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ABSTRACT Intra-pulse modulation phase calibration is necessary in inverse synthetic aperture radar (ISAR)
imaging of high-speed targets. Traditional intra-pulse phase error compensation strategies rarely handle
the high-order and slow-time-variant phase components induced during the coherent processing interval.
In this paper, a novel intra-pulse modulation phase calibration with a two-dimensional (2-D) parametric
phase model is proposed. It models the intra-pulse phase errors as a 2-D time-variant polynomial with
accommodation of both fast-time and slow-time modulation. Entropy minimization of high-resolution
range profiles (HRRPs) is developed to retrieve the phase error parameters. Improved coordinate descent
optimization solver is established by Levenberg-Marquardt (LM) algorithm in order to find the global
optimum of entropy efficiently. Comparative experiments using both simulated and real measured data are
performed to demonstrate the enhancements of the proposed algorithm.

INDEX TERMS Entropy minimization, intra-pulse modulation, inverse synthetic aperture radar (ISAR),
phase error compensation.

I. INTRODUCTION
Inverse synthetic aperture radar (ISAR) is a well-established
technology for generating high resolution image of
non-corporative targets. Being capable of reconstructing
detailed scattering structure of moving targets, ISAR has
been widely used in both military and civilian fields [1]–[4].
One of the significant challenges ISAR imaging faces is
the intra-pulse modulation error, such as amplitude error
and phase error, in received signals. The intra-pulse mod-
ulation error can be caused by the following two reasons.
Firstly, the nonlinearity of radar transmitting devices like
mixer and multiplier, when used in wide-band situations,
is inevitable [20]. This nonlinearity induces unexpected
intra-pulse modulation. Although those errors usually are of
low-frequency property, they would lead to strong smearing
of the pulse response function. Because this error is rele-
vant to the hardware, they are fast-time variant. Secondly,
in real situations, the target’s motion is often nonuniformwith
high velocity and acceleration. Prominent acceleration will
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induce a continuous phase modulation difference along the
slow-time direction, yielding a slow-time-variant intra-pulse
modulation in received signal. Intra-pulse modulation error
introduced by the reasons above leads to defocused and
blurred ISAR images, and due to the 2-D modulation char-
acteristics, this problem is hard to deal with. What is more,
intra-pulse modulation error calibration is the first step of
ISAR imaging. Without a well calibration, the image will be
seriously defocused, no matter how accurate the translational
compensation is. As a result, the demand for methods of
intra-pulse modulation error compensation is urgent.

Current calibration algorithms can be sorted into several
categories. The first class is quadratic model-based calibra-
tion, such as map-drift algorithm (MDA) [4] and its mod-
ified versions [12]–[15]. MDA estimates the coefficient of
quadratic phase error (QPE) according to the different func-
tional forms of QPE across two half-length sub-apertures.
A coherent MDA was proposed in [12], adopting traditional
MDA into low contrast situations. They are more robust
than general prominent-point-target-based algorithms, such
as PGA [41]. However, MDA can only handle the QPE in
fast-time direction, ignoring the higher orders and slow-time
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variant term. Multiple map-drift algorithm (MAM) is the
extension of MDA, which can estimate the higher-order
phase error by dividing the full aperture into more than one
sub-aperture [4]. Similar to MDA, MAM also ignores the
slow-time variant feature of the phase error, and when the
number of echoes is not enough, short-length sub-apertures
will be used, degrading both the resolution and the signal-
to-noise ratio. A phase distortion compensation method in
the frequency domain based on the least squares estima-
tion (LSE) is proposed in Liu Y, et al. [16]. This method
models phase error as a second-order polynomial of fre-
quency variable. The quadratic term is known via calibration
tower, and the linear term induced by unknown transmitted
delay time can be estimated through LSE. With this method,
ISAR image quality can be improved. However, the method
is based on the assumption that the phase error caused by the
target motion has been compensated before, and the trans-
mitted signal is received by direct intermediate frequency
sampling (DIFS) technique. Therefore, it cannot handle the
situation in which phase error is induced by the nonuniform
motion of a target and the echo is received by dechirp process.
The second class is the metric-based optimization method.
These methods model the displacement as a polynomial of
the time variable and construct the compensation function
by estimating polynomial coefficients [7]. The estimation
is often obtained through minimizing or maximizing a par-
ticular metric (entropy, contrast, and sharpness) [21]–[26].
Because of the use of global information, they are more
robust and can obtain more accurate results compared with
traditional methods. However, these methods are designed
for fast-time variant phase error without any discussion on
slow-time variant terms.

To solve the optimization, there aremany standardmethods
available, such as the gradient descent algorithm, Newton’s
method, the simulated annealing algorithm, and the genetic
algorithm. However, due to the influence of the inevitable
noise, entropy functions of ISAR signal echo may not be
smooth enough along with a lot of local minima. And entropy
functions can be relatively flat which means the gradient
is very small. Gradient-based algorithms, therefore, suffer
a slow rate of convergence and can be trapped into local
minima [27]. The standard Newton’s method is also likely
to stop in local minima, and it needs to compute the inverse
of the Hessian matrix which brings lots of computation bur-
dens, especially in multi-parameter situations [27]. Heuristic
algorithms like simulated annealing algorithm and genetic
algorithm always need considerable computation time and a
complex parameter setting scheme [31]–[34].

Generally, the phase error caused by intra-pulse modula-
tion is more crucial than the amplitude error. Herein we focus
on the calibration of intra-pulsemodulation phase error.Moti-
vated by the 2-D time-variant characteristic of intra-pulse
phase error, a novel intra-pulse modulation phase calibration
for ISAR imaging is proposed in which parameters estima-
tion is implemented in a fast and robust manner. We first
model the phase error term as a high-order polynomial

(cubic polynomial) with consideration of fast-time and
slow-time modulation. Based on the model, we formulate the
entropy minimum optimization of the high range resolution
profiles (HRRPs). The entropy is used as the optimization
metric to estimate the polynomial coefficients. Then, we pro-
pose a novel coordinate descent optimization scheme imple-
mented by Levenberg-Marquardt (LM) method [27], [30].
It is revealed that the scheme will yield reliable convergence
compared with standard Newton solver and direct parameter
searching. By performing comparative experiments based on
simulated and real measured data, the efficiency and robust-
ness of the proposed algorithm can be proved. The main
contributions of this work are listed as follows:

1) A novel intra-pulse phase error model is proposed with
consideration of the fast-time and slow-time variant modula-
tion error, induced by the nonlinearity of transmitting devices
and high radial velocity and acceleration of the target. This
model contains 2-D time-varying modulation information,
which can produce an accurate error fitting.

