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ABSTRACT With the widespread use of smartphones and the continuous increase of their capabilities, a new
sensing paradigm has emerged: mobile crowdsensing. The concept of crowdsensing implies the reliance on
the crowd to perform sensing tasks and collect data about a phenomena of interest. Due to the benefits it
offers in terms of time and cost savings in terms of sensors’ deployment and maintenance, the concept of
mobile crowdsensing is now being adopted in the area of intelligent transportation. In this context, drivers
or pedestrians equipped with sensor enabled smartphones collaborate to collect information about roads
and traffic. However, the current solutions proposed for the use of crowdsensing for the collection of traffic
related data adopt an opportunistic continuous sensing approach, which entails high resource consumption on
the server and mobile device side, a high communication overhead, while offering little control of the users
over the sensing activity. In this paper, we address these limitations by proposing an infrastructure-assisted
on-demand crowdsensing approach for the real time detection and prediction of traffic conditions in an area
of interest. Our approach combines the strengths of mobile crowdsensing, with the support of the mobile
infrastructure, a multi-criteria algorithm for the participants’ selection, and a deductive rule-based model for
traffic condition estimation. The proposed solution was validated through a combination of prototyping and
simulated traffic traces, and the results show a significant reduction in terms of resources’ consumption and
network overhead, while reaching high accuracy for the traffic condition estimation.

INDEX TERMS Intelligent transportation system, mobile infrastructure, traffic condition classification,

crowdsensing, deductive rule-based logic.

I. INTRODUCTION

Populations’ concentration in urban areas and the increased
need for mobility are posing important challenges to cities
and transportation infrastructures. Indeed, with the over-
crowding of cities and the increase in the number of vehicles
sharing the roads, citizens are witnessing increasing conges-
tions, road side accidents, and traffic emergencies. Intelli-
gent Transportation Systems (ITS) are being contemplated
as mean to enhance the efficiency, safety, and productivity
of transportation services [11]. Leveraging communication,
sensory, and data analysis technologies, ITS are expected to
offer a multitude of useful applications such as route planning
and optimization, road safety support, and traffic condition
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monitoring applications. One of the challenges associated
with ITS applications refers to the collection of real time
traffic information. Without accurate traffic information col-
lected in real time, offering such ITS applications would not
be possible.

Typically, traffic related information is collected using
dedicated sensing infrastructures such as road surveillance
cameras [32] or loop detectors [50]. While such infrastruc-
tures can provide rich and dense data about ongoing traffic,
the cost associated with their deployment and maintenance
is very high, which prevents their usage in countries with
limited resources and their deployment on a global scale [51].
Recently, an alternative method for traffic data collection has
attracted attention, namely: mobile crowdsensing [12], [25].
In this new approach, regular users carrying sensors-
embedded smartphones collaborate to collect data about a
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phenomena of interest (e.g. traffic condition), in a partici-
patory [15] or an opportunistic mode [39]. In participatory
crowdsensing, users actively participate in collecting data,
while opportunistic crowdsensing occurs automatically by
tapping into phones’ sensors, without users’ involvement.

In the context of ITS, the idea of relying on drivers or
pedestrians when collecting real-time traffic related data can
bring significant benefits. The first one is the ability of eas-
ily deploying global network of mobile sensors [31] when
needed, as millions of users carry smartphones everyday
while conducting their daily activities. Another benefit is the
time and cost savings that could be achieved in terms of
deployment and maintenance, when compared to the tradi-
tional sensing infrastructures. Due to these benefits, several
crowdsensing based traffic monitoring solutions have been
proposed in industry and academia, including: Waze [44],
Google Traffic [30], Microsoft Research’s Nericell [35], and
MIT’s CarTel [22]. Despite the merits of those solutions, they
all follow an approach where, with no explicit participation
of the users, data is continually sensed from all vehicles on
all roads, to be sent and processed on the server side. This
continuous sensing approach [56] lacks efficiency since it
produced large amounts of data, which consumes a lot of
resources on the client side, requires extensive processing
on the server side, and entails signification communication
overhead on mobile networks. Moreover, the opportunistic
mode of data collection employed rises mobile user concerns
about privacy, as they have to share some sensitive data such
as their exact locations or speeds along their trip.

In the area of vehicular networks, solutions were proposed
to address different challenges. In [49], the authors proposed
a QoS-aware node clustering algorithm that aims at main-
taining stability of communication during high mobility and
link failure scenarios. In [48], the authors proposed the use of
machine learning for the classification of nodes in vehicular
area networks as cooperative or malicious. In [37], the authors
focused on the analysis of Arabic social media content gen-
erated by drivers to identify traffic conditions and the causes
of traffic related events. In [2], the authors explored the idea
of traffic offloading via device-to-device communications as
means to meet the target rate per served user, over long
and short-range connections. In [14], the authors proposed
the use of unmanned aerial vehicles (UAVs) as store-carry-
forward nodes to enhance the connectivity path in vehicular
ad hoc networks. In [43], the authors proposed device-to-
device cooperation to ensure scalability and failure recovery
in wireless content distribution networks. In [47], the authors
adopted the mobile cloud-computing model and propose an
efficient model for computation offloading to mobile devices.
Addressing autonomous vehicle management at intersec-
tions, the work in [24] proposed an approach for allowing
the vehicles to make autonomous decisions based on sen-
sory information without the need for vehicle to vehicle or
vehicle to infrastructure communication. In [13], the authors
proposed the integration of UAVs as moving relays in relay-
assisted FSO systems. In [6], a solution is proposed to enable
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the delay optimal scheduling of electric vehicle charging,
at several charging stations. In [52], the authors proposed
real-time system based on crowdsourcing approach for shar-
ing visual information at a desired location. The proposed
system requires capturing street images from users’ smart-
phones and uploading them on a cloud server.

As contribution to the area of mobile crowdsensing,
we have previously proposed a participatory on-demand
sensing approach to monitor the traffic status [5]. Our
approach leverages the concept of Mobile Sensing as a Ser-
vice (MSaaS) [34] in which sensing capabilities of mobile
devices are offered as services by their users, in a partic-
ipatory fashion. Moreover, in another previously proposed
solution [41], traffic data is collected only when needed and
triggered by a user’s request (instead of continuous collec-
tion), and the data is collected on the specific street segment
targeted, instead of collection from all roads. Furthermore,
data collectors control their involvement in the process via
an ability to accept or reject a sensing request. While our
participatory infrastructure-less on-demand approach repre-
sents benefits when compared to the existing opportunistic
continuous sensing approaches, in terms of efficiency of
resource consumption and increased control of end users,
it still required the periodic publishing of phones’ geographic
location information for the proper functioning of the sys-
tem, which is still a limitation in a fully on-demand model.
Moreover, the response obtained from the system consists
of the estimated traffic speed (in Km/h) on the road tar-
geted. While this information is useful, users would be more
interested in knowing the traffic condition (e.g. congested
road) than the estimated traffic speed on the road (e.g. mean
speed = 55 km/h), as it would give them a quick indication
about the state of traffic in that area.

