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ABSTRACT We propose a novel fiber-optic auditory nerve of ground (FANG) in the suburb based
on the fiber-optic distributed vibration sensor (DVS). The feasibility and effectiveness of the principle
prototype FANG for traffic flow monitoring are proved and investigated by the field experiment. One of
the 31.8 km-long redundant optical fiber of the buried optical-fiber cable for data transmission is utilized
as the sensing fiber. Then, the phase-sensitive optical time-domain reflectometer (ϕ-OTDR) based DVS
is realized and regarded as the FANG. The vibration events at 9 observation points with different ground
conditions along the sensing fiber are detected by a threshold algorithm during 6.5 hours from 8:00 am.
Then, the vibration events are analyzed in combination with the ground conditions to recognize the machine
working in the factory, rammer working and the vehicles passed through near different areas and roads. The
traffic flow is estimated by the vibration-counting with a counting error that is believed to be in an acceptable
range. The distribution and the fluctuation trends of the estimated traffic flow are useful and enlightening for
the traffic monitoring and pre-warning of special events, such as an accident. The accuracy can be improved
by artificial intelligence methods in the future. It seems that our proposed FANG can be a potential and
effective tool for the internet of things, smart ground and smart traffic in the suburb where the video and
other information collection methods are not available.

INDEX TERMS Fiber-optic distributed vibration sensor (DVS), fiber-optic nerve of ground, ϕ-OTDR, smart
ground, Internet of Things (IoT), smart traffic, traffic flow.

I. INTRODUCTION
Nowadays, the smart applications, such as smart city, smart
traffic, smart ground and smart grid, have attracted a tremen-
dous amount of interests [1]–[7]. They are all fundamentally
supported by the internet of things (IoT) to connect every-
thing by the sensing techniques [1]–[7].

The smart traffic is one of the fastest-growing fields of
the smart applications. The monitoring [8]–[18], forecast-
ing [19]–[29], and management [30]–[32] of the traffic flow
have been investigated by different methods for the smart
traffic, as shown in Table 1.

The associate editor coordinating the review of this manuscript and

approving it for publication was Huimin Lu .

It is necessary to achieve the sensing before the connection
to realize the IoT. Therefore, the monitoring of traffic flow is
the premise of effectuating smart traffic.

A great deal of sensing and detecting methods, includ-
ing 5G cellular network and RFID [8], fixed and UAV
loaded videos [9], [10], internet data such as social media
texts [11], magnetic sensor for measurement of earth’s mag-
netic field changes [12] and the collection of toll ticket
data [13], have been proposed to detect and estimate the traf-
fic flow. Then, different algorithms and data-analysis meth-
ods can be utilized to estimate [14]–[18], forecast [19]–[29]
and measure [30]–[32] the traffic flow, which is all based
on the monitoring of traffic flow by the sensing and data
acquisition.
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TABLE 1. Some current works on smart traffic.

However, without videomonitoring, other information col-
lections are also difficult for the smart applications in the
suburbs far away from the city.

It is the fiber-optic distributed sensor that brings the oppor-
tunity to solve this problem. In the suburbs, there may be
long optical fiber cables buried underground for the optical
telecom network or along with the oil and gas pipelines for
data transmission. In fact, the optical fiber is not only a
transmission medium for communication but also a material
that can be used as a sensor as well.

The installed telecom optical fiber has been employed in
the giant fiber-optic gyroscopes for the angular velocity mea-
surement with the ultra-high sensitivity [33], [34]. The optical
fiber of the metropolitan optical networks can also be utilized
for the fiber Bragg grating (FBG) as the sensing element
to realize the three-axes accelerometer measurement, water-
level, rainfall and traffic-monitoring of the smart city [35].
However, this work, which is high-cost and difficult for the
areas in the suburb, requires the interventional refitting of the
existing fibers to connect the FBG sensing elements.

The telecom optical fiber can also be used as the sensing
fiber of the fiber-optic distributed vibration sensor (DVS),
which can detect and locate the vibration along the long
sensing fiber. DVS has been utilized for the applications,

FIGURE 1. The schematic diagram of ϕ-OTDR based fiber-optic DVS.

including intruder detection, pipelines monitoring, earth-
quake detection, railway and health monitoring of civil
structure [36]–[57]. The phase-sensitive optical time-domain
reflectometer (ϕ-OTDR) has been proved to be an efficient
way of DVS for smart applications because of the simple
installation with only one optical fiber, fast response and high
sensitivity [36]–[57].

The installed telecom optical fibers based DVS have been
proposed for the earthquake observations [58] and the traffic
monitoring, including the vehicle speed, density, and road
conditions estimation [59]. The work reported in [59] is an
enlightening investigation on the DVS for applications to the
smart city with the help of the artificial intelligence (AI).
However, this work provides the traffic flow and the average
speed of a few selected positions with the high SNR (signal-
to-noise ratio) owing to the relatively ideal cable position and
ground condition. The results are calibrated with the video
analytics by AI, which is not feasible in suburbs.

