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ABSTRACT To achieve non-destructive testing for small size weld beads of metal workpieces, we developed
a new testing method of closed magnetic circuit reluctance measurement. According to the shape and volume
of the small size weld defects of the metal workpiece, a reluctance detection model was established in
the detection environment of alternating magnetic field. The relationship between different weld defects
and closed magnetic circuit reluctance was quantitatively analyzed to achieve the identification of weld
defects. A particle swarm optimization algorithm (PSO) was applied to optimize the cost-sensitive support
vector machine (CS-SVM), which effectively reduced the coupling errors caused by the limitation of the
workpiece coupling size. This new method was used to verify the weld bead detection of representative
carbide saw blades. Compared with the basic support vector machine, the improved cost-sensitive support
vector machine has better performance in the classification of unbalanced samples. The experimental results
showed this new method can detect the weld bead of carbide saw blade with the correct rate to 98.2%.
It reduced the interference of coupling error effectively. The improved cost-sensitive support vector machine
not only improved the detection accuracy, but also avoided the possibility that the defective weld workpiece
samples are misclassified into qualified workpieces. This study provides a guarantee for safe production and
has great significance in engineering applications. The new method provides an effective solution for the
application of reluctance testing technology in small size weld bead detection.

INDEX TERMS Closed magnetic circuit, cost-sensitive support vector machine, coupling error, particle
swarm optimization, reluctance measurement, small size weld bead.

I. INTRODUCTION
Due to the requirements of product safety, welding technol-
ogy, as one of the most commonly used processing methods
of industrial products, has received increasing attention. Cur-
rently, butt welding is one of the most widely used weld-
ing methods because of its low cost. However, this method
is prone to low welding fastness and lack of fusion when
the metal material is affected by high temperature, which
seriously affects the quality of workpiece. If the unqualified
workpieces are used in industrial production, it does not
cause equipment damage, but also introduces safety haz-
ards. Therefore, it is critical to detect the welding quality
of the workpiece. Non-destructive testing has become one
of the most popular testing methods in engineering due to
its non-destructive, dynamic and strict advantages [1]. How-
ever, there are a number of limitations in the state-of-the-art

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

non-destructive testingmethods for the detection of small size
weld bead.

In the non-destructive testing of metal workpieces,
although the resolution of radiographic testing is high, its
management, usage and maintenance are limited because of
the radioactive radiation. Penetrant testing can only detect
surface defects, which is complicated and inefficient. Ultra-
sonic testing needs to fill the gap between the probe and the
measured surfacewith couplant. For thinner objects, the accu-
racy of ultrasonic testing is reduced or even missed. The mag-
netic particle testing has the highest defect resolution, but it
has higher requirements than other detection techniques, such
as smooth surfaces, etc [2]–[4]. Therefore, the above testing
methods are not suitable for the production line detection of
workpieces with large production capacity, a large number of
welding processes and a small weld size.

In order to improve the detection ability, intensive
research has been carried out in the field of non-
destructive testing. For example, Rodríguez-Gonzálvez and
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Rodríguez-Martín [5] focused on the study of 3D features
on real cases to identify the most relevant ones for weld
bead detection on the basis of the information gain. By ana-
lyzing the influence of neighborhood size for covariance
matrix computation, decision tree algorithms, and split cri-
teria, optimization results are obtained. Gurieva et al. [6]
carried out experiments and compared the non-destructive
testing effects of visual testing, penetrant testing, ultrasonic
testing, radiographic testing and other methods on PF1 coil
welds. NDT is capable to detect both surface imperfec-
tions and internal flaws, both volumetric and plane defects
of all types of PF1 welds. Wu et al. [7] proposed a new
non-destructive testing method for macroscopic defects of
materials based on the variation of differential permeabil-
ity in the biased magnetization field. It not only improved
defect-recognition but also facilitated defect depth recog-
nition. Carrigan et al. [8] proposed a new non-destructive
testing method based on microwave and millimeter-wave
reflection methods and improved non-destructive testing of
nonmetallic pipes. Brizuela et al. [9] improved the image
quality obtained by the phased array ultrasonic technique
by combining three ultrasonic techniques, including Phased
Array with dynamic depth focusing in reception, Synthetic
Aperture Focusing Technique (SAFT) and Phase Coherence
Imaging (PCI). The above studies have suggested new meth-
ods or improved related algorithms for non-destructive detec-
tion of large size samples, but the detection of small size weld
bead still needs further study.