In this work, we address those limitations by proposing
an optimized on-demand traffic sensing approach that com-
bines the capabilities of mobile devices with the support
of mobile infrastructures to achieve an accurate real-time
detection of traffic conditions. In our proposed approach, data
is collected on demand about an area of interest. Moreover,
phones’ locations are determined with the support of the
mobile infrastructure, thus not requiring any regular publi-
cation of geographic locations by participating phones/users.
Once a set of potential data collectors located in the area of
interest is determined, our multi-criteria matching algorithm
is used to select the best participants based on their phones’
sensing capabilities, the users’ reputation, the phones’ battery
level, and the accuracy of the data they provide. Moreover,
a dual criteria traffic estimation model is used to categorize
the traffic condition as free flowing, moderately congested,
or traffic Jam, based on the traffic mean speed and traffic
density. If a conflict occurs between the mean speed and the
density values, inference rules based on deductive logic are
used to make the final traffic condition estimation. To val-
idate our solution and evaluate its performance, we used a
combination of prototyping and simulated traffic traces, and
conducted various performance tests in order to measure the
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FIGURE 1. Framework architecture.

traffic condition estimation accuracy, the network load, and
the response time. Moreover, we compared the performance
of the continuous sensing approach, the infrastructure-less
on-demand sensing approach, and the infrastructure-assisted
on-demand sensing approach.

The contributions of our infrastructure-assisted on-demand
sensing approach can be summarized as follows:

o Optimized on-demand collection of real time traf-
fic data with the support of mobile infrastructure:
Unlike existing models that depend on the continuous
sensory data collection, our sensing approach supports
optimized on-demand system for the monitoring of traf-
fic condition. The use of cellular towers helps satisfy
the on-demand sensing requests without requiring any
period location updates by participating users needed in
the current participatory approaches.

o Novel rule-based classification model for inferring
traffic condition: The proposed solution is able to accu-
rately infer the current traffic status on a specific road,
when requested by a user. The experimental results show
high accuracy for the classification of the traffic condi-
tion in all cases: Free Flowing, Moderate Congestion,
and Traffic Jam. The inferred traffic condition is esti-
mated based on a combination of two traffic properties:
the traffic mean speed and the traffic density. Moreover,
in the case of conflict between the mean speed and
density models, the proposed rule-based classification
model infers the traffic status based on the elaborated
deductive logic.

« Efficient resource utilization: Due to the infrastructure
assisted, on-demand, participatory sensing approach
used, extensive data processing on the server side
can be reduced, mobile device resource consumption
such as mobile battery can be reduced, and minimal
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communication overhead on mobile networks can be
achieved. Our approach thus offers important resources’
savings when compared to the traditional continuous
sensing approach as well as the infrastructure-less on-
demand sensing approach.

The rest of the paper is organized as follows. In section II,
we describe our proposed infrastructure-assisted on-demand
sensing framework. Our participants’ matching, traffic condi-
tion estimation, and deductive rule-based models are detailed
in Sections III, IV, and V respectively, followed by our exper-
imental results in Section VI. The related work is presented
in Section VII. We end the paper with our conclusions in
Section VIII.

Il. APPROACH OVERVIEW
The high-level architecture of our vehicular sensing based
framework is presented in Figure 1. Our system consists
of three core components: Data consumers, data collectors,
and vehicular sensing platform. The communication between
the different components can be achieved through mobile
communication infrastructures (e.g. 3G/4G mobile networks)
or over public WiFi hotspots if available (e.g. in smart cities).
First, a data consumer sends to the vehicular sensing platform
sensing request for traffic condition in a particular area. The
platform then processes the received request and matches it
with the most suitable set of data collectors, locating in the
targeted area and satisfying several selection criteria. Using
their devices capabilities for data collection, the selected
data collectors sends the needed data to the platform, which
estimates the traffic condition to be sent to the requester.
In the sequel, we present the function of each component in
details.
« Data Consumer: Being in his own car, a school bus,
a municipality ministry or even at home, any user
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interested in sensing activities and intends to know the
traffic status in a specific area is considered as a data
consumer. To acquire such road data, the user must ini-
tially be a member of the community by subscribing to
the platform application. Then, the consumer can specify
at any time a certain road from the map to request its
traffic condition from the platform.

o Data Collector: Any user who tends to be involved
in the sensing activities must hold sensor-enabled
phones and subscribe to the platform application to
become a data collector. Whenever the collectors
receive sensing task, they share with the platform their
phones data sensing capabilities determining their exact
location.

o Vehicular Sensing Platform: The vehicular sensing
platform is where sensed data is aggregated, validated
and processed to predict the traffic status of the roads,
which make the vehicular platform the key component
in our architecture. Many modules are implemented to
help achieving any consumer request:

— The communication module is in charge of han-
dling the exchanged messages between the platform
and both the consumers and collectors. As multiple
sensing requests could be received simultaneously
from different data consumers, we use RESTful [1]
which enable services to work best on the web-
based applications and mobile web services.

— The identification module is in charge of allocating
IDs to the participating data consumers as well as
data collectors, in addition to the generated traffic
status reports.

— The validation module is in charge of detecting
inconsistencies in the consumer requested data
before being processed. Moreover, this module
helps detecting whether the collector sensed data
comes from a pedestrian or a user taking a ride.

— The storage module is in charge of storing the
collectors data location along with the time of the
sensing and the traffic reports. When there is small
elapsed time between two requests and same infor-
mation is needed, the collectors wouldn’t interact
twice, therefore minimizing the communication and
processing overhead.

— The matching module is in charge of identifying
the most suitable list of data collectors located in
the consumer area of interest. The geographic loca-
tion of the users is obtained from the cell towers
by dealing with their providers. The algorithm of
the matching module and how the participants are
selected is provided section III.

— The traffic estimation module is in charge of esti-
mating and classifying the traffic condition into one
of the three phases: Traffic Jam, Moderate Conges-
tion and Free Flowing. The algorithm deployed for
the estimation relies on a density and a mean speed
characteristics. The mathematical formulations and
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TABLE 1. Formulas notations.

Variable Description

ST Set of Tower

SS Set of Sensor

R The Flesired road from which the traffic condi-
tion is requested

R’ An adjacent road heading from R

Sde'i Sensor S with ID = id collected from Tower T’;

posij Position of S; at t;

S;.sType Origin of S;’s sensed data

Sj.avail The availability of S

Sj.batLevel The battery level of §
Sj.rep The reputation of §
Sj.capab The capability of S

Sj.dataAcc The data accuracy of §

VUmaz Maximum speed that could be reached on a road

the thresholds used for classification are presented
in section IV.

— The analysis and reporting module is in charge of
inferring the final traffic condition to be sent as
response to the consumer. When the density and
mean speed in the traffic estimation module predict
different traffic condition, this module uses infer-
ence rules based on deductive logic to resolve the
conflict. Otherwise, the initial traffic status agreed
on is directly sent to the requester. In section V,
we propose in this paper a new strategy for the con-
flicting problem and elaborate the used inference
rules.

lll. MATCHING MODEL THROUGH MOBILE CELL TOWERS
When a data consumer requests the traffic condition on a
road, the first module in our platform to interact with is
the matching module. All the notations presented in our
model equations are described in Table 1. Initially, the server
matches the received request with the cell towers located
in the specified area in order to collect all nodes connected
to them. A first sensing request is then sent to each node
from the matched set requesting its specific location. All
sensed data coming from in-vehicles sensors and found on
the targeted road are selected to form the most suitable set
of collectors. Since the traffic estimation model requires two
sensed data from each sensor on road to predict the traffic
condition, a second sensing request is therefore sent after
10 seconds [29] to the elected set of nodes.

The proposed matching model relies on several criteria to
match the consumer request with the appropriate list of col-
lectors in order to get the data of their geographic locations.
Once the data consumer sends sensing request to the platform
requesting the traffic condition on a specific road, the server
launches the matching module. The model supports fully
on-demand approach, without requiring any continuous or
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FIGURE 2. Representation of the road topology and cellular towers
locations on the case study area.

previous sensed data from the nodes. The first criterion to take
into consideration is the geographic location of the nodes,
which is defined as follows: First, the cell towers that cover
the entire road, from which the traffic condition is requested,
are identified based on a map topology and predefined towers
locations. The number of towers chosen is defined by:

n
ST : Y " T;|T; covers R (1)
i=1
where ST contains the set of all the towers T; surrounding the
road R through their coverage area.

