock at
180 RPM. Secondly the bacterial liquid is filtered and we
take 5 microliter onto a glass slide. Then the spore images
are taken by a microscope (model: SDPTOP E5).

FIGURE 2. Experimental device.

IV. CONSTRAINED-FOCAL-LOSS (CFL) AND CFL∗

The original DeepLabv3+, which takes cross entropy (CE) as
the loss function, can reach 83% mIoU. However, the trained
network is failure to identify some pixels, such as pixels
on or around the spore contours, and those spores pixels
that are adherent together, or close to each other. We argue
the class imbalance as the main obstacle impeding network
from accurately classifying those pixels andwe propose novel
loss functions to improve the learning strategy of network.
Our loss is designed to address the binary segmentation of
unbalanced data. For the binary segmentation, CE is widely
used, so we introduce our loss function starting from the cross
entropy loss.

A. CROSS ENTROPY
The objective of training is to optimize the mean of the
sample losses sum, as shown in Eq. (1), and obtain the model
parameters when the loss reaches a minimum.

loss =
1
N

∑
i

Li(p, y) (1)

In Eq. (1), N is the number of the samples, Li is the loss of
the ith sample, p and y is the predicted value and ground truth
class label respectively. In binary classification task, cross
entropy loss (CE) is used to represent the loss of sample,
as shown in Eq. (2).

CE(p, y) =

{
− log(p) if y = 1
− log(1− p) otherwise

(2)

where y ∈ {−1,+1} and p ∈ [0, 1] is the model’s predicted
probability for the class with label y = 1. For notational
convenience, we define pt as:

pt (p, y) =

{
p if y = 1
1− p otherwise

(3)

and rewrite CE(p, y) = CE(pt ) = − log(pt ). It is easy to
know pt is the probability of ground truth class.

B. BALANCED CROSS ENTROPY
To solve the problem of class imbalance, a commonmethod is
introducing a weighting factor αt to balance the loss between
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objects and background (called as Balance Cross Entropy,
BCE), as shown in Eq. (4).

BCE(p, y) = −αt log(pt ) (4)

In the above equation, αt is represented as:

αt (y) =

{
α if y = 1
1− α otherwise

(5)

where α may be treated as a constant, or the reciprocal of
category frequency f (for convenience, we call it as Adaptive
Balance Cross Entropy, BCE_A), and the BCE_A can be
represented as:

BCE_A(p, y) = −1/f (y) log(pt ) (6)

By balancing, the weight of the pixel in smaller class is higher
than the one in larger class, meaning that more importance
is put on the small class. However, for the segmentation
of anthrax spores, such an up-weighting strategy for small
class cannot yield a more optimized model, verified by our
experiments.

C. FOCAL LOSS (FL)
In [23], the authors propose FL, in which the loss assigned
to well-classified example is down-weighted and thus hard
negatives is the focus, as shown in Eq. (7), where γ is the
tunable focusing parameter, denoting the degree of focus.

FL(pt ) = −(1− pt )γ log(pt ) (7)

Further, a α-balanced variant of the FL (called FL# for
convenience in this paper) is proposed to emphasize the small
class, as shown in Eq. (8).

FL#(pt ) = −αt (1− pt )γ log(pt ) (8)

where αt is defined by Eq. (5) and α in αt is a heuristic value.
Moreover, the authors of FL point that α interacts with γ
making it necessary to select the two together. In general,
α should be decreased slightly as γ increases.

D. CONSTRAINED FOCAL LOSS (CFL)
Our method is inspired by the above FL#. Since α and γ in
FL# are to redefine the loss function from the perspective of
class unbalance and hard example respectively, and they inter-
act to influence the performance of the trained model, there
should be some relationship between the class imbalance and
the hard example.