In order to resolve the problem that small size weld bead
detection method is not enough to realize on-line detection,
we proposed a new non-destructive testing method based
on reluctance measurement and the improved cost-sensitive
support vector machine model, which combined the stabil-
ity and accuracy of reluctance attributes in a closed mag-
netic circuit. In this method, we placed the small weld
metal workpiece in a closed magnetic circuit, and the closed
magnetic field is formed by the core winding excitation
coils. Magnetic cores are closely connected with magnetic
yokes. Magnetic yokes contacted workpieces and ensured
that the magnetic flux passed through the weld bead. Accord-
ing to the information of reluctance and other physical
attributes in closedmagnetic circuit, we can explore the defect
type of workpiece weld bead. Because of its high sensitiv-
ity, this method is especially suitable for the detection of
small size weld bead in metal workpieces. But it requires
high coupling degree of reluctance in the measurement cir-
cuit. Even millimeter-scale coupling airgaps will lead to
abnormal change of total reluctance, which seriously affects
the accuracy of test results [10]. Therefore, the improved
cost-sensitive support vector machine is trained by collecting
relevant feature data, and the kernel width and misclassi-
fication cost parameters are optimized by particle swarm
optimization algorithm. It has the ability to distinguish weld
defects from coupling airgaps and to reduce coupling errors.
The improved cost-sensitive support vector machine is used
to assist the reluctance measurement method to realize the

accurate detection of small size weld bead in closed magnetic
circuits.

This method was applied to conduct a confirmatory exper-
iment on a weld of a representative carbide saw blade. The
material of carbide saw blade is mainly tungsten steel alloy.
Its base thickness is 1.5 mm and the cutter teeth thick-
ness is 3 mm. The welding defects of carbide saw blades
mainly include cracks, pores, lack of fusion and cavities.
Experiments were carried out to verify the reliability of the
non-destructive method based on reluctance measurement.
The classification performance of the improved support vec-
tor machine and the basic support vector machine was com-
pared with different proportion of unbalanced samples.

This paper contains six parts. In the first part, we introduce
the theme, the background of the topic and the workflow of
the newmethod. In the second part, we discuss the advantages
of using a closed magnetic circuit. Then we proposed the
testing model of reluctance and the application of the detec-
tion system. In the third part, the particle swarm optimization
algorithm was applied to improve the cost-sensitive support
vector machine and use the collected feature data to train
the improved cost-sensitive support vector machine. In the
fourth part, the finite element simulation model was estab-
lished. The types and models of defects are fully designed
by software to determine the excitation signals and relevant
adaptive parameters. In the fifth part, we verify the effects of
weld defect types on inductance and reluctance under ideal
conditions respectively. Then we carry out the experiments to
obtain the test results in the actual physical environment. The
classification results of the improved cost-sensitive support
vector machine and the basic support vector machine for class
imbalance samples are compared to verify the correctness of
the method used in this paper. In the sixth part, we summarize
the new methods and expound the advantages of the new
methods.

II. MODEL CONSTRUCTION AND APPLICATION
A. MODEL CONSTRUCTION
For establish the detection environment, this paper first com-
pares the amplitude of the magnetic flux density of the
measured object in three different environments. All three
detection environments consist of excitation coils with the
same number of turns, and a 20 mA AC excitation signal
was applied to each coil. In the first group of experiments,
only an excitation coil was used to magnetize the measured
workpiece, which constituted an open-circuit detection sys-
tem. In the second group, excitation coils were wound on the
magnetic core to magnetize the measured workpiece, which
also constituted an open-circuit detection system. In the third
group, excitation coils were wound on the core. Magnetic
yokes ware used to connect cores and workpieces to form a
closed magnetic circuit detection system. The finite element
simulation of three groups experiment is shown in Fig. 1.

In Fig. 1, the arrow direction indicates the direction ofmag-
netic flux flow, and the color represents the amplitude ofmag-
netic flux density. The numerical model shown in Fig. 1 (a)

VOLUME 7, 2019 164069



H. Wang, M. Wang: Research on Detection Method of Small Size Weld Bead Defects

FIGURE 1. Comparison of magnetic flux density under three detection environments. (a) Only coils magnetize a workpiece. (b) Coils wound around the
surface of the core magnetizes a workpiece. (c) Magnetic cores winding coils and magnetic yokes form a closed magnetic circuit to magnetize a
workpiece.

is characterized by smaller magnetic flux density, and less
magnetic flux flowing through the measured workpiece. The
numerical model shown in Fig. 1 (b) is characterized by
high magnetic flux density and more magnetic flux flow-
ing through the measured workpiece. The numerical model
shown in Fig. 1 (c) is characterized by the strongest magnetic
flux density, which shows the design of a closed magnetic cir-
cuit effectively increasing the flux flowing in the workpiece.
At the same power consumption, a closed magnetic circuit
can greatly reduce magnetic leakage to ensure the maximum
magnetic flux density. At the same time, considering the
requirement of air medium for detection of small size weld
defects, closed magnetic circuit provides guarantee for the
accuracy of detection.

In summary, the non-destructive testing method of reluc-
tance measurement is based on the physical environment of
a closed magnetic circuit. The path of magnetic flux always
concentrates and passes through a medium with low reluc-
tance [11]. As shown in Fig. 1 (c), the non-destructive test-
ing model for reluctance measurement consists of magnetic
yokes, magnetic cores, excitation coils, metal workpieces,
weld beads and coupling airgaps. By passing anAC excitation
signal into excitation coils, and alternating magnetic field is
generated around coils, which is used as the testing environ-
ment for reluctance measurement. According to the theory
of reluctance, the magnetic flux must enter the workpiece
through magnetic yokes. The two ends of magnetic yokes
are in contact with the workpiece. One end is close to the
measured weld beads and the other end is far from the weld
beads. The designed structure ensures that the magnetic flux
passes through the measured weld bead and is recycled by
magnetic yokes.