The cell towers have different sizes. The large ones, which
are usually found on highways, are called macrocells and
offer wide area coverage. Over a smaller area, microcells
are used to cover urban and suburban cells. Moreover, pic-
ocells are employed for even smaller coverage area such
as buildings, campuses, and airports [28]. In the proposed
approach, we deal with microcells that cover around one
mile in diameter since our study addresses the urban roads.
Figure 2 illustrates the road topology used in the simulated
scenarios including the cell towers with hexagonal shape
covering the case study area. If a data consumer requests the
status of the road x presented in the figure, towers T2 and
T3 are picked to capture the vehicles movement. Then, all the
nodes IDs connected to the chosen towers are requested from
the mobile providers. The collected set of nodes is defined
by:

n
SSuir | S )
i=1
where SS;,;; stands for the initial set of sensors that includes
the union of their IDs gathered from the different requested
Towers.

Afterwards, sensing request is sent to each node in the
SSinir participating in the sensing activities to get its geo-
graphic location at the request time t1, along with the origin of
the data sent (i.e. pedestrian or vehicle). The current mobile
devices provide a new feature to recognize whether sensed
data comes from a pedestrian or in-vehicle device. Therefore,
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we filter the obtained set to keep only the on-road vehicu-
lar sensors, after eliminating the pedestrians’ nodes. Hence,
the filtered set of sensors after receiving the nodes responses
at t; becomes as follows:

: Z'»":](posij € R) A (Sj.sType == Veh) (3)

SSfillered.t] j

where SSfirereq.r; holds all the nodes located on the road R at
t1, and having vehicular (Veh) sensor type.

Besides the geographic location of the nodes, the matching
module relies on the following criteria: user availability, node
battery level, user reputation, node sensing capability, and the
accuracy of the sent data. The user has the choice to indicate
whether he intends to participate in the sensing activities or
not. When a user updates his status to not-available, the server
will not contact him for any sensing request even though
he appears in the area of interest. The battery level is also
considered in the matching criteria: When the phone battery is
below 20%, then we assume that the device is not able to send
or receive any sensing request. This criterion is considered in
order not to drain the battery of the user and not to interrupt
the communication between the server and the user in case
the device goes off. The user reputation is used to enhance
the performance of the platform. In some cases, a user might
misbehave and send wrong data to the server, therefore affect-
ing the accuracy of the estimated traffic. To prevent such
occurrence, we keep track of the data sent from the users
and compare it with the actual traffic condition to catego-
rize the users with good or bad reputation. After each on-
demand request process, the server compares the predicted
traffic condition with the data sent from the participating
collectors. If there is a major difference between one or more
data collectors’ responses and the predicted result, then bad
reputation will be assigned to this/those collectors. Thus,
users having bad reputation will not be contacted for future
sensing requests. In order to motivate the user to properly
behave, we prevent him from requesting any traffic condition
from the server whenever he behaves badly in the sensing
activities. Another criterion in the matching module is the
sensing capabilities of the user. Different type of information
such as the geographic location, some photos captured for
the street, etc. might be requested to be sent to the platform.
Using this criterion in the matching process allows to know
whether the participating sensor-enabled devices are able to
sense the requested data. The last criterion to consider is the
accuracy of the data collected. The accuracy of the location
differs when obtained from WiFi, GPS or cellular network
and this should be taking into consideration when requesting
sensed data from the users. The updated set of sensors after
adding all the criteria is defined as follows:

k
S.
SSupdated Z(pos,lj € R) A (S;.sType == Veh)
j=1
A(Sj.avail == true) A (S;.batLevel > 20)
N(Sj.rep == good) A (Sj.capab == true)
A(Sj.dataAcc == high) “4)
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where SS,pdaea holds the filtered nodes that are available,
with battery level more than 20%, having good reputa-
tion, and are capable of sensing the needed data with high
accuracy.

To obtain the two required sensed data from the collectors
to estimate the road condition, a second sensing request is
sent to the set SSypdarea after 10 seconds of t; to get the new
nodes positions as responses. The final set of sensors SSfia
identified after receiving SSypdareq T€SpONSES is represented as
follows:

p
SSfnat = Y _(pos; € R) A (Sj.sType == Veh)
j=1
S; Sj , .
/\[pos,2 € RV pos;; € R] A (Sj.avail == true)
A(Sj.batLevel > 20) A (Sj.rep == good)
A(Sj.capab == true) A (Sj.dataAcc == high) (5)

where SSjinq holds all the nodes located on R or R’ (the
adjacent road heading from R) at t;.

We developed the algorithm of the aforementioned model
within the matching module of the sensing platform. Algo-
rithm 1 illustrates all the steps of the matching including the
interactions with the other modules of the platform.

IV. CLASSIFICATION-BASED TRAFFIC

ESTIMATION MODEL

Once the matching model identifies the final set of collec-
tors to participate in the sensing request, the server runs the
algorithm implementing the traffic estimation model. Our
proposed model combines the density and mean speed char-
acteristics to best reflect the road status.

In this section, we present our proposed model for traffic
estimation that aims to classify the different traffic flow con-
ditions based on Kerner’s theory [23]. Density, mean speed
and flow [36] are the three main characteristics used to evalu-
ate the traffic stream in macroscopic traffic flow model. Some
proposed approaches [54], [42] focus on two characteristics
to estimate the traffic condition, while others [17], [29] use
only one. In our proposed model, we base our estimation
on an approach combining both density and mean speed.
Moreover, we adopt Kerner’s theory that divides the traffic
into three categories: 1) Traffic Jam describing a wide traffic,
2) Moderate congestion, also known as Synchronized Flow,
showing no significant stoppage of vehicles, and 3) Free Flow
reflecting continuous traffic flow with no congestion. Each
of the density and mean speed classifies the traffic status
into one of these categories. In case of conflicting results,
an analysis and reporting models identify the final decision
of traffic, using a percentage-based resolution strategy. In the
sequel, we present how the density and mean speed predict
the traffic.

A. DENSITY BASED ESTIMATION
The density based estimation represents the number of vehi-
cles occupying the segment of the requested road as denoted
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Algorithm 1 - Matching Algorithm Through Cellular Tower

1: Input: Map Topology + Towers locations
2: Output: Set of targeted cars SSfnq located in the speci-
fied destination
t; = time of consumer request
Get the set of towers ST covering the targeted road R
Construct a list S;,,;; : ¢ for the initial set of sensors
for each T; in ST do
send request to 7;’s provider, and get its nodes IDs
Sia
SSinis = SSinis U Sij
9: end for
10: for each sensor S; in §S;; do
11: send sensing request to S;, and get its position posSi
at tg
12: end for
13: Construct a list Sfirerea.r; : ¥ for the set of sensors
14: for each sensor S; in $S;,; do

15: if postsl:i == onRoad && S in Veh then

A O

®

16: add Sj to SSﬁltered.U
17: end if
18: end for

19: Construct a list Sypgarea : ¥ for the set of sensors

20: for each sensor S; in SSpyerea.r; do

21: if (Sj.avail == true) && (Sj.batLevel > 20)
&& (Sj.rep == good) && (Sj.capab == true) &&
(§j.dataAcc == high) then

22: add Sj to SSﬁl[ergd
23: end if
24: end for

25: tp = t; + 10 secs. / t; = time of consumer request

26: for each sensor S; in SSfjrereq do

27: send sensing request to S;, and get its position posSi
at tp

28: end for

29: Construct a list Sfqr : ¥ for the set of sensors

30: for each sensor S; in SSfijereq do

31: if §; == available then

32: if posi.j == onRoad R || posij == onRoad R’
then && S;in V

33: add Sj to SSﬁnal

34: end if

35: end if

36: end for

in the following:

k=—+ (6)

where N is equal to the number of vehicles on R, and L is the
length of R (in miles).