DVS can be considered as the auditory nerve of the ground
to ‘‘hear’’ the vibration events. In this paper, we use the fiber-
optic cables based DVS to realize that geoauditory nerve can
‘‘hear the vibration’’ on the ground in the suburbs, where the
visual nerve (video) is not available.

II. DVS BASED FANG
The experiment setup of our proposed FANG by the ϕ-OTDR
based fiber-optic DVS is shown in Fig. 1. A highly coherent
continuous laser with the narrow linewidth of ∼10 kHz is
employed to enhance the coherent effects of the Rayleigh
back-scattered light rather than to avoid them in a con-
ventional OTDR. The continuous light with wavelength
of 1550.5 nm generated from the laser is modulated by an
acousto-optic modulator (AOM) into the pulsed light with a
pulse width ofWP≈ 500 ns. Then, the light pulse is amplified
by an erbium-doped fiber amplifier (EDFA) and launched
into the single-mode sensing fiber through a circulator. Then,
the Rayleigh back-scattered light is detected by a photo-
detector (PD) and converted into the digital signal by the
analog-digital converter in the data acquisition. Finally, the
digital signal is collected into the computer.

VOLUME 7, 2019 166705



S. Liang et al.: FANG in the Suburb: For Traffic Flow Monitoring

When there is a vibration event around the sensing fiber,
the dynamic strain induced by vibration changes the refrac-
tive index and the fiber length at the effecting position.
Therefore, there will be a phase difference between the
Rayleigh back-scattered light, and the light intensity traces
will fluctuate at the corresponding position due to the inter-
ference. Then, the vibration can be detected and located by
the trace-to-trace intensity demodulation.

The vibration position can be obtained by the time when
the pulse arrives back at the PD. The time delay correspond-
ing to the peak point of the intensity difference curve has a
following relationship with distance L of the sensing fiber,
which can be expressed as:

τ = 2nL/c (1)

where n refers to the effective refractive index of the funda-
mental mode in optical fiber, and c refers to the light speed
in vacuum. The spatial resolution1z of ϕ-OTDR depends on
the width of the input pulse WP, which can be shown as:

1z = cWp/2n (2)

In our experiment, the spatial resolution is 1z ≈ 50 m
corresponding to WP ≈ 500 ns.
Therefore, the sensing fiber can be divided into several

effective sensing zones with the length of1z. For a vibration
event, at the position of fiber length L, the position can be
obtained in the N th zone:

N = [L/1z]+ 1 (3)

The symbol [∼] refers to the operation of rounding toward
zero.

In order to achieve the judgment of vibration events and
remove the influences of the noises, the threshold of the
determination for vibration event can be obtained by several
different signal processing and AI methods. When the differ-
ence of back-scattered light intensity exceeds the threshold,
the vibration can be determined and the position can be
obtained by calculating the number of sensing zone by (3).

III. TRAFFIC FLOW MONITORING BY FANG
The FANG by ϕ-OTDR based DVS is implemented by only
one of the redundant fibers in the existing optical fiber cable
for data transmission with the length of 31.8 km. The cable
is buried at depth of 0.8∼1.5 m. The map for the field test
of FANG based on the existing optical fiber cable is shown
in Fig. 2.

We chose 9 positions in different sensing zones along the
sensing fiber, as illustrated in Fig. 2. These chosen positions
are at the both ends of the sensing fiber, because it is available
to observe the ground conditions without the help of videos.

The fluctuation of back-scattered light intensity is detected
and the difference is obtained by a one second trace-to-
trace recording. The differences at different positions (Di) are
normalized by the maximal value of the differences (Dmax) of
all positions along the entire sensing fiber.

DNi = Di/Dmax (4)

FIGURE 2. The map for field test of FANG formed on the basis of
31.8 km-long existing optical fiber cable.

TABLE 2. Ground conditions of some chosen positions.

FIGURE 3. The normalized differences of the back-scattered light
intensity detected by ϕ-OTDR vs time at different positions.

where DNi refers to the normalized difference.
The normalized differences of the back-scattered light

intensity detected by ϕ-OTDR from 8:00 to 14:30 at different
positions are shown in Fig. 3.