If there are defects in the small size weld bead of the
workpiece, the volume and quality of the weld material will
change. The weld material is no longer compact and regular,
and the weld bead is randomly filled with voids or pores
of various shapes. The change of internal structure leads
to the change of physical properties and then affects the
change of physical quantities such as reluctance andmagnetic
flux.

FIGURE 2. Expansion structure of excitation coils and magnetic cores.

In the process of small size weld defect detection, the con-
tact between magnetic yokes and workpieces can not reach
the micron level standard, and reasonable coupling airgaps
will be generated in the coupling process. Usually, the cou-
pling airgap and weld defect are small in size. It is approx-
imated that the magnetic circuit is filled with the uniform
magnetic field and the iron loss is neglected [12]. Because the
alternating magnetic field is unsaturated, the magnetic flux
density is not affected by the edge effect. In order to obtain
the relevant parameters of the detection system, the internal
structure of excitation coils and magnetic cores are unfolded,
as shown in Fig. 2.

We divide the magnetic circuit into six parts in series. The
total reluctance is the sum of the reluctance of each part as
follows:

Rm = R1 + R2 + R3 + R4 + Rγ + Rmw (1)

where R1, R2, R3, and R4 are the reluctance of magnetic
yokes, the reluctance of coupling airgaps 1, the reluctance
of coupling airgaps 2 and the reluctance of metal workpiece,
respectively. Coupling airgaps 1 are gaps with air as the
medium, which are generated between metal workpieces and
magnetic yokes due to the loose coupling. And coupling
airgaps 2 are generated between the other end of metal
workpieces and magnetic yokes closing to weld beads. The
Rγ and Rmw are the reluctance of measured weld bead and
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the reluctance of magnetic core, respectively. Among them,
the weld reluctance includes the reluctance Rγ 1 of the air
medium at the weld defect and the reluctance Rγ 2 of the
weld material at the defect. The reluctance of each part of
the magnetic circuit is related to the length of each magnetic
circuit, the cross-sectional area of each magnetic circuit and
the permeability of the material. Then, Rm can be written as,

Rm =
l1

µ0µ1A1
+

l2
µ0A2

+
l3

µ0A3
+

l4
µ0µ4A4

+
lγ 1

µ0Aγ 1

+
lγ 2

µ0µγ 2Aγ 2
+ Rmw (2)

where l1, l2, l3, and l4 are the length of magnetic yokes,
the length of coupling airgaps 1, the length of coupling
airgaps 2 and the length of metal workpieces, respectively.
A1, A2, A3, and A4 are the corresponding magnetic circuit
cross-sectional areas. lγ 1 and lγ 2 are the length of weld
defects and the length of weld material at defects, respec-
tively. Aγ 1 and Aγ 2 are the corresponding magnetic circuit
cross-sectional areas. µ0 is vacuum permeability, which is
equal to 4π × 10−7H/m. µ1, µ4, and µγ 2 are the relative
permeability of magnetic yokes, the relative permeability
of metal workpieces and the relative permeability of weld
material at defects, respectively. The magnetic yoke material
for oriented silicon steel, relative permeability of µ1 approxi-
mately 7000-10000. Choosing oriented silicon steel not only
effectively increases the binding magnetic ability of magnetic
yokes, but also has the fairly small reluctance, which has little
effect on the reluctance measurement [13].

In Fig. 2, the turn numberN of the excitation coil wound on
the magnetic core can be decomposed into the product of Nα
and Nβ , where Nα and Nβ are the layer number of excitation
coils winding and the number of turns wound by a single-
layer excitation coil, respectively [14]:

Nα =
Lα
2rw

(3)

Nβ =
Lβ
2rw

(4)

where Lα , Lβ , and rw are the winding thickness of the exci-
tation coil, the winding width of the excitation coil and the
cross-section radius of the coil, respectively. The reluctance
of the core in (1) can be written as,

Rmw =

N∑
i=1

Ii

φ
=
NI
φ
= 4.44× N × f ·

Nα · Nβ
Rw

(5)

where I , f , φ, and Rw are the excitation current, signal fre-
quency, magnetic flux of core and the resistance of the exci-
tation coil, respectively. Let lw, Aw, and ρ denote the length of
the coil, the cross-sectional area of the coil and the resistivity
of the coil, respectively. According to the winding structure
of the excitation coil in Fig. 2, the length and cross-sectional

area of the excitation coil can be calculated as follows:

lw = 2πNβ ·
Nα∑
j=1

{rc + (2j− 1) rw}

= 2πNβNα ·
(rc + rw)+ {rc + (2Nα − 1) rw}

2

=
πLαLβ
2r2w

(
rc +

1
2
Lα

)
(6)

Aw = πr2w (7)

where rc is the radius of the magnetic core. The resistance of
the excitation coil can be written as,

Rw =
lw
Aw
· ρ =

LαLβρ
2r4w

(
rc +

1
2
Lα

)
(8)

When the above results are brought into (5), the reluctance of
the magnetic core is obtained as follows:

Rmw =
1.11× f · Lβ {(Lα + rc)− rc}

ρ {(Lα + rc)+ rc}
(9)

Because the permeability of both magnetic core andmagnetic
yoke materials are fairly high, their reluctance are much
smaller than that of air medium. In order to ensure the
detection effect and stability, it is necessary to increase the
reluctance of the magnetic core to a certain extent to ensure
that the magnetic flux density of the detection environment
meets the detection requirements. Equation (9) shows that in
order to achieve this goal, the winding width of excitation
coils should be increased and the magnetic core radius should
be reduced.

