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ABSTRACT The paper studies the time-invariant formation problem of second-order multi-agent systems
under a time-invariant directed communication topology. Extensions of the consensus protocol are intro-
duced in the formation control. By choosing appropriate consensus states, the state-linear-transformation
approach and the partial stability theory are adopted to analyze the formation problem. Sufficient and
necessary algebraic criteria are derived for the formation regulation problem with or without velocity
constrains and the formation tracking problem. They are expressed in terms of Hurwitz stability of matrices
which are constructed from the gain matrices of formation control protocols.

INDEX TERMS Formation, second-order multi-agent systems, consensus, state-linear-transformation,
partial stability.

I. INTRODUCTION
Formation control is one of the fundamental problems of
multi-agent systems (MASs) where each agent maintains
a desired geometric distance with its neighbors [1], [2].
It is beneficial for improving the capacity of highway trans-
portation, increasing the efficiency of unknown environment
exploration, or saving the fuel of flight. Lots of attention has
been attracted in its research due to these various applications
for satellites [3], [4], vehicles [5], [6], robots [7], [8], and
so on.

A MAS is an interesting system whose model has three
simple rules: separation, alignment and cohesion [9]. The
separation rule avoids crowding neighboring agents. The
alignment and cohesion rule gives an agent the ability to
respectively align and cohere itself with other nearby agents.
Several typical control strategies have been adopted in the
formation control of MASs, e.g., leader-follower [10], [11],
virtual structure [13], [14], and behavior-based [15] forma-
tion control strategies. For the leader-follower strategy, there
is one or more agents acting as the group leaders while

The associate editor coordinating the review of this manuscript and
approving it for publication was Rahim Rahmani.

other agents follow the leaders according to the formation
shape. These leaders play important roles but whose lack
of feedback from its followers will lead to failure when a
follower is perturbed. In a virtual structure, the formation
is treated as a single rigid body, where each agent has a
position that it embeds in the structure and the desired for-
mation motion is translated into desired motions for each
agent. In the behavior-based approach, the behavior of each
agent is decomposed into a set of basic behaviors and their
action are controlled by the weighted average of these basic
behaviors. The desired behaviors can not be defined explicitly
and its mathematical formalization is difficult. For the MAS
itself, there are many situations to consider when a suitable
control strategy is adopted. For example, no specific agent is
designated as the leader in a leaderless MAS [16], the agent
cannot update the control input in time due to communica-
tion delay in a time-delay MAS [17], and the control input
subject to saturation owing to its maximum and minimum
limits [12].

Consensus is another fundamental problems in coordinated
control where every agent in the multi-agent system updates
its state based on the local information exchange with its
neighbors and the states of all the agents asymptotically
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achieve an agreement on a common value. Actually, it is
closely related with formation control [18]. Through choos-
ing appropriate consensus states, the consensus theory can be
adopted in the formation control problem. Ren [19] intro-
duced the consensus-based formation control strategies in
the second-order multi-agent system to guarantee accurate
formation maintenance in the general case of arbitrary infor-
mation flow between agents. It proved that many existing
leader-follower, virtual structure, and behavior-based forma-
tion control strategies can be unified in the general frame-
work of consensus building and treated as special cases
of consensus-based formation control strategies. However,
the study only considered the formation maintenance without
the formation form part. In this paper, the initial positions
are arbitrary and the formation form part is considered.
Xiao et al. [20] studied a finite-time formation control frame-
work which assumed only a part of agents obtained the
global formation information and navigated the whole team.
It proposed a class of nonlinear consensus protocols and
proved that the specified constant formation can achieve
in finite time. Xie and Wang [21] dealt with the forma-
tion control problem of second-order MASs only with posi-
tion information exchange under undirected communication
topologies and proposed a sufficient condition to achieve a
time-invariant formation. Lafferriere et al. [22] investigated
formation control problems for a special second-order multi-
agent systems and proved a necessary and sufficient condi-
tion, i.e., the communication digraph had a rooted directed
spanning tree. The special mode structure made analysis
much easier. Dong et al. [23] investigated formation control
problems for high-order linear time-invariant MASs with
time delays whose analysis relied on the Jordan normal form
of Laplacian matrix. In this paper, the general MAS is consid-
ered where the spanning tree or the Jordan normal form are
not necessary.

