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ABSTRACT In this paper, a 20-GHz-band 64 × 64 hollow waveguide Butler matrix is proposed. By using
two-plane short slot couplers and a modified diagram, a short-axis two dimensional Butler matrix is realized.
The design method of the diagram and components is presented. The Butler matrix is composed of two plane
hybrids, cross couplers and phase shifters. The designed Butler matrix is fabricated by milling and screwing
together nine aluminum plates. The dimensions and weight are 86.40 mm × 74.19 mm × 396.34 mm
and 7.0 kg, respectively. Transmission characteristics as a beam switching circuit are characterized by
measurements, with a low insertion loss of less than 1.8 dB and an excitation error of 4-dB and 40-deg.
standard deviation. Radiation characteristics as a 64-beam antenna are measured, and a wide coverage area
of 40% of the hemisphere and high directivity of more than 18.7 dBi were determined by measurements.

INDEX TERMS Butler matrix, hollow waveguide, two dimensional beam switching, two-plane short slot
coupler.

I. INTRODUCTION
Beam steering/switching/forming is one of the key tech-
nologies to realize advanced mobile wireless communica-
tion.Moreover, massivemulti-beam circuits are also essential
to enable massive MIMO systems which are one of main
technologies in Fifth Generation (5G) systems [1]. In 3GPP
Release 15 [2], [3], it is prescribed to use hybrid beamform-
ing [4] which includes analog beamforming networks called
radio distribution networks (RDN). To achieve this, Butler
matrices [5] have been widely researched as a beam-forming
network. These have unique features such as theoretically
lossless, spatially orthogonal beams, and offer scalability in
the number of beams. A large number of beams, high gain,
and wide coverage area are required in antennas for base
stations.

There are many reports on improving beam forming net-
works and extending their function. In [6], a dual polarized
Butler matrix has been proposed by square waveguides and
dual polarized hybrids and cross overs. The number of beams
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by Butler matrices is limited to 2N . In [7], a 9 × 9 beam
forming network has been proposed by three-way couplers at
28 GHz. New configurations have been proposed for beam
direction control by an asymmetric configuration of phase
shifters [8] or reconfigurable couplers [9].

Several kinds of transmission lines or waveguides have
been used for the Butler matrices such as waveguides [10],
microstrip lines [11], [12], strip lines [13], and substrate
integrated waveguides (SIW) [14]. The transmission loss
of these transmission lines is 0.04 dB/cm at 90 GHz [15],
0.22 dB/cm at 24 GHz [16], 0.115 dB/cm at 26.25 GHz [17],
and 0.15 dB/cm at 26 GHz [18], respectively. Among the
transmission lines, hollow waveguides are superior candi-
dates to realize low insertion loss and high efficiency in the
millimeter wave band. Transmission lines using dielectric
materials have higher losses in the millimeter wave band.

The 2D beam switching can be created by cascading 1D
beam switching circuits [19]–[23]. The number of beams are
expanded to 4 × 4 in these papers. The length of the Butler
matrix increases as the number of beams increase, making it
desirable that each component of the Butler matrices should
be as short as possible. Much research has investigated how
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to reduce the length of each component [11], [14], [24]–[28].
In [26], a cruciform directional coupler has been designed
to reduce the length. The shape of the coupling region has
been optimized for wideband characteristics [27] and arbi-
trary power ratios [28]. However, the length of the 2D Butler
matrices are basically limited by the diagram cascading 1D
Butler matrices.

Another method to reduce the length of the 2D Bulter
matrices is to use two-plane couplers. Two-plane couplers
have been proposed to reduce the length to half [29]. Because
of the two-plane coupler components, the diagram can be
simplified and the number of cascaded components becomes
half of that of the conventional 2D Butler matrix composed
of cascaded 1D Butler matrices. Using two-plane couplers,
a 16× 16 2D Butler matrix has been proposed and fabricated
[30]. However, the number of beams, directivity, and cover-
age are limited to 4 × 4, 11.8 dBi −18.7 dBi and 31% of the
hemisphere, respectively. A larger number of beams, higher
directivity, andwider coverage are required for advanced base
stations.