Because of the limitation of workpiece size on winding
width of excitation coils, combined with the conventional
workpiece size, we set the winding width Lβ is 10 mm.
In order to determine the radius of magnetic cores, finite
element simulation experiments were carried out on cores
with different cross-sectional areas inmagnetic fieldswith the
same power consumption to explore the relationship between
the magnetic flux density at the core and the radius of the
magnetic core, as shown in Fig. 3.

As shown in Fig. 3, the magnetic flux density decreases
slowly with the increase of core radius. When the core radius
increases to 3 mm, the magnetic field reaches saturation. The

FIGURE 3. The relationship between magnetic core radius and magnetic
flux density.
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influence of edge effect onmagnetic flux density is far greater
than that of core itself, which leads to a significant decrease
in magnetic flux density. Therefore, rc = 3 mm is the best
choice for detection and the highest stability.

The equivalent permeability theory is used to simplify
other reluctances except magnetic core in (1). µ1 � 1,
µ4 � 1, and µγ 2 � 1. The order of magnitude in these
three is 103, so they are approximated toµr [15]. Because the
material used in the magnetic core is similar to the magnetic
yoke and is closely connected, the magnetic core is regarded
as the magnetic yoke, which has no influence on the analysis
results. The simplified reluctance is as follows:

Rm =
1
µ0

m−1∑
k=1

lk
µeAk

=
1

µ0µr

(
l1
nA
+
lγ 2
A
+
l4
A

)
+

1
µ0

(
l2
nA
+
l3
A
+
lγ 1
A

)
=

1
µ0µrA

(
l − l2 − l3 − lγ 1

)
+

1
µ0A

(
l2 + l3 + lγ 1

)
+

1− n
n

l1
µ0µrA

+
1− n
n

l2
µ0A

=
1
µ0A

l +
(
l2 + l3 + lγ 1

)
(µr − 1)

µr
+ σ1 + σ2,

n ≥ 1, n ∈ R (10)

σ1 =
1− n
n

l2
µ0A

(11)

σ2 =
1− n
n

l1
µ0µrA

(12)

where m, l, and µe, are the terms number of a polynomial
in (2), equivalent magnetic circuit length and equivalent rela-
tive permeability, respectively. LetA, and nA be the equivalent
cross-sectional area of magnetic circuit with the workpiece
and the equivalent cross-sectional area of the magnetic yoke,
where n ≥ 1, n ∈ R, 1−nn ∈ (−1, 0] . As a non-detection
area, coupling airgaps 1 are far away from the measured weld
bead. It is conditional to reduce the reluctance by increas-
ing the coupling area. The effect of σ1 on total reluctance
can be neglected when n is increased. The influence of the
magnetic yoke on the total reluctance also depends on the
cross-sectional area. When n = 1, σ2 = 0, magnetic yokes
have no effect on the total reluctance. When n > 1, σ2 < 0,
magnetic yokes will reduce the effect on the total reluctance.
In summary, the influence of coupling airgap far from the
measured weld beads and magnetic yokes on the reluctance
change can be controlled artificially, which is a controllable
change factor. This paper does not study them in depth.
Because µr � 1, (10) can be simplified as,

Rm =
1
µ0A

(
l
µr
+ l2 + l3 + lγ 1

)
+ σ1 + σ2

=
1
µ0

(
l2
A2
+

l3
A3
+

lγ 1
Aγ 1

)
+ η′ (13)

where η′ � 1. A2 can be increased by increasing the cross-
sectional area of the magnetic yoke. So the influence of R2
on the total reluctance can be neglected under the condition

FIGURE 4. The structural diagram of the detection system.

of satisfying a certain cross-sectional area. Therefore, the
mathematical model of the detection system including the
main factors affecting the change of reluctance is as follows:

Rm =
1
µ0

(
l3
A3
+

lγ 1
Aγ 1
+ η

)
, η =

l + 1−n
n l1

µrA
+

l2
A2

(14)

where η is the fluctuation factor, η � 1. It is affected by the
cross-sectional area of the magnetic yoke and the coupling
area of coupling airgaps 1. As can be seen from the above
equation, the difference of small size welding quality leads
to the change of physical characteristics in the magnetic
circuit [16], [17], and then changes the reluctance. There-
fore, the non-destructive testing of small size welds can be
achieved by measuring the reluctance.