In order to prove the feasibility of the principle prototype
FANG, we utilize a simple method to obtain the threshold
in the field test. The average value of the back-scattered light
intensity in each sensing zone collected in the static condition
(without a certain vibration) in 2 minutes is multiplied by
a threshold coefficient of 2.25 as the threshold of the every
sensing zone. It means that if the normalized difference in
a sensing zone is larger than the average value in the static
condition, a vibration event is considered to happen in this
sensing zone. The normalized difference and the threshold of
different positions are illustrated in Fig. 4 in detail. It is worth
noting that the fluctuation of differences and thresholds at
different positions are caused by the fiber cable position and
ground condition, which affects more or less dynamic strain
induced by vibration and coupled into the sensing fiber.
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FIGURE 4. The normalized difference (blue lines) of back-scattered light
intensity and the threshold (red lines) vs time at different positions.

FIGURE 5. The density of vibration events vs time at different positions.

By the threshold judgment, the density of the vibration
events at different positions is obtained, as shown in Fig. 5.

The temporal distribution of the vibration-event density
can be considered to be three categories. Firstly, for the
positions A and E, there are very dense vibration events
due to the ground conditions of the mechanical working in
a factory and a working rammer. Then, for the positions B
and C, very few vibrations are detected. The reason is that
the quiet environments passing through a forest and near a
farmland. Finally, there are frequent dense vibration events
at positions D, F, G, H, and I, which are respectively caused

FIGURE 6. The estimated traffic flow vs Time at different positions (Blue
and red for different scales).

FIGURE 7. The maximal traffic flow at different positions.

by the passing vehicles on the ground conditions near a rural
road, a ramp, along an expressway, passing through a national
highway, and along a national highway. Especially for the
two positions G and I, along an express way and a national
highway, the continuous high density of the vibration events
are clearly observed.

For the traffic flow monitoring, the vibration events
induced by the vehicles are the monitoring targets. Then,
the equivalent traffic flow is obtained by calculating the
amount of the vibration events in every 10 minutes, which
is illustrated in Fig. 6. Furthermore, the maximal traffic
flow is illustrated in Fig. 7 to present a clearly quantitative
description.

It is worth noting that the highly dense vibration events due
to the machine and rammer at positions A and E are removed
for the traffic monitoring. Although the experimental results
at positions of A and E cannot be used directly to describe the
traffic flow, the vibration events observed there can reflect
the operation of the factory, and the special construction
situation, such as a working rammer. The results are useful
for the security monitoring of the ground in a wide area.

In the cases of B and C, the traffic flow is very small, and
the maximum value is only 4 and 6 per 10 minutes, which
means that there are only few agricultural vehicles passing
through the forest and farmland. The traffic flows at positions
of F and H are higher, with the maximal value of 23 and
20 vehicles/10 mins. The position F is near a ramp, where
only few vehicles pass, and the maximum traffic flow appears
at 9:30 am. At the position of H, the traffic flow represents the
vehicles passing through the intersection point of a national
highway and the sensing fiber. A set of data on peak traffic
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flow is observed in the ground conditions of D, G and I, with
the maximal traffic flow of 52, 130 and 164 vehicles /10mins,
respectively.

The position D is near a rural road, which is the only way
to the express way. Therefore, there is a higher traffic flow at
position of D than that of B, C, F, and H positions.

The positions G and I respectively along an express way
and a national highway result in the highest traffic flow.

It is worth noting that the errors induced by the repeated
counting of the vehicles at the same position during the col-
lecting time have not been calibrated by the video monitoring
in our field test. However, the results of traffic flow can be
considered to be in an acceptable range. The value magni-
tudes and differences among the positions and fluctuation
trends of the traffic flow at different positions are useful to
reflect the traffic situation and predict the unexpected traffic
accident in the huge area of suburbwithout the videomonitor-
ing. This is the significance of this research. In the vast area
without video monitoring, it is the underground fiber cable
that is the only solution to detect traffic flow.

Furthermore, we believe that the types of vehicles (diesel
or gasoline engine) and road conditions (smooth or tortuous)
can be obtained through AI and machine learning by collect-
ing a large number of vibration samples in the future.

IV. CONCLUSION
A novel FANG is proposed based on the DVS, which is real-
ized with the help of ϕ-OTDR. The field test is implemented
by using one of the 31.8 km-long redundant optical fibers
of the buried telecom fiber cable to prove the feasibility and
effectiveness for the traffic flow monitoring. The vibration
events at 9 observable positions along the sensing fiber have
been detected by a threshold judgement from 8:00 to 14:30.
The operating machines in a factory and a working rammer
are extracted at two positions. Then, the traffic flow pass-
ing through different areas and roads are estimated by the
vibration-counting at different positions during 6.5 hours. For
proof of concept, the estimation errors are believed to be in
an acceptable range without the calibration by videos. The
distribution and the fluctuation trend are useful and enlight-
ening for the smart traffic and pre-warning of special events
such as an accident. The accuracy can be improved by AI
methods in the future. It seems that this work opens a new
era to use telecom fiber to realize auditory nerve of ground in
the suburb, which is a perfect fit to smart ground and traffic
applications in the near future.
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