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ABSTRACT In this paper, a novel concept of nonlinear controller design is proposed, which is applicable
to nonlinear systems subject to external periodic disturbances. At first, by employing a pioneering nonlinear
coordinate transformation, a new nonlinear system model with expected dynamic characteristics is derived.
Then, a corresponding linear system is achieved by means of linearization techniques at equilibrium points.
Next, based on the results of classical linear control theory, a linear quadratic regulator is applied to the
resulted linear system. Finally, the nonlinear controller can be obtained through the inverse nonlinear
coordinate transformation of the linear feedback controller. The performance of the proposed method is
validated on a magnetic levitation system and is compared with the classical linearization feedback control.
Simulation results show that the proposed controller design assures enhanced performance in terms of both
system stabilization and disturbance attenuation.

INDEX TERMS Magnetic levitation system, coordinate transformation, linear quadratic regulator, nonlinear
feedback, disturbance attenuation.

I. INTRODUCTION
In recent years, magnetic levitation systems (MLSs) have
witnessed a growing trend of technological advancement and
industrial application in diverse fields, e.g., vibration isola-
tion systems, turbomolecular pumps, high-precision manu-
facturing facilities, flywheel systems, maglev trains, and so
on [1]. Owing to the merits of MLSs, the MLS-based devices
have the advantage of high operation speed, high reliability,
energy efficiency, or reduced maintenance cost.

When an MLS is in operation, the target mass in the
magnetic field is actuated by its constant gravity and the mag-
netic attracting force. Like most physical systems, the MLSs
behave in a nonlinear fashion. Due to the inherent nonlin-
earity and open-loop instability associated with the MLSs,
the controller design becomes a thriving research area, and
thus has attracted substantial effort and attention from dis-
parate scientific disciplines worldwide [2].

The generic idea to design a nonlinear controller is
to simplify the nonlinear control system such that exist-
ing control theory or stability theorem is ready for use.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bohui Wang.

Further, the general approach to carry out a nonlinear con-
troller design is the generation of the control action as a
function of system states or outputs [3]. In line with the
approach used to deduce the essential function, controller
design of nonlinear systems might be categorized into three
approaches [4]:

1) linear methods, such as the linear control and the gain
scheduled linear control. This approach attempts to expand
the region of linear control operation by linearizing the
dynamics about one or multiple operating points at first, and
then designing linear controllers for each point through a
variety of techniques. However, such designs have a limited
operating region where the linear approximation is valid.

2) Lyapunov stability criteria-based methods, such as the
sliding mode control and adaptive control. In principle, these
methods are applicable to essentially all dynamic systems,
whether in small or large motion. However, it suffers from
the common difficulty of finding a Lyapunov function.

3) transformation methods, such as Input-Output feedback
linearization, Input-State feedback linearization, approxi-
mate feedback linearization. The main concept in this
approach is the use of transformations in the state and control
variables to alter the nonlinear dynamics to a nearly linear
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form such that the remaining nonlinearities can be cancelled
by the designed feedback. Due to the requirements of specific
linearization, this approach in most cases can only be applied
to certain types of nonlinear system.

The methodology of nonlinear controller design has been
developed for many years. In spite of significant gains, it is
still a challenging task to address the controller design for
nonlinear systems in a general manner. Therefore, research
and development of nonlinear control techniques that are
applicable to specific systems such as the MLSs is desired
and of practical importance.

A great number of works under the above framework
of controller design have been documented in literatures.
The traditional proportional–differential (PD), proportional–
integral–differential (PID) control were widely used 5], [6]; a
more general PID controller was constructed byMorales et al.
in [7], [8]; moreover, the PID controller with self-tuning gains
had been reported in [9] for the request of faster transient
dynamics, to account for the tracking or regulating objectives
of the MLSs. Although the PID controller and its derivatives
have many advantages, such as simple control structure and
convenient gain scheduling, the capability and performance
are always hindered by the intricate nonlinear dynamics of
the physical system.

Consequently, there is a strong incentive to develop meth-
ods of nonlinear controller design. To mention a few, the con-
trol strategy of designing stabilizing fractional order con-
trollers was developed by C.I. Muresan et al. in [10]; a
fast nonlinear model predictive control (MPC) scheme was
presented in [11]; the transverse feedback linearization has
been adopted in [12]; a kind of fault tolerance control was
implemented in [13]; the analysis about active suspension
system was given in [14]; and a data-driven approach based
on the state-dependent ARX model was presented in [15].