Because the reluctance characteristics are stable and accu-
rate, the model has significant advantages in the detection
of small size weld bead. The reluctance change of closed
magnetic circuit mainly depends on the physical properties
of the weld defects and the coupling airgaps 2 which is close
to the weld. However, due to the close distance between the
two and the similar length and volume of the air medium,
the coupling error produced by coupling airgaps 2 has the
same ability of change to the reluctance with the weld defects.
An optimization method is needed to attenuate the coupling
error, which will be studied in detail in this paper.

B. APPLICATION OF THE MODEL
Non-destructive testing models for small size weld bead have
been established. The main factors affecting the reluctance
in a closed magnetic circuit are the weld defect and the
coupling airgap close to the weld bead. Since the distance
between coupling airgaps 2 and the weld defect are small,
the reluctance cannot be reduced by increasing the coupling
area, which brings about difficulty in the detection work.

In order to further study the non-destructive testing method
based on reluctance measurement, a non-destructive testing
system for small size weld bead was established according
to the testing model. The detection system is composed of a
signal generating module, detection module, data acquisition
module and data processing upper computer. Its structural
diagram is shown in Fig. 4.

In Fig. 4, the signal generating module is mainly composed
of a signal generator and a power amplifier. After the signal is
generated, the power is amplified. And the alternating mag-
netic field is generated by the excitation coil to magnetize the
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workpiece and the weld bead. The detection module consists
of excitation coils, magnetic cores, magnetic yokes, measured
workpieces and coupling airgaps. Under the affect of alternat-
ing magnetic field, the qualified weld and the defective weld
will show different reluctance characteristics. Data acquisi-
tion module collects relevant characteristic data. The data is
sent to the data processing upper computer for analysis to
obtain coupling error and reluctance change information. The
upper computer recognizes and reduces the coupling error
by software algorithm, which weakens the influence. And it
classifies the reluctance information to realize the inspection
of small size welding quality.

III. REALIZATION OF REDUCING COUPLING ERROR
A. COST-SENSITIVE SUPPORT VECTOR MACHINE
Aiming at the problem that the detection system can not
distinguish the effect of weld defects and coupling airgaps on
reluctance change, we construct cost-sensitive support vector
machine (CS-SVM) to solve it. Through a large number
of coupling experiments, we obtained the relevant feature
data and trained them. It enables the detection system to
distinguish weld defects and coupling airgaps, and assists the
reluctance measurement method to achieve small size weld
defects detection.

In practical fault diagnosis, on the one hand, the number of
qualified welded workpiece samples on the production line
is far more than that of defective samples, which leads to
the imbalance of sample set data. Qualified sample data is
obviously more than defective sample data. The basic support
vector machine (SVM) has good classification performance
for class-balanced sample set, but poor classification perfor-
mance for class-unbalanced sample set [18]. On the other
hand, it is much more harmful to classify the fault types
into normal ones than to classify the normal types into fault
ones. The basic SVM considers that the cost of classifying
the normal samples into the fault ones is the same as that of
classifying the fault samples into the normal ones. Therefore,
the basic SVM will produce over-fitting in class-unbalanced
samples, ignoring classes with fewer samples [19]. CS-SVM
gives different classification costs to different samples. This
method is more suitable for detection of small size weld
defects in this paper.

Let the class-unbalanced sample set be {(xi, yi)}ki=1, where
xi, yi, and k are the ith sample in sample set, label of the
ith sample and number of samples, respectively. The known
support vectors are ω · xi + b = −1, yi = −1 and
ω · xi+ b = 1, yi = +1, where ω and b are the normal vector
of the hyperplane and the constant term. SVMmaximizes the
distance between support vectors by constructing hyperplane
as a decision surface [20]. Since most of the practical prob-
lems are non-linear, it is necessary to map the sample points
to the high-dimensional space Z, that is x → ϕ (x). Support
vector is then changed to,{

ω · {ϕ (x)} + b = 1− ξi
ω · {ϕ (x)} + b = −1+ ξi

(15)

where ξi is the slackness, ξi ≥ 0. The distance between
support vectors is as follows:

D =
ω

‖ω‖
· {ϕ (x1)− ϕ (x2)} =

2
‖ω‖

(16)

After analysis, the main factors affecting detection of weld
defects include the coupling airgap l3, magnetic induction
intensity B of magnetic circuit and inductance L of excitation
coils. And there is a non-linear relationship between L and
Rm. They are stable in a closed magnetic circuit and easy to
bemeasured. So we select the above three groups of attributes
as features. CS-SVM adds misclassification cost parameters
C1 and C2 on the basic SVM. When different samples are
misclassified, they will be given different misclassification
costs. The original problem of CS-SVM is as follows:

max D = min
1
2
ωTω + C1

∑
i∈I1

ξi + C2

∑
i∈I2

ξi

s.t.