2) An optimization scheme combining coordinate descent
algorithm and Levenberg-Marquardt method is implemented
to solve the optimum parameters, which can achieve global
convergence and a fast convergent rate.

This paper is organized in the following manner.
In section II, we establish the intra-pulse modulation model
and analyze the impact of error parameters on imaging.
General ISAR geometry and dechirped signal model are also
recalled to maintain the integrity of the context. In section III,
the algorithm for intra-pulse modulation phase calibration
compensation based on coordinate descent method is pre-
sented in detail. Section IV demonstrates the experiment
results of simulated and real measured data to verify the
effectiveness of the proposed algorithm. Some conclusions
are given in section V.

II. IMAGING GEOMETRY AND SIGNAL MODEL
This section firstly presents conventional ISAR imaging
geometry and dechirped signal model [6]–[8]. And then,
the characteristics of 2-D time-variant phase errors are also
analyzed.

A. ISAR IMAGING GEOMETRY AND DECHIRPED
SIGNAL MODEL
A three-dimensional ISAR geometry is illustrated in Fig. 1a.
The cartesian coordinate system (χ1, χ2, χ3) is the radar ref-
erence coordinate in which the object of interest is moving.
The (χ ′1, χ

′

2, χ
′

3) coordinate system is attached to the target
and is often called the body coordinate of the target. r0
denotes the distance between the radar and target, and the
direction of r0 is radar line-of-sight (LOS). It is well-known
that ISAR geometry can be viewed as a two-dimensional
model, as shown in Fig. 1b. In Fig. 1b, R(t) denotes the
instantaneous distance from the radar to the rotation center
and 1θ represents the instantaneous rotational angel. They
correspond to translation and rotation respectively [18].
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FIGURE 1. ISAR imaging geometry model. (a) Three-dimensional ISAR
geometry; (b) 2-D rotational model.

In ISAR imaging, the linear-frequency-modulated (LFM)
signal is often adopted in the imaging radar which is given by
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where σk and c denotes the reflection intensity and velocity
of light respectively, tm is the slow time, and tk = 2 · Rk/c is
the time delay of scatter k’s echo.

After the well-established dechirping technique [17],
the signal echo becomes:

sd (ts) =
K∑
k=1

{
σkrect

(
ts − τ1k
TP

)
· exp

{
−j2π

[
(fc + γ ts) τ1k −

1
2
γ τ 21k

]}}
(3)

in (3), ts = t̂ − tref , tref = 2Rref /c and τ1k =

2
(
Rk − Rref

)
/c = tk − tref , where Rref is the distance

between the radar and the reference point, and tref means the
time delay of the reference point’s echo.

B. 2-D TIME-VARIANT PHASE ERROR MODEL
The causes of the intra-pulse modulation phase error have
been analyzed in the section I. In this subsection, the proposed
phase error model will be discussed, and the impact of the
error parameters on ISAR imaging will also be given.

Aswe described in section I, the nonlinearity of radar trans-
mitting devices can defocus the phase of effective signals,
resulting in an extra intra-pulse modulation phase error, and
this error is fast-time dependent. With consideration of the
phase error term caused by this reason, the transmitted signal
in (1) can now be expressed as

s
(
t̂
)
= rect

(
t̂
TP

)
· exp

[
j2π

(
fc t̂ +

1
2
γ t̂2

)]
· exp
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(4)

where8dev
(
t̂
)
represents the phase error term induced by the

transmitting device’s nonlinearity.
According to the Taylor expansion, the error term above

can be written as a high-order polynomial with respect to the
fast-time term t̂

8dev
(
t̂
)
= d0 + d1 t̂ + d2 t̂2 + d3 t̂3 + O

(
t̂4
)

(5)

where di, i = 1, 2, 3 denotes polynomial coefficients, and
O
(
t̂4
)
is on behalf of error terms of fourth-order and above.

The constant term on the right side of (5) has no influence on
the range image; the linear term will only cause the shift of
envelopes, which can be solved by range alignment. There-
fore, they can be ignored in this phase error compensation
stage. It also should be noted that, in this paper, we ignore
O
(
t̂4
)
, namely, we define 8dev

(
t̂
)
as a third-order polyno-

mial.
With consideration of the extra phase term, the dechirped

echo in (3) can be rewritten as
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· exp
{
−j2π
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8dev(ts−τ1k)

}
(6)

Therefore, the phase error caused by the transmitting
device in dechirped echo is denoted by

8dev (ts; τ1k) = d2(ts − τ1k)2 + d3(ts − τ1k)3 (7)

In (7), for simplicity, we have discarded the constant and
linear terms.

Fig. 2 illustrates the impact of the terms in (5) on the
range profile. For simplicity, we use a scatter point located
at (10m, 10m) as the target, and the original point is used as
the reference point. Dechirp technique is used to process the
received signal which has 10GHz carrier frequency, 6GHz
bandwidth, 0.3µs pulse duration, 6GHz sampling rate, and
100Hz PRF. From Fig. 2, it can be seen that the linear term
shifts the range profile, but does not influence the degree
of focus of the range profile; the quadratic term, however,
badly defocuses the range profile, resulting in obviously
broadening; the cubic term causes defocus as well, leading
to asymmetric and distorted main lobe. With all the three
kinds of terms above, the quality of the pulse compression
is severely degraded.

FIGURE 2. The impact of the nonlinearity of transmitting device. (a) The
target model; (b) the range profile without error; (c) the range profile with
the linear term only; (d) the range profile with the quadratic term only;
(e) the range profile with the cubic term only; (f) the range profile with all
the three terms.

The second reason for the intra-pulse modulation error is
the high velocity and acceleration of the target. By refer-
ring [9], we give the following analysis.