We have investigated consensus problems of MASs
and proposed a linear-transformation-based partial stability
approach in [24] to analyze them. In this framework, sev-
eral problems, e.g., general consensus [24], output consen-
sus [25], consensus with state observers [26], consensus
with switching topologies [27], and consensus with strongly
connected topologies [28], were analyzed. The approach
is now extended to the study of the formation control of
second-order MASs. In this paper, three points of view,
i.e., formation regulation with velocity consensus, forma-
tion tracking and formation regulation without velocity con-
strains, are considered. First, a state translation based on the
proposed formation representation is adopted to transform the
formation control problem into a consensus problem. Sec-
ond, the state-linear-transformation approach sets a bridge
between the consensus of the MAS and the partial stability of
a corresponding auxiliary system. Compared with the exist-
ingmethods, they require the calculation of eigenvectors [19],
eigenvalues [20], [22], or Jordan normal form [23] of the
Laplacian matrix representing the communication topology,
thus can not be applied to the case of the proposed formation

protocol because there is not visible Laplacian matrix. The
contributions of this paper are threefold. First, two constant
formation representation methods are presented. It makes
possible to analyze the formation problem with consensus
theory. Second, the linear-transformation-based partial sta-
bility approach is extended to the formation field. These
formation problems include formation forming and maintain-
ing under a time-invariant directed communication topology.
Third, according to the analysis, the formation regulation
problem with velocity consensus and the formation track-
ing problem share the same formation criterion in theorem
1 with different formation control protocols. In the frame-
work of proposed constant formation representation meth-
ods, every agent owns a fixed heading angle. Thus with the
same formation control protocol, criteria of formations with
or without velocity constrains are essentially equivalent to
each other. The simulation verify the effectiveness of the
result.

The remainder of the paper is organized as follows.
In Section II, the formation representation is presented.
In section III and IV, the formation regulation control with
or without velocity constrains and the formation tracking
problem are analyzed respectively. Numerical simulations are
given to illustrate the effectiveness of the theoretical results
in section V. Finally, the conclusion provides a summary and
future work.

II. FORMATION REPRESENTATION
When the consensus theory is applied to the formation control
problem, a consensus object should be found. From this point
of view, we consider that there is a virtual reference point g
in the formation, which can be arbitrary chosen. The relation-
ship between the reference point and the agent is shown as
follows:

rgi = ri − hi, i = 1, · · · ,N , (1)

where rgi ∈ Rn is the position of the reference point with
respect to the ith agent, ri ∈ Rn is the position of the ith agent,
hi ∈ Rn is the position offset between the reference point
and the ith agent which can be called formation vector, i =
1, · · · ,N is the index of agents.
Definition 1: The position rgi(t), i = 1, · · · ,N , is said to

achieve global consensus if for any initial rgi(0), it satisfies

lim
t→+∞

‖rgi(t)− rgj(t)‖ = 0, ∀i, j ∈ {1, · · · ,N }. (2)

To better understand the relationship (2), a right-angled
triangle formation which is formed by three agents in the
two-dimensional plane is shown in Fig. 1. There are two
methods to define hi which are shown in Figure 1 (a) and (b),
respectively.

hai =
[
hi1
hi2

]
, hbi =

[
di cos θi
di sin θi

]
, (3)

where [hi1, hi2]T and di are the vector difference and the
distance of the ith agent and the reference point, respectively.
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FIGURE 1. Formation example.

θi is the angle between the positive x-axis and the vector from
the reference point to the ith agent.
Definition 2: Let h = [hT1 , h

T
2 , · · · , h

T
N ]

T , r =

[rT1 , r
T
2 , · · · , r

T
N ]

T , the formation space 4 is defined as
follows:

4 = {r|r − h = 1N ⊗ rg}, (4)

where rg is the position of reference point, 1N ∈ RN denote
the all ones column vector of size N , the symbol ⊗ denotes
the standard matrix Kronecker product. The vector h can
be called the formation vector which describes a formation
pattern.