{
yi
(
ωT · ϕ (xi)+ b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , k
(17)

where I1 = {i|yi = +1} and I2 = {i|yi = −1}. We usually
use the inverse proportion of two type samples number as
the ratio of the misclassification cost parameters [21]. We use
Lagrange multiplier method and establish Lagrange function.
The reverse problem of the original problem can be obtained
by finding partial derivatives of ω and b, and making them
equal to zero [22]. The antithetical problem can be written
as,

maxχ (α) =
k∑
i=1

αi −
1
2

k∑
i=1

k∑
j=1

αiαjyiyjϕ (xi)T · ϕ
(
xj
)

s.t.


k∑
i=1

αiyi = 0

0 ≤ αi ≤ C1, i ∈ I1
0 ≤ αi ≤ C2, i ∈ I2

(18)

where {αi}ni=1 is the Lagrange multiplier and ϕ (xi)T · ϕ
(
xj
)

can also be expressed as k
(
xi, xj

)
. The k

(
xi, xj

)
is a kernel

function, which is used to solve the interior product of ϕ (xi)
and ϕ

(
xj
)
in high dimensional space.

B. OPTIMAL SELECTION OF PARAMETERS BY PSO
Due to the use of CS-SVM for assistant detection, misclassi-
fication cost parametersC1,C2 and kernel width λ has a great
impact on the performance of CS-SVM. We need to adopt an
algorithm to calculate the optimal values of three parameters
iteratively.

Particle swarm optimization algorithm (PSO) has a fast
convergence speed and is less affected by the change of
dimension. Therefore, we use PSO to iteratively update our
position by tracking the optimal position of fitness in the
position experienced by the individual and the optimal posi-
tion of fitness searched by all the particles in the popula-
tion, that is the individual extremums Pkz,i,d and the group

VOLUME 7, 2019 164073



H. Wang, M. Wang: Research on Detection Method of Small Size Weld Bead Defects

TABLE 1. The relevant parameter information of carbide saw blade.

extremums Pkg,i,d [23]. Among them, the velocity of the ith
particle in the d dimensional space is updated iteratively as
follows:

V k+1
i,d = ωV

k
i,d + c1r1

(
Pkz,i,d − X

k
i,d

)
+ c2r2

(
Pkg,i,d − X

k
i,d

)
(19)

whereV k ,V k+1,X k , andω are the current velocity, the veloc-
ity of next iteration, current position and inertial weight,
respectively. Larger inertia weight is beneficial to jump out
of the local minimum, so as to facilitate global search. c1
and c2 are the coefficients, r1, r2 are the random numbers
which range from 0 to 1. The position of particles is updated
iteratively as followsčž

X k+1i,d = X ki,d + V
k+1
i,d (20)

where X k+1i,d is the position of next iteration.
We update the velocity and displacement of particles by

using (19) and (20). We compare all individual and group
extremums of each particle and update them until the max-
imum number of iterations or preset accuracy is achieved.
Then stop the iteration update. Output misclassification cost
parameters and kernel width when terminating iteration.

IV. SIMULATION MODELING
In order to verify the feasibility of the reluctance measure-
ment method, we selected the carbide saw blade in Ø184 ×
3/1.5×16×36T as the test sample to carry out the feasibility
experiment. In a closed magnetic circuit, the magnetized part
of the sample includes the saw blade base, the cutter teeth
and the weld bead between them. The relevant parameter
information of the sample is shown in Table 1.

In Table 1, the size of the weld bead between the saw blade
base and the cutter teeth is minuscule. And the weld width is
about 0.5 mm. The width of the weld bead is similar to that
of the coupling airgap, and the distance between the weld
bead and the coupling airgap is extremely small. As shown
in Equation (15), the coupling error forms a strong interfer-
ence on the detection of weld quality. Many factors make it
difficult to detect the weld bead of the similar workpiece.
The detection method based on reluctance measurement can
solve the weld bead detection for this kind of workpiece. The
carbide saw blades with cracks and cavities in the weld bead
are enumerated, as shown in Fig. 5. Among them, the position
marked by the red circle left is the defective weld bead where

FIGURE 5. Carbide saw blades with weld cracks and cavities.

the cavities. And the position marked by the red circle right
is the weld cracks.

ANSYS Maxwell finite element simulation software is
used to build the model of weld bead qualify and defect
according to the material, thickness, number of cutter teeth
and defect type of the carbide saw blade. Then the simulation
experiment is carried out. The simulation model consists
of excitation coils (including signal generator), magnetic
cores, magnetic yokes, carbide saw blade base, cutter teeth,
weld beads and unsaturated alternating magnetic field. Label
y = +1 is set to indicate qualified saw blade samples. Label
y = −1 is set to indicate weld defect saw blade samples. The
representative simulation model of carbide saw blades with
qualified welds, weld defects and coupling airgaps is shown
in Fig. 6.

In Fig. 6, we increase the cross-sectional area of the mag-
netic yoke coupled with the saw blade base. The purpose is
to reduce the effect of coupling airgap on the total reluctance
by increasing the coupling area. In order to prevent mag-
netic saturation, the cross-sectional area of the magnetic yoke
should be obviously larger than that of the magnetic core.
In Fig. 6 (b), the solder filling at the weld bead is insufficient,
which is a lack of fusion defect. In Fig. 6 (c), there is an
obvious coupling airgap between cutter teeth and magnetic
yokes, and the airgap width is about 0.4 mm.