Our conjecture is confirmed, as shown in Fig.3. In the early
stages of training, the losses of spore pixels are usually higher
than that of background pixels (as shown in Fig.3(a)). As the
number of iterations increases, the loss is gradually concen-
trated on two kinds of pixels: the ones around the contours of
spore, and the unusual spore pixels that are strongly disturbed
by interferences (as shown in Fig.3 (b)) or adjacent spore (as
shown in Fig.3 (c)). At last, the loss mainly derives from
those pixels around the spores contours that are extremely

FIGURE 3. Prediction probability maps of ground truth class during the
training of DeepLabv3+ ((a) - (d) correspond to the iterations of 60, 1110,
14200 and 17700, respectively).

rare in dataset. In conclusion, the hard examples with large
loss always appear at the pixels of rare pixels.

Further, we randomly test the ratio of spore pixels to the
whole hard examples during training (DeepLabv3+). The
detail results are given in Table 1, in which pt is the prediction
probability of ground truth class. From Table 1, we can
know that pixels from small class overwhelm the whole hard
examples.

TABLE 1. The ratio of spore pixels to the overall hard examples.

From Fig.3 and Table 1, we can explain why the method
in [24] does not work well in the segmentation of anthrax
spores. Because spore pixels are not only pixels in small class
to be amplified in the loss function, but also hard examples
with large losses, if the losses of spore pixels are amplified
only according to frequency, the losses derived from spore
pixels will dominate the overall loss value, leading to over
correction.

Based on the above observation, we propose a novel
loss function, Constrained Focal Loss (CFL), to consider
class imbalance and hard example simultaneously. It can be
represented as

CFL(p, y) = −α1/βt log(pt ) (9)

αt (y) =
(
nb/no if y = 1
1 otherwise

(10)

In the above equations, nb and no are respectively the
numbers of background pixel and object pixel, which means
that the loss of small class will be amplified and the loss focus
on the small class. It is noted that αt can be calculated from
dataset. On the other hand, β is a value greater than 1, mean-
ing that the amplification will be constrained by β, whose
function is similar to the role of γ in FL, representing the
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difficulty degree to be classified. The harder the classification
is, the greater β is.

Unlike the FL [23] with a uniform constant αt , CFL accu-
rately amplifies the loss of small class based on the statistics.
Comparing to the FL# [23], where there are two parameters
αt and γ in the loss function, CFL has only one parameter
to be adjusted. In addition, different from the BCE_A [24],
CFL takes account of class imbalances and hard example
simultaneously, which avoids the over-amplification of the
loss from small class.

E. CFL∗

In CFL, the loss focuses on spore pixels, which only consid-
ers the traditional class imbalance. However, another imbal-
ance between the number of contour pixels and the one of
non-contour pixels is not involved. In actually, except spore
pixels, pixels surrounding spore contours account for a large
proportion in hard examples, as shown in Table 2. Besides,
we can know that as the increasing of the iterations, the pro-
portion tends to increase.

TABLE 2. The ratio of pixels surrounding the spore contours to the
overall hard examples.

Therefore, the pixels surrounding the spore contours are
typical hard examples in background. On the basis of CFL,we
further propose to focus the loss on the pixels surrounding
the spores. It is noted that the pixels surrounding the spore
contours are easy to be obtained in advance from dataset.
So we can add the positions prior of pixels surrounding spore
contour into the loss function. We denote the label image as
I and its dilated image as I∗. A variant of CFL (CFL∗) can be
expressed as:

CFL∗(p, y, y∗) = −α∗1/βt log(pt ) (11)

where y ∈ I , y∗ ∈ I∗, and α∗t is an extended weight
function, denoted as Eq. (12). Using CFL∗, the loss of pixels
surrounding spore contour (yi = 0 and y∗i = 1) will be as
important as the inner pixel (yi = 1) in the loss function.

α∗t (y
∗) =

(
nb/no y∗ = 1
1 otherwise

(12)

Table 3 shows the ratio of spore pixels and pixels surrounding
spore contours to the whole hard examples. It can be seen
that the sum of spore pixels and their surrounding pixels
are almost equal to the number of hard examples. Hence,
the main imbalance factors that hinder network performance
are dealt in CFL∗.

TABLE 3. The total ratio of spore pixels and pixels surrounding spore
contours to the whole hard examples.