According to (6), the phase of the first exponential term on
the right-hand side can be rewritten as

8(ts, tm) = −2π fcτ1k − 2πγ tsτ1k + πγ τ 21k (8)

Assuming that the range of the scatter k to the radar at time(
t̂, tm

)
is denoted by

Rk
(
t̂, tm

)
= Rk (tm)+ v (tm) t̂ (9)

and the range of the reference point to the radar can be
expressed as

Rref
(
t̂, tm

)
= Rref (tm)+ v (tm) tref (10)

where v (tm) denotes the radial velocity of the target [9].
We model the radial velocity as a linear function of slow

time

v (tm) = atm + v0 (11)

where a represents the acceleration. Equation (11) is consis-
tent with most situations. According to (9) and (10), τ1k has
the following form

τ1k (tm) = 2
[
Rk
(
t̂, tm

)
− Rref

(
t̂, tm

)]
/c

= 2
[
Rk (tm)− Rref (tm)+ v (tm)

(
t̂ − tref

)]
/c

= 2 [1Rk0 + v (tm) ts] /c (12)

Take (12) into (8), the phase term can thus be written as

8(ts, tm) = −
4π
c
fc1Rk0 −

4π
c
fcv (tm) ts −

4π
c
γ ts1Rk0

−
4π
c
γ v (tm) t2s+

4π
c2
γ1R2k0

+
8π
c2
γ1Rk0v (tm) ts +

4π
c2
γ v2 (tm) t2s (13)

In (13), the first and fifth terms are constant, they have no
impact on the image quality. The second, third and sixth terms
are linear, leading to the shift of the envelope, but they do not
worsen the image quality and can be eliminated by translation
compensation methods. The fourth and seventh terms are
quadric, which will broaden the range spectrum and defocus
the image [9].

Equation (13) can be rewritten with ignorance of the con-
stant and linear terms as

8mot (ts, tm) = −
4π
c
γ

(
v (tm)−

v2 (tm)
c

)
t2s (14)

where 8mot denotes that this phase term comes from the tar-
get’s motion. With consideration of the fact that the velocity
of the target is much less than that of the light, (14) can thus
be approximated as

8mot (ts, tm) = −
4π
c
γ v (tm) t2s (15)
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FIGURE 3. The impact of radial velocities. (a) The simulation situation;
(b) the target model; (c) the radial velocity of 7000m/s along-track
velocity; (d) the original and compensated range profiles; (e) different
relative radial velocities of different along-track velocities; (f) comparison
of range profiles of different velocities.

Take v (tm) = atm+ v0 into (15), and redefine the constant
as coefficients of the polynomial, we can get

8mot(ts, tm) =(β0 + β1tm) t2s =(β0+β1tm)
(
t̂−tref

)2 (16)

where β0 = −4πγ v0/c, and β1 = −4πγ atm/c.
Fig. 3 demonstrates the influence of v (tm) on the range pro-

file. The target is the same as that in Fig. 2, i.e., a scatter point
is located at (10m, 10m), and the original point is chosen as
the reference point for the dechirp receiving. The simulation
situation is shown in Fig. 3a. The target starts at the origin and
follows the flight path in the direction indicated by the arrow.
vt in Fig. 3a denotes the velocity along the track, and vr is
the radial velocity which will be analyzed. The distance from
the radar to the origin is 100km. The carrier frequency of the
signal is 10GHz, the bandwidth is 6GHz, the sampling rate
is 20MHz, the pulse duration is 100µs, and PRF is 100Hz.
First, we set vt = 7000m/s, i.e., the along-path velocity is
constant. Under this circumstance, it can be seen in Fig. 3c
that although the along-path velocity is constant, the radial
velocity is varying with an acceleration of approximately
200m/s2. The solid line in Fig. 3d represents the range profile
impacted by the high radial velocity and accelerations. Con-
sistent with the previous analysis, the radial velocity results

in spectrum broadening. After the radial velocity compensa-
tion by (15), the broadening effect can be eliminated, as the
dashed line in Fig. 3d shows. Second, the along-path veloc-
ity is set as 1000m/s, 4000m/s, and 7000m/s respectively.
We compare the effect of different radial velocity. The radial
velocity changes in the three cases are shown in Fig. 3e,
and, for comparison, they are all normalized by subtracting
their mean values. Combining Figs. 3e-3f, we can conclude
that larger radial velocity and accelerations cause wider main
lobes, resulting in a highly defocused image. Consistent with
former analysis, there are spectrum shifts for different radial
velocities, which are caused by the linear term in (13).

We combine the two kinds of errors together with approx-
imations that ts − τ1k ≈ t̂ and t̂ − tref ≈ t̂ . The whole phase
error is illustrated by

81
(
t̂, tm

)
= (γ0 + γ1tm) · t̂2 + dt̂3 (17)

where γ0 = β0 + d2, γ1 = β1, and d = d3.
Obviously, (17) is 2-D time variant, because it changes over

fast and slow time.
The error-free part of the dechirped echo in a discrete form

is defined as s0(m, n), where m is the index of slow time and
n is the index of fast time. Likewise, the discrete form of
the whole phase error is denoted by 81 (m, n). Therefore,
the echoed signal with phase error can be expressed as

s̃ (m, n) = s0 (m, n) · exp {jπ81 (m, n)}

= s0(m, n) · exp
{
jπ
[
(γ0 + γ1m) · n2 + dn3

]}
(18)

Analyses of how the total phase error, i.e., a 2-D
time-variant phase term, degrades the image quality will be
given in the following paragraphs. We first demonstrate the
spectrum of the phase error and then analyze its impact on
range profile. It should be emphasized that we have nor-
malized fast and slow time into [−0.5, 0.5] according to the
number of sampling points, hence, the values of parameters
below are relative values.