III. CONSENSUS BASED FORMATION REGULATION
Consider a second-order MAS consisting of N agents and the
dynamics is given as follows:{

ṙi = vi,
v̇i = ui,

i = 1, · · · ,N , (5)

where ri ∈ Rn, vi ∈ Rn and ui ∈ Rn are the position, velocity
and control input of the ith agent, respectively. Generally
speaking, n can be 1, 2, and 3 which are corresponding
to the formation in one-, two- or three-dimensional space
respectively.

For convenience and tractability, the system (5) can be
written in a general form as follows:

ẋi = Axi + Bui, i = 1, · · · ,N , (6)

where xi = [rTi , v
T
i ]
T
∈ R2n is the state of the ith agent,

the parameter matrices A ∈ R2n×2n and B ∈ R2n×n are:

A =
[
0 1
0 0

]
⊗ In, B =

[
0
1

]
⊗ In,

In is a n× n identity matrix.
According to the definition 1, every agent is desired to

keep a specific distance with the virtual reference point and
hold a consensus velocity. Thus the control input (formation
protocol) ui is constructed as follows:

ui = K (xi − h̄i)+
∑
j∈Ni

Wij((xj − h̄j))− (xi − h̄i)), (7)

where K ∈ Rn×2n and Wij ∈ Rn×2n are the gain matrices,
h̄i = [hTi , 0]

T is the new formation vector which includes the
velocity component, 0 is the zero matrix whose dimension
depends on the context, the initial value of hTi is arbitrary and
the above two formation representation (3) can be adopted
here.

The graph G = (V ,E) in graph theory is a natural tool for
the representation of the multi-agent system where a vertex
set V = {v1, · · · , vN } represents N agents, a edge set E ⊆
V × V represents communication links. When the jth agent
can send information to the ith agent, it is the neighbor of
the ith agent. The set Ni is the index set of all neighbors
of the ith agent and the set N = {Ni : i = 1, · · · ,N }
represents the communication topology of the multi-agent
system.

If the formation vector h̄i = 0, the formation problem
is converted to a consensus problem where all the agents
converge to a common point, and the formation protocol (7)
is the same as the consensus protocol which was proposed in
our previous work [24]. As we have said in [24], the first part
of the protocol (5) with matrix K is a state feedback of the
ith agent itself and it can be used to regulate the agent perfor-
mance. The second part with matrices Wij is the cooperation
part which deponds on the relative state information of the
ith agent and its neighbors. Especially, matrices Wij provide
individual gains for each state component. The generalized
gain matrices enable to set independently set weights for each
component of the relative states. It will meet many practical
requirements better. For instance, the position and velocity
of a vehicle are measured by GPS and the wheel speed
sensor respectively and they may be weighted separately in
the design process.

Substituting the protocol (7) into the system (6), we can
rewrite it in a compact form:

ẋ = M1x + R1, (8)

where x = [xT1 · · · x
T
N ]

T is the stacked state of agents, and

M1 = IN ⊗ (A+ BK )− (IN ⊗ B)LW ,

R1 = (−IN ⊗ (BK )+ (IN ⊗ B)LW )h̄,
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h̄ = [h̄T1 , . . . , h̄
T
N ]

T is the stacked formation vector, the Lapla-
cian matrix LW is defined as follows:

LW =



∑
j∈N1

W1j −W12 · · · −W1N

−W21
∑
j∈N2

W2j · · · −W2N

...
...

. . .
...

−WN1 −WN2 · · ·
∑
j∈NN

WNj


.

Definition 3: Under the given communication topology
N , the second-order MAS (3) is said to form and maintain
a formation via the protocol (7) if for any initial state xi(0),
it satisfies

lim
t→+∞

‖(xi(t)− h̄i)− (xj(t)− h̄j)‖ = 0, i, j = 1, · · · ,N ,

(9)

i.e., for any initial state ri(0) and vi(0), it satisfies{
limt→+∞ ‖(ri(t)− hi)− (rj(t)− hj)‖ = 0,
limt→+∞ ‖vi(t)− vj(t)‖ = 0, i, j = 1, · · · ,N ,

(10)

In this definition, all agents asymptotically form and main-
tain a desired formation with the same velocity.