N is obtained from equation (6) when the set of SSfiereq
shares their location at t;. We use the number of vehicles
in the set SSfiereq and base our density estimation on it for
the following reason: SSfysereq holds all the vehicles that are
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TABLE 2. Relations between traffic condition and density.

TABLE 3. Relations between traffic condition and mean speed.

Traffic Condition k (vehicles/mile) K (vehicles/305 meters)

Free Flowing 0< k<30 0<k<5
Moderate Congestion 30 < k£ <160 5< k<30
Traffic Jam 160 < k < 233 30< k<44

located on road R at time #;. Some of these vehicles might
not be selected for further communication with the server and
participation in the traffic estimation prediction due to their
(1) non-availability, (2) low devices’ battery level, (3) bad
reputation, (4) inadequate devices’ sensing capabilities, and
(5) inaccurate accuracy in the sensed data. Although these
vehicles are filtered out from the sets SSypdared and SSfinar,
their presence on the road and their total number are vital for
the density-based estimation.

Table 2 shows how the different traffic conditions are
deduced when k varies between zero and the maximum num-
ber of vehicles over one mile [26].

By analyzing the flow condition on road x in Figure 2,
we can find that the length of the road is 305 meters, and
therefore the relation between the traffic condition and the
number of vehicles is calculated and provided in Table 2.

B. MEAN SPEED BASED ESTIMATION

To calculate the mean speed at a given time, we need to
obtain the data collected from a set of sensors located in a
specific area of interest. More precisely, a pair of latitude
and longitude coordinates data consecutively sampled from
each sensor is needed. Consequently, the nodes geographic
locations in the set SSfuq (equation 5) are used to estimate
the real mean speed. To start with, we measure 7}, the distance
of road traveled by each sensor S; in SSfne between 1 and 7.
rj is characterized by

s s
rj= (pos,lf , pOS,)’ ) 7

.. L Si .
where the position of S; at t;, which is pos,lj , is always on R,
S .
however pos,; could be either on R or R’. R’ represents any
’
. . S;

adjacent road heading from R. Therefore, we adopt pos,,’ for

. S; . 'S; S;
the position of gj at tp. If pos,] is on R, then pos,’ = pos,,.
Otherwise, pos,zj is the intersection of the end/exist road R.

Next, we calculate the average speed v; of each sensor in
the same set SSfnq as follows:

__N

(11, 12)
The formula used for the mean speed is calculated based on
equations 7 and 8 and can be defined as

S; /Sj
ZSJ'ESS/;W] Vj X posl‘l ’ posl‘z
Vmean = 7 ) ©)]

Sj Sj
ZS_/'GSSﬁnaI POSy s POS,

®)

Vi
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Traffic Condition VUmean (km/h)

13 < vmean < Vmaz

Free Flowing

Moderate Congestion 7 < Umaz < 13

Traffic Jam 0<Vmaz <7

The classification of the mean speed V.4, into the three
levels is estimated based on the thresholds [38] illustrated
in Table 3, where v, represents the maximum allowed
speed on a specified road.

V. ANALYSIS AND REPORTING MODEL: RULE-BASED
TRAFFIC CONDITION

The analysis and reporting model provides the estimated
traffic condition symbolized either by red for Jam, yellow for
synchronized, or green for free flowing. As previously men-
tioned, the final traffic condition category is deduced from
both density and mean speed models after combining their
estimated results. If the two resulting conditions match, then a
straightforward decision is inferred and sent to the consumer.
In this context, the final congestion level is red, yellow or
green when both density and mean speed show traffic jam,
moderate congestion, or free flowing condition respectively.
Otherwise, it may happen that each model classifies the road
condition into different congestion level. When such a con-
flict occurs, the estimated levels could not be averaged out
since we adopt only two criteria. To address the conflicting
problem between the two models, we propose the following
strategy which ensures the validity of the final result:

“The further the value of a criteria is away from its
decision boundaries, the more accurate its classification
estimation will be”

For instance, let’s take the example where k is equal to
35 vehicles/mile and veqn 1s equal to 4 km/h. Therefore,
the density-based model estimates a Moderate Congestion
condition, while the mean speed based model reports a Traffic
Jam. Thereby, we calculate how each variable is away from
the boundary of the conflicting level, and hence we consider
the final classification of the one having higher value. In this
case, between k that falls between 30 and 160 and how close
from 30 is and v,e., that falls between 0 and 7 and how
close from 7 is, we can say that k is closer to the considered
boundary and the final traffic condition is hence the one of
the mean speed.

To realize formally the semantics in case of conflicting,
we elaborated inference rules based on deductive logic to
decide on the final road status and classify it as Free Flow
(FF), Moderate Congestion (MC), and Traffic Jam (TJ).
Inference rules usually have standard structure, where the
conclusion is presented below a horizontal line and a list of
premises listed above the line [45].
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TABLE 4. Boundaries notations for the density and mean speeds.

TABLE 5. Mean speed and density conflicting problems.

Traffic Condition k (vehicles/mile)  V;peqn (Km/h) Traffic Condition  k (vehicles/mile)  Vyeqsn (Km/h)
Free Flowing Bkl < kK <Bk2 Bvl <k <Bw2 Free Flowing 0<k<30 7 < Vmaz < 13
Moderate Congestion Bk2 < k < BKk3 Bv2 <k <Bv3 z/é(r)lderate Conges- 30 < k < 160 13 < vimean < Umax
Traffic Jam Bk3 < £ < Bk4 Bv3 < k < Bv4

Traffic Jam 160 < k£ <233 0< Vmaz <7

The final traffic condition (TC) is represented as follows:

(premise;)op(premise,)op...op (premise,)
< TC, Final >—— FF/MC/T]

classify

where op is either V to represent the logical operator “and”,
or A to represent the logical operator “or”.

Premises 1 and 2 denote the traffic conditions (TC) esti-
mated from density and mean speed models respectively.

< TC, Density >——— FF/MC/TJ (premise 1)

classify
< TC, Mean Speed >—— FF/MC/TJ (premise 2)
classify

where TC is classified to FF, MC or TJ

The other premises are combinations of rules-based of the
calculated ranges (Vyunge and Kyqnge) needed in case of conflict
in premise 1 and premise 2 classification.

In the sequel, we present the details of calculating vyuge
and K;gpnge, in addition to the inference rules for conflicting
classification.

A. MEAN SPEED AND DENSITY RANGE CALCULATION
This strategy: “The further the value of a criteria is away
from its decision boundaries, the more accurate its clas-
sification estimation will be” is yet opted since we have
confidence in the classification of the variable (density/mean
speed) that has a value close to the middle of its boundaries.
To realize the proposed strategy, we first adopt the boundaries
notations presented in Table 4.