Fig. 4 illustrates the spectrum of the phase error and the
influence of the three parameters on the spectrum. The solid
line in Figs. 4a-4c represents Fourier transform of 81 (m, n)
with respect to n, and the parameters are set as γ0= 30,
γ1= 50, d = −20, and m = 512. It can be seen that the
spectrum of the phase error is far from ideal Dirac func-
tion, and there exist obvious broadening and nonuniform
amplitude. When this error term modulates the signal in the
time domain, their spectrums are convolved in the frequency
domain, which will cause broadening and distortion of range
profile. The dashed line in Figs. 4a-4c shows the situations
when γ0= 0, γ1= 0, and d = 0 respectively. It can be
concluded that without γ0 and γ1, the broadening will be
much smaller and the spectrum of the phase error is similar
to Dirac function; if d is zero, the tilt of the main lobe will
disappear. Fig. 4d demonstrates the slow-time variant char-
acteristics of the phase error. We fix the values of parameters
at γ0= 30, γ1= 50, and d = −20, and change m to 1, 256,
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FIGURE 4. Simulation results of the phase error’s spectrum.
(a) The spectrum of the phase error with γ0= 30, γ1= 50, and d = −20,
and the spectrum of the phase error with γ0= 0, γ1= 50, and d = −20;
(b) the spectrum of the phase error with γ0= 30, γ1= 50, and d = −20,
and the spectrum of the phase error with γ0= 30, γ1= 0, and d = −20;
(c) the spectrum of the phase error with γ0= 30, γ1= 50, and d = −20,
and the spectrum of the phase error with γ0= 30, γ1= 50, and d = 0;
(d) the spectrum of the phase error with m = 1, m = 256, and m = 512
respectively.

and 512 respectively. It can be seen that with the increasing
of m, i.e., the quadratic term, the spectrum gets wider.

Fig. 5 illustrates the influence of the three parameters on
the one-dimensional range profile. We use the same target
as that in Fig. 3. The radar transmits the LFM signal and
receives echo using dechirp technique with a reference point
(x, y) = (0, 0). The carrier frequency is 10GHz and the
bandwidth is 500MHz. The pulse width is 2µs and the PRF
is 400Hz. Fig. 5b shows the ideal dechirped result with the
elimination of RVP terms. The dashed line in Figs. 5c-5f is the
dechirped result with phase error parameters γ0= 30, γ1= 50,
and d = −20, γ0= 0, γ1= 50, and d = −20, γ0= 30, γ1= 0,
and d = −20, and γ0= 30, γ1= 50, and d = 0 respectively.
It can be seen that the existence of phase error leads to the
broadening, tilt, and distortion of HRRP. By comparing Figs.
5d-5f, it can be concluded that γ0 and γ1 mainly cause the
broadening of HRRP, and d results in the tilt of HRRP’s main
lobe. Fig. 5g is a scattering model of a plane and Fig. 5f is
the imaging result with error parameters γ0= 30, γ1= 50, and
d = −20. It can be seen that each scattering point is badly
defocused, and the outline of the plane is blurred.

The scheme of phase error compensation is to first estimate
the three parameters and then, construct compensation func-
tion to eliminate the phase error. Suppose the estimated value
of γ0, γ1, and d is γ̂0, γ̂1, and d̂ , the compensation function
can be written as

8̃1 (m, n) = exp
{
−jπ

[(
γ̂0 + γ̂1m

)
· n2 + d̂n3

]}
(19)

FIGURE 5. Simulation results of parameters’ influence on the HRRP.
(a) The model of a scattering point; (b) the HRRP of ideal dechirped
signal; (c) the distorted HRRP with γ0= 30, γ1= 50, and d = −20, and the
ideal HRRP; (d) the distorted HRRP with γ0= 0, γ1= 50, and d = −20, and
the ideal HRRP; (e) the distorted HRRP with γ0= 30, γ1= 0, and d = −20,
and the ideal HRRP; (f) the distorted HRRP with γ0= 30, γ1= 50, and
d = 0, and the ideal HRRP; (g) a plane model; (h) the imaging result with
the phase error.

Therefore, the phase error can be compensated by

sc(m, n) = exp
{
−jπ

[(
γ̂0 + γ̂1m

)
· n2 + d̂n3

]}
· s̃(m, n) (20)

In the next section, details of the algorithm to estimate param-
eters will be discussed.

III. PARAMETERS ESTIMATION BASED ON
MINIMIZATION ENTROPY OPTIMIZATION
Section III will introduce the parameters estimation method
based on the minimization entropy optimization. In order
to increase the convergent rate and robustness of the
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algorithm, we propose an optimization algorithm combining
Levenberg-Marquardt method (LM method) and coordinate
descent algorithm.

A. MINIMIZATION ENTROPY OPTIMIZATION
According to (20), the compensated signal can be achieved
by multiplying polluted echoes by a compensation term
exp

{
−jπ

[
(γ0 + γ1m) · n2 + dn3

]}
, and the HRRPs of M

echoes after error compensation can be obtained by Fourier
transform along range direction, i.e.,

g (m, n) =
N−1∑
l=0

sc (m, n; γ0, γ1, d) · exp
(
−j2π

nl
N

)

=

N−1∑
l=0

{
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
·s̃ (m, n)·exp

(
−j2π

nl
N

)}
(21)

In order to measure the degree of focus of HRRPs,
the entropy function is introduced. Entropy is one of the most
suitable functions to represent the sharpness of an image,
and it is a widely used principle in ISAR imaging [21]–[24].
It is based on the assumption that if the signal is error-free,
the shape of its HRRP will be sharpest which means the
energy of HRRP is well-focused.

From (21), it can be seen that HRRP is the function of γ0,
γ1, and d , therefore the entropy of HRRPs is also the function
of γ0, γ1, and d , which can be written as

E (γ0, γ1, d) = −
1
Sg

M−1∑
h=0

N−1∑
l=0

{
|g (γ0, γ1, d) |2

· ln |g (γ0, γ1, d) |2
}
+ ln Sg (22)

where Sg is the intensity of HRRPs, and it can be expressed
as

Sg =
M−1∑
h=0

N−1∑
l=0

|g (γ0, γ1, d) |2 (23)

The problem of estimating parameters γ0, γ1, and d can be
abstracted as the following form according to minimization
entropy principle:〈

γ̂0, γ̂1, d̂
〉
= argmin

γ0,γ1,d
E (γ0, γ1, d) (24)

So far, the model of optimization has been established. It is
an optimization problem for a three-parameter search. Fig. 6
illustrates the variation of the entropy function of a simple
model. Fig. 6a shows the target’s model and (b) denotes the
HRRPs distorted with phase error and noise. Figs. 6c–6e
represent the independent variation of entropy with respect to
γ0, γ1, and d respectively. It can be seen that the optimization
process will face the challenges of local minima and relatively
flat cost function. The next subsection will introduce the
workflow of the proposed algorithm to solve the problem
described in (24).