It is noticed that most of the above-mentioned results on
the controller design of the MLSs have not considered the
influence of creeping disturbances. However, disturbances
caused by the physical system of concern or the operational
environment are widely present. As such, much effort has
been directed toward the development of high-performance
controllers for the MLSs subject to external disturbances.
For instance, a learning-based controller to asymptotically
regulate anMLS while compensating for the periodic, exoge-
nous disturbances was introduced by Costic et al. in [16];
an interconnection and damping assignment passivity-based
controller was proposed in [17]; a set of linear bounded-
input-bounded-output (BIBO) filters to facilitate an adaptive
compensation for disturbances were designed in [18]; a state
estimate observer in a backstepping fashion to achieve the
asymptotic disturbance rejection was utilized in [19]; the
robust of integral of sign of error control (RISE), was pro-
posed in [20] and further developed in [21].

Besides, a variety of other methods have been developed
to address the disturbance attenuation issue, such as robust
dynamic surface control [22], neural network control [23],
and sliding mode control [24]. Among the advanced control

methods [25]–[28], the disturbance observer or alike has
provided a flexible framework in dealing with disturbance
attenuation within the MLSs [29]. By appropriate using of
the observer or its derivatives, the robustness of an existing
MLS against disturbances could be significantly improved.

The main purpose of approaches in the classical control
theory intends to minimize the difference between the output
and a given reference, at the earliest possible time or at
the least cost. Driven by the ever-increasing sophisticated
application scenario or stringent performance specification,
modern nonlinear control theory has been expanded to over-
come some of the impediments to designing advanced con-
trollers for the MLSs. As stated above, both nonlinear and
linear control schemes have been widely applied to the robust
suspension within theMLSs, based on the feedback lineariza-
tion, backstepping, sliding modes, neural networks, adaptive
control, and other design methodologies. However, in prac-
tical applications, most of the available control schemes for
the MLSs might be impeded by the limited operating ranges
of the simplified linear model, or the demand of extra efforts
to implement estimators.

The objective of this paper is to come up with a concept
of controller design for the MLSs from a new perspective,
in which the controller can be tuned to be effective within
the operating range for specific applications. To the best of
the authors’ knowledge, very few controller design methods
reported in the literature have took advantage of both linear
method and nonlinear coordinate transformation techniques
to address the control problem for the MLSs in the presence
of extraneous disturbances. In this context, a novel concept
of the controller design in which linearization technique,
nonlinear coordinate transformation and linear quadratic reg-
ulator (LQR) cooperate with each other for stabilizing a levi-
tation system is proposed herein. Simulation results show that
this approach can provide satisfying performance in terms of
both stabilization and disturbance attenuation.

The rest of this paper is organized as follows: Section II
introduces the test setup and the mathematical model of the
nonlinear magnetic levitation system. Section III introduces
the proposed framework of controller design including the
nonlinear coordinate transformation and the LQR with state
feedback. Section IV validates feasibility and effectiveness
of the proposed controller design through simulation results.
Finally, the conclusions and discussions of this paper are
provided in Section V.

II. PROBLEM FORMULATION
In this paper, an MLS is used to levitate an iron ball in air by
the electromagnetic force provided by an electromagnet. The
levitation system consists of an iron ball, an electromagnet
and an electro-optical sensor. A schematic diagram of this
system with input and output variables is shown in Figure 1.

The balance between themagnetic forceFm and the gravity
force Fy allows the ball to be sustained at a given posi-
tion. With the attraction of the controlled electromagnet,
the iron ball would not fall down by gravity. The position
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FIGURE 1. Schematic diagram of the magnetic levitation system.

of the ball can be detected by a sensor system (including
the electro-optical emitter and sensor) and be regulated by
the input signal. Further, the coil current in the electro-
magnet is measured to design the controller which aims
at keeping the ball in a desired distance from the electro-
magnet. Note that, the coil current is adjusted to control
the ball’s position in the mechanical system, while the coil
voltage is varied to change the coil current in the electrical
system [30].