Based on preceding state in section 2, a state translation
x̄ = x − h̄ is introduced to transform the formation problem
into a consensus problem, and the system (8) is changed into:

˙̄x = M1x̄, (11)

Thus only the consensus problem of the state x̄ needs to be
considered. Using the state linear transformation proposed
in [24], a bridge between the consensus problem of the
MAS (5) and the partial stability problem of a corresponding
system is set up. The state-linear-transformation is given as
follows:

x̂ = P1x̄,P1 =
[
P̃0
1TN

]
⊗ I2n, P̃0 =

 e1 − e2
...

eN−1 − eN

 (12)

where ei, i = 1, · · · ,N , are the standard basis vectors with
1 in the ith column and 0 in the other columns.

Substituting the state linear transformation (12) into the
system (11), we get

˙̂x = P1M1P
−1
1 x̂, (13)

where the inverse matrix of the matrix P1 is

P−11 =
[
P̂0 N−11N

]
⊗ I2n,

P̂0 =
1
N


N − 1 N − 2 · · · 1
−1 N − 2 · · · 1
...

...
. . .

...

−1 −2 · · · 1
−1 −2 · · · −(N − 1)

 .
According to the state-linear-transformation (12), the state

x̂ can be divided into two parts, i.e., y = [x̂T1 , · · · , x̂
T
N−1]

T

is a stacked vector of the error variables x̂i = x̄i − x̄i+1, and
z = x̂N is the sum of all x̄i. Thus the consensus problem of
system (11) is equivalent to the stability problem of partial
variables y (in short, y-stability problem). The system (13)
can be further written in two equation form:{

ẏ = Ā1y+ B̄1z,
ż = C̄1y+ D̄1z,

(14)

where

Ā1 = (P̃0 ⊗ I2n)M (P̂0 ⊗ I2n)

= IN−1 ⊗ (A+ BK )− (P̃0 ⊗ B)LW (P̂0 ⊗ I2n),

B̄1 = (P̃0 ⊗ I2n)M (N−11N ⊗ I2n) = 0,

C̄1 = (1TN ⊗ I2n)M (P̂0 ⊗ I2n)

= −(1TN ⊗ B)LW (P̂0 ⊗ I2n),

D̄1 = (1TN ⊗ I2n)M (N−11N ⊗ I2n)

= A+ BK .

Since B̄1 = 0, the stability of partial variables y is not
affected by z. We get the following theorem 1.
Theorem 1: Under the given communication topology

N = {Ni : i = 1, · · · ,N }, the second-order MAS (5) is
said to form and maintain a formation via the protocol (7) if
and only if the matrix Ā1 in (14) is Hurwitz stable.

Obviously, the matirx Ā1 ∈ R2n(N−1)×2n(N−1) has fewer
dimensions than the entire system, which may greatly benefit
the computation efficiency.

If we consider the formation tracking problem where a
predefined trajectory f is given, the formation protocol is
changed as follows:

ui = f + K (xi − h̄i)+
∑
j∈Ni

Wij((xj − h̄j))− (xi − h̄i)), (15)

According to the same analysis, we get{
ẏ = Ā1y,
ż = C̄1y+ D̄1z+ NBf .

(16)

Obviously, theorem 1 still hold true for the formation tracking
problem.

IV. CONSENSUS BASED FORMATION REGULATION
WITHOUT VELOCITY CONSTRAINS
When we only consider the position state of formation,
the formation protocol (7) can be rewritten as follows:

ui = Kr (ri − hi)+ Kvvi +
∑
j∈Ni

(aij((rj − hj)

−(ri − hi))+ bij(vj − vi)), (17)

where [Kr ,Kv] = K , [aij, bij] = Wij.
In this case, let x = [rT1 , · · · , r

T
N , v

T
1 , · · · , v

T
N ]

T . The
compact form of MAS is shown as follows:

ẋ = M2x + R2, (18)
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where

M2 =

 0 INn

IN ⊗ Kr − Lr IN ⊗ Kv − Lv

 ,
R2 =

[
0

−(IN ⊗ Kr − Lr )h

]
,

Lr =



∑
j∈N1

a1j −a12 · · · −a1N

−a21
∑
j∈N2

a2j · · · −a2N

...
...