FIGURE 6. Simulation results of a simple model’s entropy function.
(a) The model of the target; (b) the distorted HRRPs; (c) the variation of
entropy with respect to γ0; (d) the variation of entropy with respect to γ1;
(e) the variation of entropy with respect to d .

B. WORKFLOW OF THE PROPOSED ALGORITHM
In this paper, a coordinate descent algorithm [35], [39], [40]
combined with the LM method is proposed. It can be proved
that this scheme has better robustness and a faster rate of
convergence. The result can be seen in the next section.

The idea of coordinate descent algorithm is that by
minimizing a multivariable function F (θ) along a certain
direction at one time, i.e., solving a series of univariate opti-
mization in a loop (epoch), the optimal point θopt can be
found. Coordinate descent algorithm is an iterative method
in which each iteration is obtained by approximately mini-
mizing the cost function with respect to a single parameter
while fixing the remaining parameters at their values from
the current iteration [35].

Assume that vector θ = [γ0, γ1, d]T denotes the parame-
ters vector, θk is the kth parameters in θ , and θ (i,k) represents
the vector of three phase error parameters at the ith iteration
in which the first k − 1 parameters’ value has been updated.
For example, θ (i,3) =

[
γ
(i+1)
0 , γ

(i+1)
1 , d (i)

]
means in the ith

iteration, γ0 and γ1 have been updated, and d needs to be
searched. Therefore, the problem now is a one-dimensional
search with respect to θk . Assume that the updating value of
θ
(i)
k is 1θk , we can correct HRRPs after obtaining θ (i+1)k as
follows

E
(
θ (i,k);1θk

)
= −

1
Sg

M−1∑
h=0

N−1∑
l=0

{
|g
(
θ (i,k);1θk

)
|
2

· ln |g
(
θ (i,k);1θk

)
|
2
}
+ ln Sg (25)

where image intensity is

Sg =
M−1∑
h=0

N−1∑
l=0

|g
(
θ (i,k);1θk

)
|
2 (26)
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To solve one-dimensional optimization in each iteration,
we use LM method. By referring [30], we will briefly intro-
duce LM method and its comparison with gradient descent
method and Newton’s method.

Traditional line search methods are gradient descent and
Newton’s method. The one-dimensional gradient descent
updates the pth parameter based on the following rule

θ
(p+1)
k = θ

(p)
k − µ

∂E (p)
(
θ
(p)
k

)
∂θ

(p)
k

(27)

where µ is the step length factor and ∂E (p)
(
θ
(p)
k

)
/∂θ

(p)
k

is the first-order derivative (gradient) of the cost function
at θ (p)k . Note that the superscript i in (25)–(26) represents
the ith outer loop (epoch) of the coordinate descent method
and p in (27) denotes the pth iteration of the one parameter
searching in coordinate descent method. Gradient descent is
suitable for very simple models, but its convergence can take
a long time for complex models. For example, when the cost
function is very steep, a small step should be used to avoid
crossing the optimal point, and on the contrary, when the
error surface is flat, a large step is wanted otherwise time
consumption is considerable. However, gradient descent only
uses gradient information which results in the situation that
in the steep region, step length is large and in the shallow
region, step length is small. This characteristic degrades per-
formance [30].

The pth update of Newton’s method is given by

θ
(p+1)
k = θ

(p)
k − µ(

∂2E (p)
(
θ
(p)
k

)
∂
(
θ
(p)
k

)2 )−1
∂E (p)

(
θ
(p)
k

)
∂θ

(p)
k

(28)

where ∂2E (p)
(
θ
(p)
k

)
/∂
(
θ
(p)
k

)2
represents second-order

derivative (a special case of Hessian matrix) of the cost
function at θ (p)k . Compared with gradient-based methods,
Newton’s method makes use of curvature information which
speeds convergence up enormously. However, when the error
surface is not smooth enough, the second-order derivative
can be negative which will not guarantee that the update
direction is descent direction. What is more, in Newton’s
method, the quadratic approximation of the cost function is
used, which denotes that the accurate result can be obtained
only in the locations near the optimal point.

LM method blends the two extremes above [30]. The
update rule is

θ
(p+1)
k = θ

(p)
k −

 ∂2E (p)

∂
(
θ
(p)
k

)2+µ · ∂2E (p)
∂
(
θ
(p)
k

)2

−1

∂E (p)

∂θ
(p)
k

(29)

If the value of µ is large, (29) is approximate to (27) which
is a quasi-gradient descent method and algorithm can still get
benefit from curvature information. On the other hand, if µ
is small, (29) approaches (28), i.e., the Newton’s method.
The insight of this method is that by adjusting µ, we can

FIGURE 7. Flowchart of Levenberg-Marquardt method.

use gradient-based method until the minimum is approached,
then switch to Newton’s method in order to get high perfor-
mance [30]. The distance to the minimum can be estimated
by the change of the error value.

The LMmethod adjusts the blending factor µ according to
the scheme below [30].

1) Update parameters using (29) directly.
2) Compute the value of cost function using updated

parameters.
3) If the cost function increases because of the update

in step 1, then reset parameters to their previous value and
multiply µ by a factor of 10. Return to step 1 and repeat.

4) If cost function decreases after the update, then accept
the new value of parameters and divide µ by a factor of 10.

Fig. 7 shows the block diagram of the LM method.
From (29), it can be seen that the first-order and

second-order derivative of entropy function with respect to
θk , i.e., γ0, γ1, and d are needed.