By taking the Kirchoff’s voltage law and Newton’s second
law, the dynamic equations of the magnetic levitation system
as shown in Figure 1 can be represented by (1), on the premise
that the vertical upward direction is regarded as the positive
direction [31]: 

ẋ1 = x2

ẋ2 = −
Fm(x1, x3)

m
+ g

ẋ3 =
ki2u− x3

ki1

(1)

in which the three state variables x1, x2, x3 represent the
ball’s position below the magnet, the velocity of the ball, and
the current in the electromagnet, respectively. In addition, m
is the mass of the ball, g is the gravitational acceleration.
Input signal u is the control signal, and output variable is
the ball’s position x1. In (1), the first two equations stand for
the equations of the mechanical system and the last equation
describes the current dynamics, that is, the electrical system.

The magnetic force Fm(x1, x3) exerted by the electromag-
net on the iron ball can be expressed as a nonlinear function:

Fm(x1, x3) = km1x23 exp(−km2x1) (2)

where ki1, ki2, km1, km2 are constant coefficients.
The target of the design process is to specify a control

signal that will stabilize the iron ball at a desired position,
in the presence of disturbance forces. The controller design is
made more complicated by the fact that the magnetic levita-
tion system is a nonlinear system that is inherently open-loop
unstable, and there is no prior knowledge of the disturbance
force.

III. NONLINEAR CONTROLLER DESIGN
As summarized in Section I, there is not general nonlinear
control design methodologies. However, there are powerful
strategies applicable to specific nonlinear systems. Among
a magnitude of control schemes that can deal with the non-
linear MLSs, the most widely used approach is the adop-
tion of coordinate transformation techniques that render the
nonlinear dynamic equations amenable to existing results in
classical control theory. For example, the concept of feedback
linearization, where a change of coordinates in the state and
control space coupled with feedback applied to the nonlinear
system, results in a controllable linear system. Once this
has been achieved, one can apply proven methods of linear
controller design to the transformed linear system.

In this paper, the proposed nonlinear controller method
adopts the concept of coordinate transformation as well,
whereas taking a different process and purpose compared
with linearizing transformation or feedback linearization. The
procedure is explained as follows:

Step 1): Derive a new nonlinear system model that will
enhance performances of the controller though a nonlinear
coordinate transformation of the original system;

Step 2): Linearize the obtained nonlinear system model in
Step 1) at an equilibrium point using traditional approaches,
such as Taylor series expansion or Jacobian matrix;

Step 3): Design a linear feedback controller for the lin-
earized system in Step 2) by means of the pole assignment
or LQR which is devised to realize the desired control perfor-
mances;

Step 4): Obtain the corresponding nonlinear controller of
the original system through the inverse nonlinear coordinate
transformation of the linear controller designed in Step 3).

Moreover, a framework of the proposed controller design
and a comparison of three existing paradigms are illustrated
in Figure 2. The first one is a standard linear state feedback
controller whose design is based on a linear model found by
perturbing the nonlinear system at an operating point. It is
effective only in the vicinity of operating points. The second
controller is based on exact linearization where a nonlinear
state-space transformation together with a nonlinear state
feedback is used. It is in a nonlinear form and valid in a
wide range, thus not limited to near the equilibrium points.
By taking advantage of the linear state feedback and nonlinear
coordinate transformation, the third one can achieve desired
performances, whereas it is not subjected to harsh terms and
is thus easily conducted.

A. COORDINATE TRANSFORMATION
The general target of feedback linearizing controllers is
the derivation of coordinate transformations which converts
the original nonlinear system into a simpler system in the
sense that the controller synthesis is readily to be imple-
mented. The novelty of the proposed controller design in this
paper lies in implementation of deliberate nonlinear coor-
dinate transformations, which can effectively improve the
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FIGURE 2. Frameworks of three controller designs for the nonlinear system.

TABLE 1. Parameter list of magnetic levitation system.

control performance in the aspect of robustness to disturbance
force.

The heuristic method to find coordinate transformations is
based on the following facts:

1) From the perspective of physical significance, the values
of variable for gap and current are always positive, rather
infinite intervals;

2) Because of saturation of magnetic flux, the region of
gap, where magnetic force can be larger than the force of
gravity, is limited.