Second, we get the two boundaries Bk; and Bk; where
the density goes between, and the two corresponding ones
Bv; and By for the mean speed. Then, for the density k
(computed in equation 6) and mean speed v (computed in
equation 9), we calculate how far away from their boundaries
are as percentage value following equations 9 and 10 respec-
tively

k — Bki|
Kyange = ————_ 5100 10
range |BkJ — Bk;| X (10)
Viange = =Bl 00 (11)
|Bvy — Bvj|

Eventually, the final traffic condition tends to consider the
classification of the variable that has higher range. Consider
the following cases in Table 5 which summarize all combi-
nations of the density and mean speed leading to conflicting
problem:
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o Case 1: when density estimates free flowing condition,
while mean speed estimates moderate congestion. The
conflicting levels are Free Flowing (FF) and Moderate
Congestion (MC). Thus, the density range is represented
by:

K — Bky|

Krange: = —— x 100
range: MC—FF |Bk1 — Bk2|

where density tends to change the traffic status from MC

to FF by calculating the distance from k value to Bk,
And the mean speed range is represented by:
lv — Bvs|
|Bvz — Bwy|
where mean speed tends to change the traffic status from
FF to MC by calculating the distance from veq, to Bvy
o Case 2: when density estimates moderate congestion
condition, while mean speed estimates free flowing con-
gestion. The conflicting levels are Moderate Congestion

and Free Flowing. Thus, the density range is represented
by:

Vrange: FF>MC = x 100

. = — X
range: FF—MC |B] 5 — B 2|

where density tends to change the traffic status from FF

to MC by calculating the distance from k value to Bkj
And the mean speed range is represented by:
lv — Bws|
|Bvi — Bva|
where mean speed tends to change the traffic status from
MC to FF by calculating the distance from veq, to By
o Case 3: when density estimates moderate congestion
condition, while mean speed estimates traffic jam con-
gestion. The conflicting levels are Moderate Congestion
and Traffic Jam (TJ). Thus, the density range is repre-
sented by:

Vrange: MC—FF = x 100

k K =Bl 100
. > = —— X
range: TJ—-MC |Bk2 — Bk3|
where density tends to change the traffic status from TJ
to MC by calculating the distance from k value to Bk

And the mean speed range is represented by:
[v — Bys|
|Bvs — Bvs|
where mean speed tends to change the traffic status from
MC to TJ by calculating the distance from v;;4, to By3

Vrange: MC—TJ = x 100
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<<< TC, density >—— FF) A (< TC, MeanSpeed >—— FF))

classify classify

v ((< TC, density >—— FF) A (< TC,MeanSpeed >—— MC)A (k,ange MC—FF > Vrange: FFQM‘:)>

classify classify

classify classify

v ((< TC, density >—— MC) A (< TC, MeanSpeed >—— FF) A (urange: MC—FF > Krange: FFQM‘:)>

< TC, final >—— FF
classify

FIGURE 3. Semantics based Rules for the final traffic condition classified
as FF.

(< C, density >——» MC) A (< TC, MeanSpeed >——» MC)

classify classify

v ((< TC, density >—— FF)A (< TC,MeanSpeed >—— MC) A (Vrznge: FF-MC > krange MC—FF

classify classify )

A (krange: FF-MC = Vrange: MCQFF)

)
)

classify classify

v <(< TC, density >—— MC) A (< TC, MeanSpeed >—— FF
T

A (Krange: T1oMC > Vrange: MC—
prrrd proverd ]) ( range: TI-MC > Vrange: MC- )

v ((< TC, density >—— MC) A (< TC, MeanSpeed >——

v| (< TC, density >—— T]) A (< TC, MeanSpeed >—— MC) A (Vrange: oM > Kranges mcoy)

classify classify

< TC, final >—— MC

classify

FIGURE 4. Semantics based Rules for the final traffic condition classified
as MC.

o Case 4: when density estimates traffic jam condition,
while mean speed estimates moderate congestion. The
conflicting levels are Traffic Jam and Moderate Conges-
tion. Thus, the density range is represented by:

|IK — Bks|
k . = —— x 100
range: MC—TJ IBks — Bk
where density tends to change the traffic status from MC
to TJ by calculating the distance from k value to Bkj
And the mean speed range is represented by:

[v — Bvs|
|BV2 — BV3|

where mean speed tends to change the traffic status from
TJ to MC by calculating the distance from v;;4, to By3

Vrange: TI-MC = x 100

B. INFERENCE RULES FOR TRAFFIC CONDITION
CLASSIFICATION

In this section, we present the inference rules of the final
traffic condition classifications illustrated in Figures 3,
4 and 5.

In Figure 3, the final TC is classified to FF if the TC
inferred from both density and mean speed is FF, or the
density-based TC estimation is FF while the mean speed
estimation is MC and Kk;gng. is greater than v,g., or the
density estimation is MC while the mean speed estimation
is FF and v;4pge 1s greater than kyyyge.

In Figure 4, the final TC is classified to MC if one of the
following five cases occurs:

« Both density and mean speed estimate the TC as MC

« Density based estimation is FF, while mean speed based
estimation is MC and vyunge > Krange

o Density based estimation is MC, while mean speed
based estimation is FF and K,unge > Viange
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((< TC, density >—— T]) A (< TC, MeanSpeed >—— T]))

classify classify

v <(< TC, density >m T]) A (< TC, MeanSpeed >das—si’; MC) A (km“ge MCoT) > 'l]range;’]']—)MC)>

v <(< TC, density >—— MC) A (< TC,MeanSpeed >—— Tl) A (Urange: MCoT] > krangevT]—»MC))

classify classify

< TC, final >——TJ
classify

FIGURE 5. Semantics based Rules for the final traffic condition classified
as T

o Density based estimation is MC, while mean speed
based estimation is TJ and K;ange > Vrange

« Density based estimation is TJ, while mean speed based
estimation is MC and Vyunge > Krange

InFigure 5, the final TC is classified to TJ if the TC inferred
from both density and mean speed is TJ, or the density-based
TC estimation is TJ while the mean speed estimation is MC
and kyguge is greater than vygge, or the density estimation
is MC while the mean speed estimation is TJ and v,y is
greater than kg ge.

VI. SOLUTION VALIDATION AND

EXPERIMENTAL RESULTS

In this section, we present how we validated our solution
through the conducted experiments, using some test scenarios
and performance metrics.

A. TESTING SCENARIO

Figure 6 illustrates our proposed sensing scenario used
through our experiments. The data consumer first interacts
with the platform by sending sensing request (msg 1) asking
for traffic condition on specific road. The platform there-
fore searches for all towers that surround the requested road
(msg 2), sends them requests (msg 3) and waits for their
replies (msg 4). Once done (msg 5), sensing request is sent
to each sensor in the set gathered from the towers to get
their current locations (msg 6). The data collectors perform
sensing operation (msg 7) to send the sensed data back to the
platform (msg 8). Since many collectors are not located on
the desired road and some of them are not even in vehicles,
the platform filters the set (msg 9) and sends another request
only to the filtered nodes (msg 10). When the data collec-
tors operate sensing activity (msg 11) and all responses are
received (msg 12), the platform runs both density and mean
speed estimation algorithms (msgs 13 & 14) to predict the
real-time traffic status of the road and sends it to the consumer
(msg 15).

B. EXPERIMENTAL SETUP

To carry out the experiments, we implemented our vehicular
sensing framework on a machine equipped with Intel core i7,
2.4 GHz processor and 12 GB of RAM. The dataset is based
on a scenario where, on a specific or random road topology
and for a certain period of time, a number of cars move all
along the roads, providing simultaneously their longitude and
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FIGURE 6. Full on-demand sensing scenario.

latitude in addition to their speed throughout the simulation.
The simulator adopted to generate such movement traces is
VanetMobiSim [16], which is widely used and could replace
the need of collecting real sensory data from mobile phones.
We used in our experiments the road topology of Figure 2
generated from VanetMobiSim and simulated four cell towers
to cover the entire region. Each tower has 1 mile of diameter
that covers the area shown in hexagonal shape. The simulated
scenario is tested for the three traffic conditions where the
real TC is observed visually from the demo showing the
simulation traces.