We have proposed a 64 × 64 2D Butler matrix [31], [32]
to increase the number of beams to 8 × 8, directivity, and
coverage area. However, the method of configuration and the
effectiveness of the 64 × 64 2D Bulter matrix has not been
shown in detail.

This paper details the configuration method of the
64 × 64 2D Butler matrix using two-plane couplers, and this
method can be scaled to any 2n× 2n 2D Butler matrix. Here,
a 64× 64 2D Butler matrix for the 20-GHz-band is designed
and fabricated. The fabricated Butler matrix is characterized
by measuring the transmission characteristics such as the
transmission amplitude and phase, insertion loss and reflec-
tion. The radiation characteristics as a 64-beam antenna is
also evaluated by a planar and cylindrical near-field antenna
measurement system. Radiation patterns and coverage area
are also characterized.

II. TWO-DIMENSIONAL BUTLER MATRIX
CONFIGURATION METHOD
The configuration method for the short-axis two-dimensional
64× 64Butler matrix is described in this chapter. Themethod
consists of 4 steps as follows:

Step 1. Prepare a one-dimensional 8× 8 Butler matrix. The
number of ports (8) are the square root of the two-dimensional
matrix (64). In this paper, the diagram shown in Fig. 1 is
used and it is composed of hybrids, cross couplers, and phase
shifters.

Step 2. Cascade vertically and horizontally into eight
stacked Butler matrices as suggested in Fig. 2. This diagram
is the same as for conventional two-dimensional Butler matri-
ces [20]–[23].

Step 3. Rearrange the components so the same type of
components are continuously cascaded as in Fig. 3. This is
based on the idea that horizontally and vertically stacked
components are interchangeable [30].

FIGURE 1. 8 × 8-way Butler matrix diagram.

FIGURE 2. Conventional 64 × 64-way Butler matrix.

FIGURE 3. Interchange of horizontally and vertically stacked components.

FIGURE 4. Two combined horizontally and vertically cascaded stacked
components of (a) hybrid and (b) cross couplers.

Step 4. Combine two continuously cascaded hybrids and
cross couplers into two-dimensional hybrid or cross couplers
as shown in Fig 4. Combine two continuously cascaded phase
shifters into one phase shifter with summed phase shift val-
ues.

The result is the diagram of a two dimensional
64× 64 Butler matrix as shown in Fig. 5. The components in
each of the units are shown in Figs. 6 to 8. They are configured
by combining components horizontally and vertically as
detailed in step 4. The difference between the diagrams of
the 8× 8 1D (Fig. 1) and 64× 64 2D (Fig. 5) Butler matrices
is that all components become 2D ones with summed phase
shift values. Compared with the conventional 64× 64 Butler
matrix (Fig. 2), the proposed 64 × 64 2D Butler matrix has
half the number of cascaded components. This is the reason

VOLUME 7, 2019 164081



T. Tomura et al.: 20-GHz-Band 64 × 64 Hollow Waveguide Two-Dimensional Butler Matrix

FIGURE 5. 64 × 64 2D Butler matrix.

FIGURE 6. 2D hybrid.

FIGURE 7. 2D cross couplers (a) #1, (b) #2, (c) #3, (d) #4.

why the 2DButler matrix using two-dimensional components
enables shorter axis lengths.

III. DESIGN OF THE 64 × 64 2D BUTLER MATRIX BY
WAVEGUIDES
The 64 × 64 2D Butler matrix detailed in the previous
chapter is designed by waveguides. The design frequency

FIGURE 8. 2D phase shifters (a) #1, (b) #2.

FIGURE 9. The 64 × 64 2D waveguide Butler matrix.

is 19.55 GHz. All components, hybrids, cross couplers, and
phase sifters are designed based on [29] and [30].

The designed 64 × 64 Butler matrix is shown in Fig. 9.
Because the transmission phases of the cross couplers are
different for the 1D and 2D components, additional phase
sifters are added after the 2D cross coupler #4. The details of
the additional phase shifters are shown in Appendix A. Taper
waveguides are added in the input and output ports to make
the element spacing 9.9 mm (0.65 free space wavelength).