The formulas of HRRP and its entropy function has been
given in (21), (22), and (23). The partial derivative of E (θ)
with respect to the kth parameter θk can be expressed as

∂E (θ)
∂θk

= −
1
Sg

M−1∑
h=0

N−1∑
l=0

(1+ ln|g (θ) |2)
∂|g (θ) |2

∂θk
(30)

Since

∂|g (θ) |2

∂θk
= 2Re

{
g∗
∂g
∂θk

}
(31)

Therefore, in order to get (31), we must first obtain ∂g/∂θk .
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FIGURE 8. Block diagram of the proposed algorithm.
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From (21), we can obtain the partial derivative of g (θ)with
respect to θk , i.e., γ0, γ1, and d which are expressed as

∂g (θ)
∂γ0

=

N−1∑
l=0

{(
−jπn2

)
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(32)

∂g (θ)
∂γ1

=

N−1∑
l=0

{(
−jπmn2

)
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(33)

∂g (θ)
∂d
=

N−1∑
l=0

{(
−jπn3

)
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(34)

Take (32)–(34) into (30) and (31), partial derivative of
E (θ) with respect to γ0, γ1, and d can be solved.

The second-order partial derivative of E (θ)with respect to
kth parameters θk can be written as

∂2E (θ)

∂θ2k
= −

1
Sg

M−1∑
h=0

N−1∑
l=0

(
1+ ln |g (θ) |2

) ∂2|g (θ) |2
∂θ2k

−
1
Sg

M−1∑
h=0

N−1∑
l=0

1
|g (θ) |2

(
∂|g (θ) |2

∂θk

)2

(35)

Since

∂2|g (θ) |2

∂θ2k
= 2Re

[(
∂g (θ)
∂θk

)∗ (
∂g (θ)
∂θk

)
+ g(θ)∗

∂2g (θ)

∂θ2k

]
(36)

The first-order partial derivative of g (θ) with respect to
θk, i.e., γ0, γ1, and d has been given in (32)–(34), therefore,
in order to get (35), we must first obtain ∂2g (θ) /∂θ2k
From (32)–(34), the second-order partial derivative of g (θ)

with respect to θk can be derived:

∂2g(θ)
∂γ02

=

N−1∑
l=0

{(
−π2n4

)
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(37)

∂2g(θ)
∂γ12

=

N−1∑
l=0

{(
−π2m2n4

)
exp

(
−jπγ0n2

)
exp
(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(38)

∂2g (θ)
∂d2

=

N−1∑
l=0

{(
−π2n6

)
exp

(
−jπγ0n2

)
exp

(
−jπγ1mn2

)
exp

(
−jπdn3

)
s̃ (m, n) exp

(
−j2π

nl
N

)}
(39)

FIGURE 9. Scattering model of a simulated satellite; (a) the 3-D model;
(b) the 2-D projection model.

Take (37)–(39) into (35) and (36), the second order partial
derivative of E (θ)with respect to γ0, γ1, and d can be solved.
Derivation of (31) and (36) can be seen in the appendix.

Fig. 8 displays the workflow of the whole algorithm.
In Fig. 8, the initial value of γ0, γ1, and d is set zero.
Thanks to the robustness of the proposed algorithm, it is
suitable to start at zero for most real situations. There are
outer and inner loops in the workflow. The inner loop is for
the one-dimensional parameter searching for γ0, γ1, and d
respectively; after one outer loop (epoch), three parameters’
values are updated. The stop condition for outer and inner
loops is both based on the principle that if the cost function’s
value does not change obviously (less than 1e-5) or loop times
has exceeded the set maximum loop times, the algorithm will
has little effect on optimization, therefore, the iteration can
be stopped. The blending factor µ of the LM method is set to
1e-3 which is an empirical value.

In the next section, both simulated and real-measured
datasets are used to confirm the effectiveness and robustness
of the proposed algorithm.

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS
In this section, both simulated and realmeasured data are used
to validate the effectiveness and robustness of the proposed
algorithm. Two sets of experiments are performed with ISAR
signal echo data. In the experiments using simulated data,
artificial phase error and noise are introduced to validate
the correctness of the proposed algorithm; Real measured
Yak-42 data are used to further analyze the performance
of the algorithm. Entropy and contrast are used to eval-
uate the image quality to show the improvement of error
compensation. Algorithms of direct parameter searching and
standard Newton’s method are also used as comparisons.
It must be noted that the standard Newton’s method here
mainly refers to searching three parameters at the same
time, and in order to get the best comparison result, we use
Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation
to implement Newton’s method. The computation platform
is based on Windows 10 64-bit operating system, Intel Core
i5-9300H@2.40GHz CPU, 8GBmemory andMATLABVer-
sion 2017b. All the experimental results show the advantages
of the proposed method.

A. KA-BAND SIMULATION EXPERIMENT
This subsection demonstrates the simulation experiment
results. A scattering model of a satellite is shown in Fig. 9.
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FIGURE 10. Simulation results of HRRPs. (a) The ideal HRRPs; (b) the HRRPs with noise; (c) the HRRPs with noise and phase error; (d) the
compensated result of HRRPs.

TABLE 1. Parameters of simulated radar system.

The main parameters of the simulated Ka-band radar sys-
tem are demonstrated in Table 1. The size of echo data is
4096 × 512 (range×azimuth). Phase error parameters are
γ0= 50, γ1= 15, and d = 5. Complex Gaussian white noise
is added with 20dB SNR. The purpose of this experiment is
to illustrate the effectiveness of the proposed algorithm. The
raw echo is generated by frequency domain correlation echo
generation method [36], [37].

Fig. 10 illustrates the influence of the phase error and
noise on the HRRPs and also demonstrates the effect of
compensation through the proposed algorithm. Fig. 10a is the
HRRPs of the ideal case, i.e., without phase error and noise.
Fig. 10b is the HRRPs only polluted by noise. Compared with

Figs. 10a–10b, it can be seen that the existence of noise
increases the intensity of the background. The proposed
method does not contain the noise-suppression effect,
so Fig. 10b can be viewed as the upper bound of performance.
Fig. 10c is the HRRPs contaminated by noise and the phase
error with given parameters. From Figs. 10b–10c, the broad-
ening effect of the phase error in range direction can be seen
obviously. Compare the highlighted regions in Fig. 10, we can
see that the ‘‘trough’’ of HRRPs disappears in Fig. 10c as a
result of the phase error, which means the image is blurred
and detailed information is lost. The compensated HRRPs
obtained by the proposed method is shown in Fig. 10d, and
it can be seen that Fig. 10d has very little difference with
Fig. 10b. The ‘‘trough’’ is recovered in the highlighted region
and the edge of HRRPs is very sharp compared with Fig. 10c.
The entropy of Fig. 10c is 11.8311, and that of Fig. 10d
is 11.7651. From the perspective of HRRPs, the proposed
method is effective.