C. PROTOTYPE SOFTWARE ARCHITECTURE

Our prototype, which is implemented in JAVA, includes the
following three main components nodes, achieving commu-
nication using REST APIs:

« A node, which represents the data consumer, has (1)
a module responsible of launching the requests and
handling their responses, (2) a manager module for the
generated sessions responsible of tracking them and set-
ting their statuses, and (3) a local repository to store the
sessions statuses and the corresponding data.

A large number of nodes representing the data collectors
are generated on one machine using VanetMobiSim. The
latter is first used for simulating the scenarios to be
studied, and reflecting and controlling different traffic
flows. Each scenario generates a file holding informa-
tion related to all simulated vehicles. Thus, each node
accesses the generated file to store in a local database
its assigned data of movement traces. This combina-
tion of prototyping and simulated traffic traces substi-
tutes for the use of real mobile devices, which their
usage makes it hard to control the traffic parameters.
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Each implemented data collector node has the following:
(1) a module responsible of receiving the request and
sending the sensed data, (2) a manager module for the
generated sessions responsible of tracking them and set-
ting their statuses, (3) a module responsible of schedul-
ing the multiple requests sent by the platform, (4) a
module responsible of retrieving the needed data (i.e. the
position of the car at a specific time) from the node’s
local database, (5) a module responsible of processing
the exchanged messages via REST API between the
node and the platform, and (6) a local repository to store
the traffic related data generated from VanetMobiSim.
A vehicular sensing platform that has the following:
(1) amodule responsible of handling and processing the
received requests and responses, (2) a matching module
responsible of finding the suitable set of data collectors,
(3) a traffic estimation module responsible of predicted
the traffic by implementing its algorithm, (4) an analysis
and reporting module responsible of reporting the final
traffic condition, (5) a module responsible of queuing
requests to the matched data collectors, (6) a module
responsible of assigning IDs to the users and sessions,
and (7) a repository to store information about the users,
sensing sessions, and their generated reports.

D. EXPERIMENTAL RESULTS
The objectives of the conducted experiments are the
following:

1) Evaluate our proposed approach and indicate how accu-
rate is the final inferred TC in diversity of scenar-
ios when using the vehicles selection model through
mobile cell towers and our rule-based classification
model for traffic condition.
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FIGURE 7. Three different scenarios reflecting the FF, MC, and TJ conditions on road x.

2) Compare the performance of our approach with the
infrastructure-less on-demand model [41], which esti-
mates the traffic condition through the mean speed
metric only and without relying on cell towers. In order
to predict the location of the collectors, the approach
in [41] assumes that each collector periodically pub-
lishes a sensed data to the platform about its position.

3) Evaluate the overall system’s performance included all
the communications and processing overhead along
with the response time while comparing it to the
infrastructure-less on-demand [41] and the traditional
continuous approaches [22], [35].

4) Evaluate the performance of the six selection criteria
used in the matching module in terms of traffic estima-
tion error and response time.

1) TRAFFIC ESTIMATION ACCURACY FOR DIFFERENT
SIMULATED SCENARIOS

Various scenarios have been simulated to study the traffic
flow at different time frame during the day, and Figure 7
reflects the flow when free, moderate, and congested.
Figure 7 (a) shows clearly the free flow condition, where
only 3 cars were located at road x after 50.0 seconds of the
simulation. The moderate congestion is reflected in Figure 7
(b) with 16 cars on the road at 233.0 sec. As for Figure 7
(c), it displays the traffic jam condition, which represents the
peak-hour traffic simulated at 2227.0 sec.

Besides the three scenarios presented in Figure 7, each of
the FF, MC, and TJ conditions was studied at least at 7 dif-
ferent points in time, and the results are shown in Figure 8.
The latter shows the performance of the traffic estimation
module while considering the TC deduced from the density
estimation only (equation 6), the mean speed estimation only
(equation 9), and the TC inferred from the combined esti-
mation based on our rule-based classification. The accuracy
presented in this figure is calculated as (the number of exper-
iments where the final TC was correctly classified as FF, MC,
or TJ) / (the total number of experiments conducted) * 100.
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Traffic Estimation Results
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Accuracy
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0

FF MC T
M Density-only 57.14 100 100
M Mean Speed only 100 28.57 100
Combined Rule-Based 100 100 100

FIGURE 8. Traffic estimation results.

In case of free flowing (FF), the density-based estimation
shows 57.14% accuracy where the misleading experiments
estimated the TC as MC. In the latter experiments, the number
of cars found on the road were varying between 6 and 7,
which exceeds the density thresholds presented in Table 2 for
the FF condition. Accordingly, the density module estimates
the traffic as moderate congestion, which is not the case.
As for the mean speed estimation, all conducted experiments
were properly classified and hence achieving an accuracy
of 100%. By combining both the density and mean speed
modules based on our rule-based classification, we were able
to correct the density estimation and reflect 100% accuracy
for the final TC inferred.

In case of Moderate Congestion (MC), the density based
estimation shows 100% accuracy while the mean speed esti-
mation shows only 28.57%. Among the 71% of the non-
accurate experiments, some estimated a FF condition while
others estimated a TJ. In such experiments, it was noticed
that when the cars are scattered on the road, they could have
somehow high speed and hence a FF condition is predicted.
However, when they are located close to each other, a low
speed is sensed; Therefore traffic jam is inferred. Regard-
ing the TC inferred from the proposed combined rule-based
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Infrastructure-assisted on-demand model

FIGURE 9. Accuracy comparison of the mean speed and the combined classification approaches in

FF traffic condition.

Traffic Condition for Moderate Congestion road

T

Scenario #1 Scenario #2 Scenario #3

M Real TC

Scenario #4

M Traditional on-demand crowsending model

MC

Scenario #5 Scenario #6 Scenario #7

Infrastructure-assisted on-demand model

FIGURE 10. Accuracy comparison of the mean speed and the combined classification approaches in

MC traffic condition.

estimation, the results show 100% accuracy in all the cases
studied.

Finally, by analyzing the results in case of TJ classification,
we can find that all the experiments show accurate results
since the number of cars on the road is big and the speeds are
low along the entire road. In such context, both mean speed
and density approaches provide accurate estimations.

2) ACCURACY COMPARISON OF OUR COMBINED
CLASSIFICATION APPROACH TO THE TRADITIONAL
ON-DEMAND MODEL

We compare in this section the accuracy of our approach to
the traditional on-demand crowdsensing model implemented
in [41]. The latter estimates the traffic condition by purely
relying on mobile devices and without using mobile infras-
tructures. The proposed approach engages the participating
nodes to periodically (every two minutes) share their location,
which allows the platform to use their last saved records
for the traffic prediction, in addition to a new sensed data
requested at the request time of a data consumer. How-
ever, since the elapsed time between the last record shared
and the request time is enough to change the status of the
cars and whether they are still located on the targeted road,
the accuracy of the estimation might be affected. Moreover,
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the traffic condition refers to the mean speed estimation used
in equation 9 in terms of km/h. To compare our infrastructure-
assisted on-demand approach to the work in [41], we classify
the traffic condition as FF, MC, and TJ based on the thresh-
olds of the mean speed in Table 3. The classifications of both
approaches are shown in Figures 9 and 10.

Figure 9 illustrates what each of the approaches estimates
as traffic condition when studying a FF scenario. In the
traditional on-demand approach, 2 out of 7 scenarios were
improperly classified while our approach correctly predicts
the classifications for all the studied scenarios. In case of MC
condition, Figure 10 shows that 3 out of 7 scenarios in the
traditional on-demand approach were improperly classified,
while our approach classifies the 7 scenarios as MC.