As above, the region of interest for an individual case and
candidate coordination transformations can be defined. For
illustration, 3 to 18mm for the gap and 0 to 2.5A for the
current in system (1) with parameter listed in Table 1 are
always concerned in practice, that is, 0.003< x1 <0.018,
x2 ∈ R, 0< x3 <2.5. Correspondingly, three changes of
coordinates can be introduced as follows:

T1(x) : {z1 = x1 ; z2 = x2; z3 = x3} (3)

T2(x) :

z1=x1 +
c1

1− x1/0.018
−

c1
1− 0.01/0.018

z2=x2; z3=x3
(4)

T3(x) :



z1 = x1 +
c1

1− x1/0.018
−

c1
1− 0.01/0.018

+
c2

1− x1/0.003
−

c2
1− 0.01/0.003

z2 = x2
z3 = x3

(5)

Note that transformations (3)-(5) result in three new state
variables z1, z2, z3, being the position of ball, velocity
of the ball, and current in the electromagnet, respectively.

FIGURE 3. Illustration of the nonlinear coordinate transformations.

For comparison, T1 represents the original system without
any change of coordinates.

By taking c1 = 0.00005, c2 = 0.0005, the three coordinate
transformations with respect to x1 are illustrated in Figure 3.
It is found that the new state z1 obtained from coordinate

transformations T2 and T3 exhibit expected features over the
considered range of x1. That is, at end points of the interval
of x1, z1 shows inward shrinkage. In addition to the change in
x1, the coordinate transformation can work on the other two
states x2, x3 as well, according to the demand.

B. LINEAR QUADRATIC REGULATOR
The LQR is a widely used optimal controller design that
deals with linear systems and minimizes quadratic objective
functions with performance index determinations. It provides
optimally controlled feedback gains to enable the closed-loop
stable and high-performance design of systems.

For a continuous-time linear system (6), the LQR can be
applied, with a quadratic cost function as defined in (7):

ẋ = Ax + Bu (6)

J =
1
2

∫
∞

0
[xTQx + uTRu]dt (7)

where Q is a positive semi-definite matrix, R is a positive
definite symmetric matrix. Note that matrix Q defines the
weights on the states while matrix R defines the weights on
the control input in the cost function.
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The feedback law that minimizes the value of cost reads,

u = −Kx (8)

where K is given by,

K = R−1(BTP+ NT) (9)

in which P is a positive symmetric matrix, and is achieved by
solving the Algebraic Riccati Equation (ARE) as follows:

ATP+ PA− (PB+ N )R−1(BTP+ NT)+ Q = 0 (10)

In fact, the performance index J in (7) can be interpreted
as an energy function, such that a smaller value of J means a
lower total energy of the closed-loop system.

When it comes to robustness, the criterion for nonlinear
systems is always in connection with certain performances.
Therefore, robustness performances of different controllers
in this paper can be compared by the maximum amplitude
of an external periodic disturbance at a given frequency, with
which system responses are still within the boundary.

IV. SIMULATIONS AND RESULTS
In this section, numerical simulations are carried out on
the studied MLS in the presence of sinusoidal disturbances
to validate the feasibility and performance of the proposed
controller design with Wolfram Mathematica 11.2.

A. SIMULATION SETUP
The nonlinear system as shown in Figure 1 is parameterized
as listed in Table 1. In addition, the target position of the iron
ball is set to 0.01m. In the presence of sinusoidal disturbance
force a sin(2π ft), the dynamics are given by equation (11).

ẋ1 = x2
ẋ2 = −km1x23 exp(−km2x1)/m+ g+ a sin(2π ft)
ẋ3 = (ki2u− x3)/ki1

(11)

For demonstration, different coordinate transformations i,
ii and iii as represented by equations (12)-(14) are used to
compare their effectiveness in terms of the ability against
sinusoidal disturbances in this section. Transformation i
in (12) is an identical transformation between coordinates x
and z. Transformation ii in (13) only considers the change
of x1 which can confine the state on the x1-axis to an interval
(0.003, 0.018). Furthermore, transformation iii in (14) intends
to adjust feasible regions on both the x1-axis and the x3-axis.
Note that, coordinate transformation on the x2-axis is not
taken into account since it is non-essential to limit the value
of the ball’s velocity in practice.