V. EXPERIMENTS AND DISCUSSIONS
A. IMPLEMENTATION DETAILS
Training Protocol: Our experiment is performed on an
Intel(R) Core(TM) I7-7800x CPU@ 3.5GHZ and a NVIDIA
Titan XP GPU with 12GBRAM. We use DeepLabv3+ net-
work to extract the features of spore images. Except the
hyper-parameters, all the parameters in the model are ran-
domly initialized. In addition, a batch size of 2 is set and a
‘‘poly’’ learning rate policy is used, where the initial learning
rate is 0.007 and the power is 0.9.

We conduct our experiments in two stages. The two stages
aim to test the effect of the network and the training effi-
ciency, respectively. We use the mean IoU (intersection over
union) to evaluate the experimental results. Let G is the
ground truth set and I is the predicted set, IoU can be denoted
as follows.

IoU =
|G ∩ I |
|G ∪ I |

(13)

B. THE EFFECT OF INFERENCE WITH CFL
In the first stage, we use different loss functions to train
DeepLabv3+ only on a partial dataset with 400 images,
selected randomly from the training dataset. We demonstrate
the effectiveness of CFL, comparing it to the state-of-the-art
losses: (CE) [22], BCE-A ( α is set as Eq.(6)) [24], FL, and
FL# [23]. For FL and FL#, we evaluate the best parameter or
the best combination of parameters; the examples of effects
are shown in Fig .4.

The third row of Fig.4 shows the segmentation results of
network trained with CE. There exist some spores that failure
to be classified in image. To show them clearly, we mark
them with ellipses in the first row of Fig.5 and magnify
them in the second row of Fig .5. It is obvious that for those
special spores, such as the contaminated spores (as shown in
Fig.5(a)), those that are close together (in Fig.5(c))), and the
ones at the edge of the field of microscope view (as shown
in Fig.5(b)), the network trained with CE fail to segment
them. The reason is that those spores are sparsely distributed,
in other words, they are rare objects in the dataset. CE does
not pay special attention to this type of spores, so they are
neglected during training. While in CFL, the loss focuses
on the spore pixels. Hence CFL has a higher focus on the
specific spore pixels, and the network trained with CFL (for
convenience, we call the network CFLNet later in this paper)
can better identify those spores.
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FIGURE 4. Examples of result inferred by network using different losses.

FIGURE 5. Comparisons of segmentation result between CE and CFL.

We compare the performances of DeepLabv3+ trained
with different losses as shown in Table 4. From the 4th line
of Fig.4 and Table 4, it can be seen that using BCE_A,
the segmentation results are bias to the spore class and over
correction are very obvious. In our dataset, the mean ratios
of the number of spore pixel to that of the background are
about 200. Actually, a suitable magnification ratio is much

TABLE 4. Quantitative comparisons among different losses in
DeepLabv3+.

less than the mean ratio. This result is due to that the majority
of hard example comes from small classes, and increasing the
weight parameters only according to class frequency will lead
to the over-amplification of the loss of small classes.

Comparing FL to FL#, the performance of FL is better
than FL#. In our experiments, by multiple adjustments of
α and β, we obtain the best combination of parameters, but
the mean IoU of trained network with FL# is still lower than
FL. Comparing FL to our CFL, themean IoU of CFL is higher
than FL by 10.4 points for DeepLabv3+.

In addition, to further verify the effectiveness of our loss,
we use different losses to train U-Net [45], another famous
network for semantic segmentation, on our dataset. The
quantitative comparisons among different losses are shown
in Table 5. We can know the comparison results in U-Net are
similar to DeepLabv3+.

TABLE 5. Quantitative comparisons among different losses in U-Net.

We tested different values of β in CFL. It can be seen
in Fig.6 that the optimal value of β is 2 and 2.5 for
DeepLabv3+ and U-Net respectively. For DeepLabv3+,
when β is between 2 and 4, the IoU is not sensitive with β, and
for U-Net when β is between 2 and 3, the IoU is not sensitive
with β as well. Thus it is easy when tuning parameters
for CFL.