In Fig. 11, we display imaging results in different situa-
tions, and Table 2 demonstrates the parameters estimation
result. All the results show the superiority of the proposed
algorithm. Fig. 11a is the imaging result of error-free and
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FIGURE 11. Simulation results of ISAR images. (a) The image of ideal case; (b) the imaging result with noise only; (c) the imaging result with the
phase error and noise; (d) the imaging result obtained by the proposed method; (e) the zoom-in version of the arrow-point regions in (c); (f) the
zoom-in version of the arrow-point regions in (d); (g) the imaging result with standard Newton’s method; (h) the imaging result with direct
parameter searching.

TABLE 2. Actual and estimated phase error parameters.

TABLE 3. Comparison of image quality of polluted and compensated
results.

noise-free signal echoes. Fig. 11b is the imaging result of
the signal echoes with noise only. For the same reason of
Fig. 10b, Fig. 11b is the upper bound of imaging performance.
Fig. 11c is the image polluted by phase error and noise, and
it can be seen that the image is badly defocused with blurred
edges and unrecognizable parts (especially those pointed by
arrows). The enhanced quality is obtained through compen-
sating by the proposed method, and the result is displayed
in Fig. 11d. Comparing the regions pointed by arrows (their
zoom-in version can be seen in Fig. 11e and Fig. 11f respec-
tively), we can see that detailed information of the target
model is recovered by the algorithm, and small components
of the target can be distinguished. The sharpness of the edges
in Fig. 11d is similar to that in Figs. 11a–11b. Table 3 shows
the evaluation of image quality based on entropy and contrast
principles. Images in Figs. 11b–11d are all evaluated as a
comparison. Through the value of contrast and entropy, it can
be concluded that the quality of the compensated result is

close to that of the image with noise only. Therefore, the cor-
rectness of the proposed method is validated.

To verify the robustness of the algorithm, experiments
under different SNRs (from 10dB to −10dB) are also per-
formed. Fig. 12 shows the results. The ideal ISAR images of
the target under different SNRs are in the first column. The
contaminated images with phase error parameters γ0= 50,
γ1= 15, and d= 5 are demonstrated in the second column,
and the compensated results of the proposedmethod are in the
third column. HRRPs’ entropy curves against iteration num-
ber are in the right column. We can see that even in the -10dB
SNR, well-focused image can be obtained, and the entropy
curves are always convergent under different SNRs. Com-
pare the entropy and contrast of ideal, contaminated, and
compensated images, we can conclude that through the pro-
posed method, imaging quality is enhanced. What is more,
200 timesMonte Carlo experiments under different SNRs are
executed to further evaluate the robustness of the algorithm.
The mean square error of phase parameters between theoret-
ical and estimated values can be defined as

MSEγ0 =
N∑
n=1

[
γ̂0 (n)− γ0ideal

]2
/N

MSEγ1 =
N∑
n=1

[
γ̂1 (n)− γ1ideal

]2
/N

MSEd =
N∑
n=1

[
d̂ (n)− dideal

]2
/N

(40)

where N denotes the Monte Carlo times,
(
γ̂0, γ̂1, d̂

)
and

(γ0ideal, γ1ideal, dideal) represent estimated and theoretical
values respectively. Fig. 13 illustrates the MSE curve against
different SNRs. We can see that the estimated result can be
of high accuracy when SNR is above -5dB. The reason why
the MSE is relatively high when SNR is below -5dB is that
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FIGURE 12. Simulation results under different SNRs.

the RCS of the solar panel of the simulated satellite is low,
as a result, the scatter points on the solar panel cannot be dis-
tinguished in range profile when SNR is below -5dB. Fig. 14
shows this phenomenon. Through noise test and Monte Carlo
experiment above, the robustness of the proposed method can
be verified.

The algorithm of standard Newton’s method and direct
parameter searching is also used as a comparison to fur-
ther verify the robustness and efficiency of the proposed
algorithm.

We first use standard Newton’s method. The difference
between standard Newton’s method and the proposed algo-
rithm is that standard Newton’s method searches three param-
eters simultaneously and has a more complex computation
scheme. Fig. 11g demonstrates the compensated result of
Newton’s method. It can be seen that the effect of compensa-
tion is not very well. Blurred parts still exist in the image and
detailed information is not fully recovered. The highlighted
regions clearly show the defocus of the image. The reason
for the poor performance of standard Newton’s method is
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FIGURE 13. MSE curves of three parameters. (a) MSE of γ0; (b) MSE of γ1; (c) MSE of d .

FIGURE 14. Range profiles comparison. (a) The ideal range profile; (b) the
range profile under -5dB SNR.

FIGURE 15. Convergence curves of the cost function. (a) The cost
function’s convergence curve of the proposed algorithm; (b) the cost
function’s convergence curve of standard Newton’s method.

that it searches three parameters simultaneously which will
encounter high risk to stop at local minima. In Fig. 15,
the convergence curves of the two algorithms are illustrated,
and the error margin is both 1e-5. It can be seen that the
convergence value of the proposed algorithm is smaller than
that of standard Newton’s method. The robustness of stan-
dard Newton’s method is not as good as that of the pro-
posed method. The convergence time of these two methods is
demonstrated in Table 4, and the working platform has been
illustrated at the very beginning of this section. The run time
of the proposed algorithm is longer than that of the standard
Newton’s method because the standard Newton’s method
stops earlier for some local minima. Note that Fig. 15a is
the entropy variation against outer iterations of the proposed
method, therefore the runtime per iteration is longer.

We then use the direct parameter searching to solve the
optimization problem. In this method, searching regions of

TABLE 4. Comparison of three methods.

the three parameters center around the actual value with
length 20 points, and a triple loop is executed to find the
minimum of the cost function. Fig. 11h is the compensated
result of this method. Because of the accurate pre-defined
searching regions, image quality is relatively high. Its runtime
is also shown in Table 4. As expected, the time consumption is
huge, which is almost 60 times as long as that of the proposed
method. And in real situations, searching regions cannot be
defined accurately without prior knowledge. Therefore, this
method has very low efficiency compared with the proposed
method, and cannot be used directly in real cases.