Common weld defects of carbide saw blades include
cracks, pores, lack of fusion, cavities, etc [24]. In order
to meet diversity of weld pattern in practical engineering,
we adjust the volume and length of weld defects in simulation
software numerous times to achieve comprehensive multi-
ple values. The criteria for determining welding defects are
shown in Table 2. This design method makes the welding
defect samples sufficiently, and ensures the consistency of the
finite element simulation results and the actual test results to
the greatest extent.

While diversifying the values of welding defects, we ran-
domly selected the value of coupling airgaps within 2 mm to
simulate the coupling error in the experimental environment.

Through the finite element simulation experiment,
the detection system has the highest sensitivity and the best
effect to detect the weld defects of carbide saw blades when
İ = 20 mA and f = 300 Hz. We also determined the
relevant adaptive parameters of the simulation software by
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FIGURE 6. Simulation design diagram of detection system. (a) Qualified carbide saw blade. (b) Weld defect carbide saw blade. (c) Carbide saw
blades with coupling airgaps.

TABLE 2. The criteria for determining welding defects.

simulation experiment. The maximum iterations to charac-
terize the stopping conditions of operations is 10, and the
convergence error is 2%. When convergence error is not
satisfied, the proportion of iterated encryption is 30%. The
solution domain representing the solution range of the model
is 5% in all directions outside the model.

V. EXPERIMENTAL TEST
According to the adaptive parameters, we test the reluc-
tance measurement model by finite element simulation. The
cutter teeth of the carbide saw blade is inspected one by
one, so the mesh of the current inspecting weld bead is
denser, while the mesh of the other welds is sparse. This
method avoids the over-expenditure of 3D model on com-
puter resources, effectively shortens the computing time, and
provides a guarantee for large amount of data acquisition.

We collected and analyzed the three feature attributes of the
excitation coil inductance L, the magnetic induction inten-
sity B, and the coupling airgap l3. The magnetic induction
intensity was sampled once at intervals of 0.2 mm in the
finite element simulation software. We obtained the magnetic
induction intensity at sampling points with different coupling
airgaps as shown in Fig. 7.

In Fig. 7, the peak variation of magnetic induction intensity
was consistent under four different coupling airgaps. The
peak value of cavities was the largest. The peak value of
lack of fusion is larger. However, compared with the cav-
ities, the peak value decreases greatly. The peak value of
pores and cracks is smaller, and the peak value of pores is

slightly larger than that of cracks. The peak value of qualified
welding is the smallest. We refine the sampling interval of
the sampling points where the peak of magnetic induction
intensity is located in Fig. 7 to determine the peak value and
the exact sampling points where the peak occurs, as shown
in Table 3.

In Table 3, with the increasing of coupling airgaps, the peak
magnetic induction intensity at sampling points of various
weld defect types decreases gradually. Under the same cou-
pling airgap, the peak values of magnetic induction intensity
corresponding to cracks, pores, lack of fusion and cavities
increase in proper order. The sampling points with peak have
the distribution regularity. The sampling points where the
peak of the same defect type are distributed in the same
region. The results show that there is a correlation between
the magnetic induction intensity and the coupling airgap in
the magnetic circuit, which shows a certain objective law and
is suitable for data analysis as feature attributes.

We test the above simulation models by adjusting the
parameters one by one, and select two representative groups
of results to compare, as shown in Fig. 8.

In Fig. 8, it is shown that themagnetic induction intensity in
a closed magnetic circuit is greater than that around the mag-
netic circuit, and the maximum amplitude of the magnetic
induction intensity is found at the detected cutter teeth. The
white circle in Fig. 8 is the weld bead under test. In Fig. 8 (a),
the magnetic induction intensity at the weld bead is uniform,
which indicates the qualifiedweld beadwill not interfere with
the magnetic flux. In Fig. 8 (b), the amplitude of magnetic
induction intensity at weld bead fluctuates seriously, ranging
from 0.5 T to 3 T. It shows that weld defects have great
interference on flux path, and also change physical properties
such as reluctance.

Reluctance and inductance of excitation coil have different
results under different coupling airgaps.We use finite element
simulation software to quantitatively explore the reluctance
and inductance corresponding to weld defects with different
volumes of carbide saw blades under ideal coupling condi-
tions, as shown in Table 4.
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FIGURE 7. Magnetic induction intensity at sampling points with different coupling airgaps. (a) The coupling airgap is 0.01 mm. (b) The
coupling airgap is 0.4 mm. (c) The coupling airgap is 1 mm. (d) The coupling airgap is 1.5 mm.

TABLE 3. Peak contrast of magnetic induction intensity.

In Table 4, the reluctance of qualified weld bead is the
smallest, and the inductance of excitation coil is the largest.
The reluctance corresponding to cracks and pores increases
slightly and the inductance decreases slightly. Lack of fusion
corresponds to larger reluctance and smaller inductance. The
maximum reluctance and the minimum inductance corre-
spond to the cavities. The results show that different weld
defects directly lead to the change of reluctance and coil
inductance in a closed magnetic circuit. The larger the defect
volume, the larger reluctance, the smaller the inductance and

vice versa. The simulation results are consistent with the
theoretical demonstration.