The transmission characteristics as well as the radiation
characteristics are simulated by the finite element method.
The definition of the input and output ports is shown
in Fig. 10. The structure is symmetric with respect to the two
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FIGURE 10. Port numbering. (a) Input ports. (b) Output ports.

TABLE 1. Symmetric ports.

symmetric planes indicated in Fig. 10. The symmetric ports
are listed in Table 1.

The transmission characteristics are shown in Fig. 11.
Standard deviations of the transmission amplitude are calcu-
lated using dB values and is less than 3.1 dB at the design
frequency. The standard deviation of the difference between
the transmission phase and the ideal is less than 19.6 deg.
at this design frequency.

The frequency characteristics of the reflections of port 1 are
shown in Fig. 12. The reflection is less than −18.5 dB at the
design frequency and less than −10 dB from 19.3 GHz to
20.0 GHz.

A low insertion loss < 1.6 dB at the central frequency is
realized as shown in Fig. 13. The insertion loss of the input
port n ILn is calculated as follows.

ILn =
128∑
m=65

∣∣Sm,n
∣∣−2 (1)

FIGURE 11. Standard deviation of transmission characteristics of
(a) amplitude, (b) differences between transmission phase and the ideal.

FIGURE 12. Frequency characteristics of the reflection (input port: 1).

FIGURE 13. Frequency characteristics of insertion and conductor losses.

The conductor loss of input port n CLn is less than 0.4 dB at
the design frequency as also shown in Fig. 13. The conductor
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FIGURE 14. Peak direction and 3.9-dB contour of radiation patterns at
(a) 19.39 GHz, (b) 19.55 GHz, and (c) 19.75 GHz.

loss is calculated from the difference in the insertion loss
between aluminum and PEC models. The remaining part of
the insertion loss results from the return loss.

The beam peak direction, directivity, and 3.9-dB contour
of the radiation patterns are shown in Fig. 14. The beam
peak directions align in a lattice pattern. The directivity is
from 18.8 dBi to 24.2 dBi. The total coverage, which is
defined by the 3.9-dB contour of the main beam, is 2.55,
2.46, and 2.45 steradians at 19.39, 19.55, and 19.75 GHz,
respectively, which corresponds to 40.6%, 40.2%, and 39.0%
of the hemisphere.

The frequency characteristics of the realized gain is shown
in Fig. 15, showing a 1-dB down gain bandwidth of more than
2.5%. The peak realized gain is different at different input

FIGURE 15. Frequency characteristics of the realized gain.

FIGURE 16. Fabricated 64 × 64 Butler matrix. (a) Assembled 64 ×

64 waveguide Butler matrix. (b) Input / output ports with loads.

ports because the beam direction is different and as the scan
loss is affected by the beam direction.

IV. MEASURED RESULTS
The designed 64 × 64 waveguide Butler matrix was fabri-
cated by milling nine aluminum (A6061) plates and screw-
ing them together. The assembly is shown in Fig. 16, and
the dimensions and weight are 86.40 mm × 74.19 mm
× 396.34 mm and 7.0 kg, respectively. Coaxial (SMA)-
waveguide transitions are connected for the measurements.
Transmission and radiation characteristics were evaluated by
the measurements.

A. TRANSMISSION CHARACTERISTICS
The transmission characteristics were measured by a two-
port vector network analyzer. Specifically, Smn, m ∈ {1, 2,
9, 10}, n ∈ {65, 66, . . . , 128}, were measured to evaluate
reflection, transmission, and insertion loss. During the mea-
surements the non-measured ports were terminated by load
terminations.

The frequency characteristics of the reflection are shown
in Fig. 17. The reflections are well suppressed, below−10 dB
from 19.2 GHz to 19.8 GHz.
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FIGURE 17. Frequency characteristics of the reflections.

FIGURE 18. Frequency characteristics of the insertion losses.

The frequency characteristics of the insertion loss are
shown in Fig. 18. A low insertion loss is also verified by
the measurements. The highest measured insertion loss at the
design frequency is 1.8 dB, 0.6 dB higher than the simulated
value.

Standard deviations of the transmission characteristics are
shown in Fig. 19, here the measured values agree with the
simulations. The amplitude standard deviation is less than
4 dB from 19.3 GHz to 19.7 GHz. The phase standard devia-
tion is less than 40 deg. from 19.3 GHz to 19.8 GHz.