Table 4 also demonstrates the contrast and entropy of imag-
ing results obtained by the three methods. It can be concluded
that our algorithm has the best performance for the highest
contrast and lowest entropy.

B. REAL MEASURED DATA EXPERIMENT
In this subsection, a real measured Yak42 dataset is used to
evaluate the performance of the proposed algorithm. The raw
data is collected by a C-band trial radar system with 100µs
pulse width and 200MHz bandwidth. The size of the echo
data is 256×256 (range×azimuth). Because of the intra-pulse
modulation phase error, the HRRPs and image are smeared
and blurred, which are demonstrated in Figs. 16a–16b. It can
be seen that the HRRPs broadening effect is so obvious that
the prominent scatters cannot be distinguished, and even the
outline of the plane cannot be recognized.

Figs. 16c–16d illustrate the HRRPs and ISAR image
obtained by the proposed method. It can be seen that through
our method, the broadening effect of HRRPs is eliminated,
and the image is well-focused. In Fig. 16d, detailed informa-
tion like the tail of the plane and the flight attitude is clear
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FIGURE 16. Experiment results with real measured Yak42 data. (a) The original HRRPs with phase error; (b) the imaging
result without compensation; (c) the HRRPs obtained by the proposed method; (d) the imaging result obtained by the
proposed method; (e) the HRRPs obtained by the standard Newton’s method; (f) the imaging result obtained by the
standard Newton’s method.

enough. These results denote that our method is suitable for
the real situation and can highly improve the imaging result.
We use the contrast and entropy as the metric to evaluate the
imaging quality in the same way as the simulated situation,
and the evaluation results are shown in Table 5. It can be
seen that the contrast increases and entropy decreases obvi-
ously compared with those of the contaminated image, which
denotes a sharp and energy-focused image.

The standard Newton’s method is also applied as a compar-
ison, and its results are demonstrated in Figs. 16e–16f. It can
be seen that in this situation, there is no significant difference
between Figs. 16c–16d and Figs. 16e–16f through direct
observation. However, the values of contrast and entropy
in Table 5 denote that the quality of the image obtained by

standard Newton’s method is not as good as that of the image
obtained by the proposed method. The contrast of Fig. 16f
is lower and entropy is higher than that of Fig. 16d, which
means Fig. 16d has a better degree of focus. The reason for
the lower quality of the standard Newton’s method is still that
the standard Newton’s method is apt to be trapped into local
minima. Moreover, we also compare the efficiency of the two
algorithms above based on the Yak42 data. The convergence
curves of HRRPs’ entropy produced by the two methods
are shown in Fig. 17. We can see that the proposed method
achieves convergence within 7 iterations (outer loops), and
the CPU execution time for convergence is 0.51493 s. How-
ever, even after 50 iterations, the convergence curve of stan-
dard Newton’s method still has some fluctuations (see the
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FIGURE 17. Convergence curves of the cost function. (a) the cost
function’s convergence curve of the proposed algorithm; (b) the cost
function’s convergence curve of standard Newton’s method.

TABLE 5. Comparison of image quality.

data cursor in Fig. 17b), and the running time for convergence
is 2.54454 s. Therefore, the time consumption of the standard
Newton’s method is almost 5 times as long as that of the
proposed method. Through the comparison, it can be proved
that in real situations, the proposed algorithm has better
robustness and higher efficiency than the standard Newton’s
method. Because of the unknown phase error parameters,
the searching region of the direct parameter searchingmethod
cannot be determined accurately, therefore, we do not use
direct parameter searching method as a comparison in this
situation.

V. CONCLUSION
The nonlinearity of the transmitter and the nonuniformity of
the target’s motion can cause intra-pulse modulation phase
error in received signals leading to a severely blurred ISAR

image. In this paper, a 2-D time-variant phase error com-
pensation method with accurate modeling is proposed to
solve this problem. First, a novel signal model is presented
to fully describe the phase error. Based on the minimum
entropy principle, we secondly use the entropy of HRRPs
as the cost function to estimate error parameters literately.
Considering the needs for robustness and efficiency, we pro-
pose an optimization scheme combining coordinate descent
algorithm with the Levenberg-Marquardt method to find the
global minimum in a fast rate of convergence. Experiments
have been performed with simulated and real measured data,
and results indicate that the proposed method is an efficient
and robust algorithm for intra-pulse modulation phase error
calibration by which a well-focused ISAR image can be
obtained. Furthermore, the proposed method has limitations
on handling targets with low RCS in low SNR situations,
which will be investigated in our furthter work.

APPENDIX
In (30), |g (θ) |2 can be expressed as

|g (θ) |2 = g (θ) · g∗ (θ) (41)

Therefore, we have

∂|g (θ) |2

∂θk
=
∂g (θ) · g∗ (θ)

∂θk

= g∗ (θ) ·
∂g (θ)
∂θk

+ g (θ) ·
∂g∗ (θ)
∂θk

(42)

Based on the following equation

∂g∗ (θ)
∂θk

=

[
∂g (θ)
∂θk

]∗
(43)

we can obtain

∂|g (θ) |2

∂θk
= g∗ (θ) ·

∂g (θ)
∂θk

+ g (θ) ·
[
∂g (θ)
∂θk

]∗
= g∗ (θ) ·

∂g (θ)
∂θk

+

[
g∗ (θ) ·

∂g (θ)
∂θk

]∗
(44)

Based on the principle that

a+ a∗ = 2Re {a} (45)

where a is a complex number, (30) can be obtained with
expression

∂|g (θ) |2

∂θk
= 2Re

{
g∗
∂g
∂θk

}
(46)

From (30), we can get (35) directly based on (46) and the law
of derivation

∂2|g (θ) |2

∂θ2k
= 2Re

[
g(θ)∗

∂2g (θ)

∂θ2k
+
∂g(θ)∗

∂θk

∂g (θ)
∂θk

]

= 2Re

[
g(θ)∗

∂2g (θ)

∂θ2k
+

(
∂g (θ)
∂θk

)∗
∂g (θ)
∂θk

]
(47)
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