. . .
...

−aN1 −aN2 · · ·
∑
j∈NN

aNj

.


,

Lv =



∑
j∈N1

b1j −b12 · · · −b1N

−b21
∑
j∈N2

b2j · · · −b2N

...
...

. . .
...

−bN1 −bN2 · · ·
∑
j∈NN

bNj

.


.

After the state translation x̄ = x − [hT , 0]T is applied,
the system (18) is changed to

˙̄x = M2x̄, (19)

where x̄ = [rTg1, · · · , r
T
gN , v

T
1 , · · · , v

T
N ]

T .
The corresponding state-linear-transformation is given as

follows:

x̂ = P2x̄,P2 =

 P̃0 0
1TN 0
0 IN

⊗ In, (20)

The inverse matrix of P2 is:

P−12 =

[
P̂0 N−11N 0
0 0 IN

]
⊗ In. (21)

Substituting the state-linear-transformation (20) into the sys-
tem (19), we get

˙̂x = P2M2P
−1
2 x̂. (22)

According to the state-linear-transformation (20), the variable
x̂ can be divided into two parts, i.e., x̂ = [yT , zT ]T , y = [rTg1−

rTg2, · · · , r
T
g(N−1) − r

T
gN ]

T , and z = [
∑N

i=1 r
T
gi, v

T
1 , · · · , v

T
N ]

T .
The system (22) is rewritten as follows:{

ẏ = Ā2y+ B̄2z,
ż = C̄2y+ D̄2z,

(23)

where

Ā2 = (
[
P̃0 0

]
⊗ In)M (

[
P̂0
0

]
⊗ In) = 0,

B̄2 = (
[
P̃0 0

]
⊗ In)M (

[
N−11N 0

0 IN

]
⊗ In)

=
[
0 P̃0

]
⊗ In,

C̄2 = (
[
1TN 0
0 IN

]
⊗ In)M (

[
P̂0
0

]
⊗ In)

=

[
0

(IN ⊗ Kr − Lr )(P̂0 ⊗ In)

]
,

D̄2 = (
[
1TN 0
0 IN

]
⊗ In)M (

[
N−11N 0

0 IN

]
⊗ In)

=

[
0 1TN ⊗ In

N−11N ⊗ Kr IN ⊗ Kv − Lv

]
.

It should be pointed out that y = [rTg1− r
T
g2, · · · , r

T
g(N−1)−

rTgN ]
T . So the partial stability of the equilibrium point x̂ = 0

of the system (22) should be considered and the following key
lemma is stated.
Lemma 1: The multi-agent system (5) forms and main-

tains a formation via the protocol (17) under the given infor-
mation topology {Ni : i = 1, · · · ,N } if and only if the
equilibrium point x̂ = 0 of the system (22) is globally
asymptotically stable with respect to the partial variables y.
Lemma 1 builds a bridge between the formation problem

and the asymptotically partial stability problem. Thus the
stability of the partial variable y relies on z. According to the
partial stability theory [29], y-stability of the system (23) is
equivalent to the stability of a auxiliary system. The corre-
sponding auxiliary system which is derived form the result
in [29] is given as follows:

ζ̇ = M̄ζ, (24)

where

M̄ =
[

0 B̄2L3
L1C̄2 L1D̄2L3

]
.

The construction of abovementioned auxiliary system (24)
depends on matrices B̄2 and D̄2. A matrix is constructed as
follows:

Vp =
[
B̄T2 D̄T2 B̄

T
2 · · · (D̄T2 )

p−1B̄T2
]T (25)

The constructive procedure is described by the following
steps:

Step 1. calculate the number s = min{k : rankVk =
rankVk+1}, then denote a new variable h = rankVs.
Step 2. construct h× p matrix L1 whose rows are obtained

via the operation on Vs successively from top to bottom
removing the rows of the matrix Vs that linearly depend on
these rows reserved via the former operation.

Step 3. construct h×hmatrix L2 from the linearly indepen-
dent columns in L1, for example, they are i1, · · · , ih columns
in L1.