B. RADIATION CHARACTERISTICS
Radiation characteristics were measured by near-field
antenna measurements (NFAM), and a quarter of the antenna
ports were measured considering the symmetricity of the
structure. A planar NFAM was used as shown in Fig. 20,
the scan area and step length are 1136 × 1136 mm2 and
7.1 mm, respectively. A cylindrical NFAM system was also
used for 4 ports, ports 10, 11, 12, and 18, because of their wide
beam scan angle. Here the scanned area is 2100 mm in the
vertical direction and ±180 degree in the azimuth direction
with 7.5-mm and 1-degree steps.

The peak directivity directions and 3.9-dB-directivity-
down contours at 19.39, 19.55, and 19.75 GHz are shown
in Fig. 21. The measured results agree with the simulations.
The maximum difference in the beam direction between the
simulations and the measurements is 2.5 deg. for port #12 at

FIGURE 19. Standard deviations of transmission characteristics.
(a) Amplitude. (b) Difference between the transmission phase and the
ideal.

FIGURE 20. Measurement arrangements of radiation characteristics by
planar near-field antenna measurement.

the design frequency. The measured total areas of cover-
age, which are defined by the 3.9-dB contour of the main
beam, are 0.65, 0.64, and 0.63 steradians at 19.39, 19.55, and
19.75 GHz, respectively, which correspond to 41.0%, 40.5%,
and 40.4% of the quarter hemisphere.

The measured radiation patterns in the E-plane are plotted
in Fig. 22 with the simulated patterns, showing that they agree
well. The peak directivity is listed in Table 2. Only a quarter
of the ports were measured considering the symmetricity of
the structure, and it may be expected that the symmetric ports
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FIGURE 21. Peak directivity directions and 3.9-dB-directivity-down
contours at (a) 19.39 GHz, (b) 19.55 GHz, (c) 19.75 GHz.

TABLE 2. Peak directivity at the design frequency.

FIGURE 22. E-plane radiation patterns at the design frequency. (a) Input
ports 1, 9, 17, 25, (b) 2, 10, 18, 26, (c) 3, 11, 19, 27, (d) 4, 12, 20, 28.

indicated in Table 1 have the same level of directivity. The
maximum directivity decrement compared with the simula-
tions is 1.3 dB.
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TABLE 3. Details of the proposed and reported beam forming network
particulars.

FIGURE 23. Phase shift amounts of the additional phase shifter.

Details of the particulars of the beam forming networks
are shown in Table 3. The proposed network realizes the
maximum number of beams as well as the highest gain. The
coverage of the hemisphere is 40%, 9% higher than that
of [30].

V. CONCLUSION
In this paper, a 20-GHz-band 64 × 64 Butler matrix is pro-
posed. Composition of the diagram using two-plane couplers
and its design results are described. The designed Butler
matrix was fabricated by milling and screwing together alu-
minum plates. The transmission characteristics as a beam
switching circuit and the radiation characteristics as a
64-beam switching antenna are characterized. Low insertion
losses and low excitation errors are determined as well as
a wide coverage area and high directivity. The proposed
Butler matrix would be an attractive candidate as antennas
in base stations for future wireless communication system.
Other fabrication methods such as additive manufacturing or
diecasting may reduce the cost of the Butler matrix.

APPENDIX A
PHASE COMPENSATION OF CROSS COUPLERS
The transmission phase of each of the cross couplers is differ-
ent and is required to be compensated for. The transmission
phase relative to a straight waveguide is defined as −ϕ2D,
−ϕE, and −ϕH for the 2-d, E-, and H-plane cross couplers,
respectively. The phase shift amounts are shown in Fig. 23.
The phase shift amount is determined by the number and
the type of cross couplers that are passed. For example,
the power arriving at the southeast port passes the E-plane
cross coupler twice and the 2d coupler once, giving a phase
shift amount of 2ϕE + ϕ2D. In this study, the designed cross
couplers have transmission phases of −ϕ2D = 86.6 deg.,
−ϕE = −96.3 deg., and −ϕH = 29.6 deg at the design
frequency.
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