It was noticed that the traditional on-demand approach was
incorrectly classifying the traffic condition in some cases due
to the following: First, the matching module picks the set of
data collectors on the targeted road based on the last location
shared with the platform. As the interval of time between
receiving a request from a consumer and sharing the last
sensed data with the platform before that request could vary
between zero and two minutes, some nodes might move into
and/or out of the targeted road without being detecting by
the platform. This affects the selection of the collectors and
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FIGURE 11. Performance comparison of our Infrastructure-assisted on-demand approach to the traditional on-demand

and the Traditional continuous approaches.

produces non-accurate mean speed values. Second, only the
mean speed metric is taking into consideration in the tradi-
tional on-demand approach, which is not enough to reflect
the real traffic condition. This was correctly classified in our
proposed approach while using two metrics along with a rule-
based classification for the traffic prediction.

3) PERFORMANCE COMPARISON OF OUR ON-DEMAND TO
THE TRADITIONAL ON-DEMAND AND THE TRADITIONAL
CONTINUOUS MODELS

Some load tests in terms of network load and response
time have been conducted to evaluate the overall system
performance and compare it to the traditional on-demand
approach [41] and the traditional continuous one [22], [35].
The latter requires the data collectors to continuously sense
data to the server every 2 seconds, while the former requests
sensed data from the users every 2 minutes to keep track
of their locations. As for our approach, the collectors sense
location-based data only on-demand. Figure 11 shows the
obtained load testing results during five minutes of simu-
lation, where the network load represents the size of the
packets exchanged between the vehicular network platform
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and the data consumers and collectors, and the response time
is the elapsed time between sending a request and receiving
its response. Both the system network load and response
time are measured when the number of requests simultane-
ously sent from the consumers varies from 1 to 20 requests.
In the simulation area, the micro-cell towers that are adopted
in our infrastructure-assisted approach could support up to
200 concurrent active users. We suppose that the 200 users
connected to their associated towers are subscribed to our
platform, and all of them participate in the sensing activities
and publish their sensed data whenever requested. 20 towers
are covered in our simulation, which involves 4000 users
contacted in case of 20 requests for our approach and the
4000 users continuously publish their sensed data in the other
two approaches.

In some scenarios, the targeted roads could be covered by
two towers (i.e. road x in Figure 2) or even more. In the con-
ducted experiments, we consider the case where the targeted
roads (roads y in Figure 2) are fully located in the coverage
area of only one tower.

As shown in Figure 11, the size of the exchanged packets
for 1 to 20 sensing requests ranges from 0.61 MB to 6.6,
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from 6.94 MB to 17.27, and from 354.02 to 428.4 MB
in the infrastructure-assisted on-demand, the infrastructure-
less on-demand, and the traditional continuous approaches
respectively. The network load’s growth pattern in the three
models can be explained by the fact that the more sensing
requests are received, the more data collectors are targeted,
which increases the number of messages exchanged through
the system. In the other two approaches, the collectors have to
sense location-based data and continuously send it to the plat-
form depending on the frequency, which requires significant
network load compared to our approach.

Regarding the response time Figure 11, the maximum
response time that our infrastructure-assisted on-demand
model reaches is 44.68 seconds for 20 sensing requests
received by the platform at the same time. However, such
big number of sensing requests received simultaneously by
the platform is a worst-case scenario. It is worth to mention
that when one sensing request is received at a time, which is
the typical scenario, the response time is only 11.52 seconds.
The response time in the other two models is less, which
ranges from almost 1.5 seconds for 1 request to 20 seconds
for 20 requests. This difference is caused by the 10 sec-
onds waiting time on the server side to send the second
request to the collectors in the infrastructure-assisted on-
demand model since the platform has no knowledge about
the collectors location as in the infrastructure-less and con-
tinuous model. Moreover, whenever the number of requests
increases, more data collectors will be contacted by our
infrastructure-assisted on-demand approach. This is because
all users connected to the cell towers in the studied area
will be asked for their locations, whereas in the other two
approaches, persistent updates from the consumers are pub-
lished, which engages contacting only the relevant set of users
matching our six criteria. In other words, the messages 2 to
9 exchanged between the components in Figure 6 are required
in our infrastructure-assisted model in order to locate the data
collectors. This engages more response time than the other
two approaches, which do not perform such communication.
Hence, we can state that our proposed model outperforms the
others in terms the network load yet involves longer response
time. However, the difference in time in our approach is
somehow negligible compared to the gain achieved in the
decrease of the network load and the on-device computation
overhead caused by the infrastructure-less on-demand and the
traditional continuous approaches.

In the conducted experiments, we consider that each sens-
ing request falls into different towers in the studied area (e.g.
in Figure 2, one request for a road covered by cell #3, while
another covered by cell #1, and so on). We also consider that
these requests are sent in parallel, so the platform will be
performing the whole communication and data processing
simultaneously. When the number of requests reaches 20,
then the platform will be establishing communication with
4000 data collectors at once. Therefore, in a scenario where
a new data consumer asks for the traffic condition at a time
close to an existing request, messages 2 till 5 in Figure 6 will
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not be established to process the request. This is explained by
the fact that the server has already defined from a previous
request the set of collectors in each tower, which requires con-
tacting only 200 nodes out of 4000 for the new request. Thus,
the traffic decision will be generated in few milliseconds.

4) MATCHING ALGORITHM PERFORMANCE EVALUATION
We studied in this section the performance of the matching
module in our sensing platform while varying the six crite-
ria used (1. User geographic location, 2. User availability,
3. Node battery level, 4. User reputation, 5. Node sensing
capability, 6. Node data transfer accuracy). Figures 12 and
13 show respectively the matching error and response time
of 2, 3, 4 and 6 selected criteria.

The matching error in Figure 12 is calculated as: [1 -
(the number of cars selected by the matching algorithm) /
(the actual number of cars found on the targeted road)] *
100. We use the simulation traces of VanetMobiSim visu-
alization to acquire the actual number of cars at the time
studying the traffic condition. In these experiments, 50 to
1000 nodes have been processed, and whenever the number
increases, more nodes will be on road matching the require-
ments. For the 6 selection criteria, the matching error is
zero for a total number of cars equals to 50 and 100. This
error increases slightly until reaching approximately 13%
only when 1000 cars are processed. As fewer criteria are
considered (4, 3 then 2), an increase in the matching error
arises. In case of 2 selected criteria, the matching error starts
with 22.79% for 50 processing cars until reaching 30.18% for
1000 cars. Consequently, we can see how the criteria used in
the sensing platform affects the vehicles selection algorithm
and yields very low matching error when all criteria are
considered.

The response time measured in Figure 13 is the elapsed
time between the sending point of a request from a data
consumer to the vehicular platform (message 1 in Figure 6)
and the receiving point of its response (message 15 in Fig-
ure 6). It encompasses the following: the execution time of the
different platform algorithms, the communication time with
the data consumers and collectors, and the 10 seconds waiting
time on the server side to send second requests to the targeted
collectors for the sake of accomplishing the traffic estima-
tion algorithm. For 50 processed cars, the response time
varies between 10.25 secs when 2 criteria are selected and
10.38 secs when 6 are selected. When processing 1000 cars,
the response time becomes 10.63 secs for 2 criteria and
10.7 secs for 6 criteria. The response time is slightly affected
when varying the number of criteria and therefore using all
the criteria implemented by the matching algorithm won’t
affect the system performance. Hence, it is recommended to
increase the number of matching criteria in order to reduce
the matching error.

VII. RELATED WORK
Many studies on the traffic data collection have been carried
out. The approaches proposed to generate the different traffic
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conditions are divided into many categories: In section VII-A,
we present the approaches where roads are covered by ded-
icated sensing infrastructure, in addition to the approaches
where probe vehicles exist. In section VII-B, we discuss the
works in which a group of users having devices equipped
with sensors (e.g. GPS readers, mobile phones) collaborate
to sense and share relevant data for the estimation of traffic
status in an area of interest. In section VII-C, we elaborate
the main related approaches focusing on the Mobile Sensing
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as a service devices. We summarize the related work in
section VII-D, where we show the limitations of the existing
approaches.