C. THE EFFECT OF INFERENCE WITH CFL∗

As described above, the network trained with CFL can better
identify the disturbed spores than with other losses. However,
there are still some adjacent spores that cannot be correctly
distinguished by the network, such as the spores in the green
rectangular in the 1th line of Fig.4(c). In this case, CFL∗Net
can correctly classify them.

We compare our CFL with CFL∗, as shown in Fig.7 and
Table 6. To further clearly illustrate their difference, we also
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FIGURE 6. The mean IoU of network using CFL with different β.

FIGURE 7. Comparison of result with CFL and CFL∗.

FIGURE 8. Comparison of Local result with CFL and CFL∗.

TABLE 6. Quantitative comparisons between CFL and CFL∗.

magnify the mask part of Fig.7 in Fig.8. Increasing the
weights of losses of pixels surrounding spore contours will
improve the network performance. Especially for those pixels
near the adhesion of adhering spores, CFLNet is difficult to
discriminate them from background, while CFLNet∗ is easy
to classify them.

Table 6 shows the comparison between CFL and CFL∗.
In CFL∗, more importance is put on the pixels surrounding

TABLE 7. Comparisons of training efficiency.

spore contours, and the mean IoU increases by about one to
four points.

Comparing DeepLabv3+ to U-Net, DeepLabv3+ gener-
ally performs better than U-Net. For DeepLabv3+, among
all the methods, the network using CFL∗ as loss function
provides clear segmentation of spores, and its mean IoU
achieves 91%, higher than CE by 8.6 points, and FL by
10.4 points. CFLNet∗ can discriminate the pixels of spores
from the pixels of stains in background, and get a clear spore
contours for those spores that stick together or close.

Fig.9 illustrates the performance evolution of network with
different losses during training. CFL andCFL∗ outperform all
previous loss functions. The superior performances of CFL∗

are demonstrated from the middle stages of the training (11k
training steps). In particular, the performance of CFL∗ is
improving steadily relative to other losses.

FIGURE 9. Evolution of mean IoU with different loss functions.

D. THE EFFICIENCY OF TRAINING USING CFL∗

We compare the efficiency of training among CE, FL, FL∗,
and CFL∗ in the second stage. We train DeepLabv3+ with
different loss functions on 1400 or 400 samples to achieve
approximate performance. The detail mean IoU, the number
of iterations and the number of samples are shown in Table 7.
Compared to other loss functions, the network using CFL∗

can obtain better performance with less than one-third of the
training samples and about half of the training steps required
by other loss functions. Thus it is effective and efficient to
choose CFL∗ as loss function.

It is worth mentioning that we plan to further establish
a dataset containing nearly 100 fungal spores. The CFL∗

reduces the dependence on labeled data, whichwill reduce the
workload of annotation, and facilitate efficient construction
of other fungal spores datasets.
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VI. CONCLUSION
In this paper, we built an anthrax spore dataset, where there
are more than 40,000 spores with accurate spore contours.
For the segmentation of anthrax spores, we first identified
class imbalance as the main obstacle impeding network
from achieving its performance. In addition, we discovered
that spore pixels are more likely to become hard examples.
We proposed the Constrained Focal Loss, where the weight of
samples from small class is increased, and a constrained term
is introduced to limit the weight. Furthermore, the position
prior of spore contour is incorporated into the loss to accu-
rately classify the pixels surrounding spore contours.

We conducted experiments on a small dataset and found
that using our loss function the mean IoU can achieve 91%,
much higher than other existing loss functions. Moreover, our
method requires less training samples and training iterations.
Due to the less demanding on samples, our method can be
used for training segmentation network especially on the
small dataset. It is worth noting that although our work is to
segment spores from microscopic images, the loss functions
proposed in this paper, aiming to solve the problem of class
imbalance, can be used to guide the training of deep networks
for semantic segmentation in other fields. Our future work is
to extend the idea of this paper to the semantic segmentation
of multiple classes with class imbalances.

APPENDIX
Supplementary data associated with this article can be found,
in the online version, at https://drive.google.com/drive/
folders/1-Cjy4tkhgBxTip2B_ 3esqw8xWkzofcZX.
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