According to the relevant parameters of finite element sim-
ulation, we establish a detection system to carry out physical
experiments. Among them, excitation coils are composed of
copper enameled wire with a diameter of 0.11 mm, which
are tightly wound on magnetic yokes, and the number of
winding turns are 1000. We selected diverse groups of car-
bide saw blades with different defect types for experimen-
tal testing. Then we measured and recorded the coupling
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FIGURE 8. Distribution of magnetic induction intensity with qualified and defective weld bead carbide saw blades. (a) Qualified
carbide saw blade. (b) Carbide saw blades with pores in weld bead.

FIGURE 9. Comparison of classification results with two vector machines. (a) The improved CS-SVM. (b) The basic SVM.

TABLE 4. The reluctance and inductance corresponding to weld defects
with different volumes.

airgap l3, the inductance L of excitation coils and the mag-
netic induction intensity B respectively by controlling the
random value of the coupling airgap within 2 mm. The

experiment collected 5000 sets data and randomly divided
the training set and the test set according to the 9:1 ratio.
In the training set, there were 2546 group qualified weld bead
samples and 1954 group defective weld bead samples, which
were formed by four kinds of weld defects. The proportion
of qualified and defective data sets in test set is similar
to training set. So the proportion of misclassification cost
parameters is C1 : C2 = 1 : 1.303.
Applying the improved CS-SVM and the basic SVM to test

500 sets of data, we get the classification results with two
kinds of vector machines for test sets as shown in Figure 9.

In Fig. 9, for identical test data sets, the classifica-
tion errors of the basic SVM are significantly more than
improved CS-SVM. According to statistics, the improved
CS-SVM has only 9 wrong classification samples, and the
classification accuracy rate is 98.2%. All the wrong clas-
sification samples were judged as defective saw blades by
qualifiedweld saw blades. The basic SVMhas 32wrong clas-
sification samples, and the classification accuracy is 93.6%.
There are mutual misjudgments between qualified weld
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TABLE 5. Classification results of the improved CS-SVM.

FIGURE 10. Classification results of different methods for different
proportion sample sets.

samples and defective saw blade samples. The circle in Fig-
ure 9 (b) is the sample set of the defective saw blade judged
by the basic SVM as qualified. This kind of misclassification
is unusually harmful, and results in serious consequences
in engineering application. Therefore, the method based on
reluctance measurement has excellent performance and rea-
sonable model construction process, which is suitable for
weld bead detection of large quantities workpieces on the
production line. Relevant data for improved CS-SVM clas-
sification are shown in Table 5.

Through the exploration and verification after the experi-
ment, we found that the nine groups of incorrect classifica-
tion samples is that the thermal burns occurred in the weld
bead due to high temperature welding, which affected the
feature attribute data and led to the incorrect classification
of individual samples. In later research, thermal burns will be
included in the testing scope to make the detection method
more effective.

Keeping the misclassification cost parameter in C1 : C2 =

1 : 1.303 unchanged, we then used five different sample
sets with positive-negative sample ratio of 1:1, 2:1, 3:1, 4:1,
5:1 to test and compare the classification performance of the
improved CS-SVMand the basic SVM. The results are shown
in Fig. 10.

In Fig. 10, the improved CS-SVM effectively improves
the diagnostic accuracy of defect samples compared with the
basic SVM. In the process of increasing sample proportion,
the distinction between the two methods becomes increas-
ingly obvious. The improved CS-SVM is less affected by
sample imbalance performance and has strong generalization
ability.

It is suitable for class-unbalanced samples and sample set
data with different misclassification costs.

VI. CONCLUSION
As a new non-destructive testing method for small size weld
bead, the reluctance measurement demonstrated in this study
achieves high efficiency and accuracy, and can be used to
detect a large number of workpieces on the production line.
The new method establishes a closed magnetic circuit reluc-
tance measurement model to explore the characteristics of
small size weld defects, and obtains the quantitative rela-
tionship between closed magnetic circuit reluctance and weld
defects. To investigate the coupling error caused by the cou-
pling surface close to the weld bead, we use the improved
CS-SVM to effectively reduce the error interference, and get
the following conclusions:

1) Under the same coupling airgap, the peak values
of magnetic induction intensity corresponding to
cracks, pores, lack of fusion and cavities increase in
proper sequence, and the ability to change reluctance
also increases in proper sequence.

2) The improved CS-SVM can effectively reduce the
interference of coupling airgaps of general workpiece
on reluctance measurement, and provide a guarantee
for non-destructive detection of small size weld bead.

3) A large number of simulation data verify that this new
method is used to detect the weld bead of representative
carbide saw blades, and the accuracy rate is 98.2%. The
new method successfully solves the difficult problem
of detecting small size weld defects in production line
which can not be solved by traditional non-destructive
testing method.
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4) Compared with the basic SVM, the improved CS-SVM
not only has excellent performance and high diagnostic
accuracy in handling class-unbalanced samples, but
also strictly avoids the possibility that defective weld
samples are misclassified into qualified ones, which
provides a guarantee for safe production.
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