A. TRAFFIC ESTIMATION BASED ON SENSING
INFRASTRUCTURE AND PROBE VEHICLES

There exist some traffic estimation approaches designed for
roads covered by dedicated sensing infrastructures and others
focusing on arterials in which the only available data source
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is the one coming from probe vehicles. [8], [55] are example
of works related to the first category of solutions. Those
approaches rely on the availability of abundant data about
traffic (collected using the dedicated sensing infrastructures)
and use this data to deduce the macroscopic traffic flow state
at a fine spatio-temporal scale. [21], [27], [46] are exam-
ples of the second category of solutions. Those approaches
address the problem of traffic estimation in arterials (the
secondary network) and highways not embedded with dedi-
cated sensing infrastructures. In such cases, the data source
used is the one sensed form probe vehicles. This type of
data poses some challenges due to its lack of ubiquity and
reliability, the variety of the data types and specifications, and
the randomness of its spatio-temporal coverage. This makes it
insufficient to directly deduce the traffic state at a fine spatial-
temporal scale. The authors in [46] studied how to analyze the
high frequency data gathered (one measurement every 20 sec.
or less) to infer traffic state. Other approaches based on
optimization [4], regression [33], pattern matching and neu-
ral networks algorithms [10] have also been proposed. The
authors in [19] propose an approach to analyze probe vehicle
data for arterial traffic estimation, by modeling a Coupled
Hidden Markov Model to track the traffic states evolution.
Although this approach addresses the sparse probe noisy data,
itis not appropriate for our on-demand sensing setting. In fact,
it relies on the collective state data collected from some of
the vehicles in a large geographic area to model the states
of the system and predict the travel distribution time on all
streets.

B. TRAFFIC ESTIMATION BASED ON SENSOR-ENABLED
DEVICES

The traffic condition estimated based on a number of users
having sensors-embedded devices can be summarized in
the following approaches: The authors in [3] targeted the
detection of different traffic statuses, potholes, and abnor-
malities on roads using GPS and accelerometer. In the pro-
posed approach, five components have been considered: a
database, mobile devices, a server with a central database,
open wireless networks, and roads map. A heuristic algorithm
receives the sensed data to analyze it and estimate the road
traffic status. In [20], the authors proposed a solution which
mainly focuses on highways for traffic conditions. The model
encompasses GPS as a physical component in addition to the
following three cyber elements: a mobile network operator,
an aggregator for the sensed data, and an algorithm for the
traffic prediction. In this approach, mobile phones are used to
gather data on specified routes named virtual trip lines. The
server receives the data sent, and forwards it to the algorithm
for the prediction after being aggregated. The authors in [46]
proposed a model to address the energy consumption problem
as well as the imprecise position sampling provided. They
used Hidden Markov Model (HMM) to identify the traversed
route of a car over an area selected from the map, then the
traveling time of the targeted roads travesered has been cal-
culated using a map matching. NeriCell solution in [35] has
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been proposed by focusing on two components: An intelligent
system that requires to have on roads some dedicated sensors,
and a component encompassing the sensing devices such
as GPS, microphone, and accelerometer. NeriCell consists
of a system that tracks the roads and uses the cars’ accel-
eration data generated by the phones to predict the traffic.
In [18], the authors proposed a spatial and temporal gathering
techniques of data. The spatial sampling infers vehicles to
share their information such as the velocity and location at
some time points no matter where they are located, while the
temporal technique infers the vehicles to sense and send their
data as they traverse some predefined spatial sampling. In this
approach, arich history of data was formed by collecting from
Nokia N95 devices data every 3 seconds with the correspond-
ing instantaneous velocity. The authors in this paper were able
to solve the privacy aspect regarding the users’ ID. In [17],
a peer-to-peer solution for traffic prediction has been pro-
posed. In this solution, vehicles rely on V2V communication
to gather from surrounding cars data related to position and
velocity. Sparse data is gathered as floating car data snapshots
and a density-based model is applied in the traffic prediction
algorithm.

C. TRAFFIC ESTIMATION BASED ON SENSING AS A
SERVICE

The proposed solutions in [7], [9], [40], [53] were shedding
light upon the interest of Mobile Sensing as a Service: In [7],
the authors targeted two important aspects. One regarding a
very precise extraction of urban traffic, and another about the
privacy protection. In this study, a comparison has been made
between collecting traffic related information from fixed-
sensors and from mobile devices. It was clearly revealed that,
due to the significant benefits of data extracted from mobile
devices, fixed-sensors are not efficient sensors to be con-
sidered. The authors in [53] surveyed different domains for
mobile sensing such as environment, health, traffic estima-
tion, social, ecommerce, prediction of human behavior, and
many more. The conducted survey differentiates between the
participatory and opportunistic urban sensing types. In both
approaches, the public, personal, and social components were
used in the provided solutions. In [9], Das et al. focused
on the community sensing (participatory and opportunistic)
instead of solving the traffic estimation problem. The main
contributions of this paper are to guarantee (1) generality
through the support of a variety of applications, (2) security
by keeping the sensitive data extracted from the devices pri-
vate and not misused by the applications, and (3) scalability
by encompassing a big number of devices without needless
charges on the infrastructure. To control the roads traffic,
the authors in [40] studied how to limit the massive data
shared in the Vehicular Sensor Network. This was achieved
by determining some time points, in which the data should be
communicated. However, the defined timing does not depend
on the evolution of the traffic conditions, which requires new
traffic related data.
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D. ANALYSIS OF THE EXISTING WORK

The existing models are suitable for continuous sensing in
which the data is sampled continuously from cars, and are
not applicable to the case of fully on-demand sensing which
relies on sparse probe data. Furthermore, the real-time nature
of on-demand sensing requires a simple and fast solution
for the inference of traffic status, rather than a complex
statistical approach such as the Hidden Markov Model that
some approaches use. In addition, the idea of collective state
in a large geographic area that is also adopted is not suitable
for the case of on-demand sensing which targets a specific
road segment at a time. In this regard and to the best of our
knowledge, none of the existing approaches addressed the
limitations of the traffic related data collected from either the
sensing infrastructures or the continuous sensing, which was
achieved in our infrastructure-assisted on demand approach.

VIil. CONCLUSION

In this paper, we addressed the limitations of continuous and
infrastructure-less on-demand sensing approaches for ITS
by proposing an infrastructure-assisted on-demand vehicular
sensing framework with the collaboration of mobile cell tow-
ers to minimize the communication with the participants in
the sensing activities. Moreover, we elaborated a novel deduc-
tive rule-based model for classifying traffic condition while
resolving conflicts between mean speed and density estima-
tions. The support of mobile infrastructure helps detecting
the users that are located in the consumer area of interest to
collect the sensory data required for estimating the traffic con-
dition through the mean speed and density. Thorough exper-
iments were conducted using the simulation traces of Vanet-
MobiSim and the communication between the platform and
the users is achieved through RESTful APIs. The obtained
results show that the platform successfully responds to all
the consumers requests by inferring the right traffic condition
varying from free flow to moderate congestion and traffic
jam. Moreover, our approach outperforms the current works
in the literature that consider only the mean speed in the traffic
estimation in case of free flowing and moderate congestion.
It is also worth to mention that our approach outperforms the
infrastructure-less on-demand and the continuous approaches
by showing a significant decrease in the network load and
the on-device computation overhead. Finally, the results show
that our six selection criteria matching the needed data col-
lectors help reducing the matching error with a negligible
increase in the response time.
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