Step 4. construct n× h matrix L3, whose ijth row is the jth
row of L−12 , j = 1, · · · , h, and other rows are 0.
Thus we get the following theorem:
Theorem 2: Under the given communication topology

N = {Ni : i = 1, · · · ,N }, the second-order MAS (5) is
said to form and maintain a formation via the protocol (17) if
and only if the matrix M̄ in (24) is Hurwitz stable.
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FIGURE 2. Communication topology.

FIGURE 3. Trajectories of formation regulation.

As the analysis of the theorem 1, the dimension of matrix
M̄ is reduced. But the matrix M̄ must constructed along the
above procedure which is slightly more complicated.

V. SIMULATION EXAMPLES
Consider a second-order MAS (5) consisting of six agents
in two-dimensional planar coordinates. It aims to form and
maintain a arrow formation which is described as follows:

d1 = 10, θ1 = 90◦, (26)

d2 = 5, θ2 = 150◦,

d3 = 5, θ3 = 30◦,

d4 = 2, θ4 = 90◦,

d5 = 2, θ3 = 270◦,

d6 = 10, θ4 = 270◦.

FIGURE 4. Trajectories of formation tracking.

The gain matrix K in formation protocol (7) is given as
follows:

K =
[
−1.8 −1.1 −1.4 1.6
0.9 −1.3 1.1 −1.7

]
, (27)

The time-invariant communication topology N is given
in Fig. 2. And the gain matrices are given as follows:

W13 =

[
0.2 0.1 0.3 0.3
0.5 0.9 0.2 0.8

]
,

W21 =

[
0.6 0.8 0.1 0.3
0.3 0.6 0.2 0.5

]
,

W34 =

[
0.2 0.5 0.2 0.4
0.1 0.3 0.4 0.8

]
,

W41 =

[
0.7 0.6 0.5 0.2
0.1 0.2 0.6 0.3

]
,

W53 =

[
0.2 0.7 0.8 0.3
0.3 0.6 0.8 0.1

]
,

W65 =

[
0.2 0.4 0.2 0.3
0.2 0.3 0.7 0.1

]
,

(28)

The eigenvalues of Ā1 in theorem 1 are the same as
that of M̄ in theorem 2. They are −2.6149,−0.6509 ±
1.6867i,−0.2597±1.5506i,−0.2864±1.1874i,−0.4359±
1.1485i,−0.5256± 1.0172i,−2.0626,−0.9139,−1.1179,
−1.6091±0.8006i,−1.5641±0.8873i,−1.4136±0.9221i.
It can be seen that the real parts of them are negative, and it
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means the matrix Ā1 in theorem 1 and M̄ in theorem 2 are all
Hurwitz stable.

Fig. 3 (a)-(c) show the trajectories of the agents start-
ing from the initial states [14, 2.4, 40, 3.6], [12, 10, 2, 8],
[2, 6, 3, 50], [1, 8, 22, 1], [1.5, 2, 4.9, 4],[9, 11, 4, 8], respec-
tively. In Fig. 3(a), the diamond points indicate the initial
positions of six agents and the three arrow formations are the
positions of the MAS in 40s, 41s and 52s from bottom to the
top respectively. To avoid confusion, only the trajectory of the
1th agent is shown by dotted line. The simulation illustrates
the effectiveness of the formation criterion. Fig. 3(b)-(c) show
the trajectories of vi1 and vi2.

In the same setting, a predefined trajectory f of the proto-
col (15) is given as follows:

f =
[
5 sin(t)
cos(t)

]
, (29)

Thus the corresponding trajectories are shown in
Fig. 4 (a)-(c).

VI. CONCLUSION
This paper presented consensus-based formation control pro-
tocols for second-orderMASs under a time-invariant directed
communication topology. Sufficient and necessary algebraic
criteria are derived for the formation regulation problem with
or without velocity constrains and the formation tracking
problem. However, the angle variation of formation is not
considered in the paper. It need to be studied in future work.
And more complex formation cases will also be investigated,
e.g., the time-varying formation control, the formation con-
trol in highway environment.
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