In addition, constants c1, c2, c3 are employed as tuning
parameters to achieve desired transformation process. For
illustration, by taking c1 = 0.00005, c2 = 0.0005, c3 = 0.01,
the resulting nonlinear systems via coordinate transforma-
tions i, ii and iii are denoted by A, B and C, respectively.

i : {z1 = x1; z2 = x2; z3 = x3 } (12)

ii :


z1 = x1 +

c1
1− x1/0.018

−
c1

1− 0.01/0.018
+

c2
1− x1/0.003

−
c2

1− 0.01/0.003
z2 = x2
z3 = x3

(13)

iii :



z1 = x1 +
c1

1− x1/0.018
−

c1
1− 0.01/0.018

+
c2

1− x1/0.003
−

c2
1− 0.01/0.003

z2 = x2

z3 =
x3 −

√
x23 + 2x3(−2+ c3)+ (−2+ c3)2

2

+

√
1.018+ 6.036c3 + c23 + 1.018

2

(14)

B. SIMULATION RESULTS
For the nonlinear system affected by sinusoidal disturbances
with given frequency, measurable amplitude and initial phase,
the proposed controller design is simulated.

To implement the proposed controller, an operating
point of the linearization is selected at (x∗1 , x

∗

2 , x
∗

3 ) =
(0.01, 0, 1.018)T and u∗ = 0.439, then the linearized system
of (11) can be obtained as follows: ẋ1
ẋ2
ẋ3

 =
 0 1 0
1684.67 0 −19.2718

0 0 −40

  x1
x2
x3


+

 0
0
−40

 u (15)

The design parameters of LQR are determined by setting
matrix Q, R as:

Q =

 0.01 0 0
0 0.01 0
0 0 0.01

, R = 100 (16)

Through (9)-(10), the feedback gain K is then solved as:

(k1, k2, k3) = (−52.7070,−3.7205, 0.8847) (17)

With feedback gain K , the eigenvalues of linear sys-
tem (15) are calculated as [– 39.5674, – 41.2666 ± 0.7862i],
which indicate the stability of system (15). Furthermore, three
controllers designed for nonlinear system (11) via coordinate
transformations i, ii and iii can be achieved, denoted by uA,
uB and uC, as expressed in (18)-(20).

uA= k1(x1 − x∗1 )+ k2(x2 − x
∗

2 )+ k3(x3 − x
∗

3 )+ u
∗ (18)

uB= k1(x1+
1/2000

1− x1/0.018
+

1/200
1− x1/0.003

+ 0.001− x∗1 )+k2(x2 − x
∗

2 )+ k3(x3 − x
∗

3 )+ u
∗ (19)

uC= k1(x1 +
1/2000

1− x1/0.018
+

1/200
1− x1/0.003

+ 0.001− x∗1 )+ k2(x2−x
∗

2 )

+ k3(
x3 + 2.27415−

√
x23 − 3.8x3 + 4.41

2
− x∗3 )+ u

∗

(20)
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FIGURE 4. Simulation results with coordinate transformations at f = 1.

The frequency and initial phase of disturbance force are
assigned by 1 and 0 in the first case study. To investigate
the influence of amplitude on the performance of controllers,

FIGURE 5. Demonstration of sinusoidal disturbance force at f = 1.

the amplitude a varies from 0 to 5.50. The performance of
the proposed controllers and illustration of sinusoidal distur-
bance force a sin(2π ft) are shown in Figure 4 and 5, respec-
tively.

In Figure 4(a), it can be found that all the three controllers
are able to track the defined reference position 0.01m very
well when a = 0. Considering x1 is regarded as the output y,
it is concluded that under assumed ideal condition, the LQR in
conjunction with nonlinear coordinate transformations ii and
iii exhibit similar performances as with i which is equivalent
to the linearization feedback control. However, along with
the gradual increase of disturbance’s amplitude, merits of the
controller in conjunction with ii, iii come into effect.
As mentioned in Section III, the robustness of different

controllers can be quantified by the maximum amplitude
of external periodic disturbances at given frequencies, with
which system responses still locate in the region of inter-
est. It is found that system C exhibits the best robustness
against consistent periodic disturbances. Specifically speak-
ing, at f = 1, amax ≈ 1.25 for linear feedback uA and
amax≈5.5 by using nonlinear control uC, therefore, controller
uC has a better robustness than uA.
In dynamic system theory, the phase-space is a space in

which all possible states of a system under consideration
are represented, with each possible state corresponding to
one unique point in the phase-space. In comparison with
the time-history plot as shown in Figure 4, a phase-space
trajectory can provide additional valuable and unique insight
into the dynamics of the systems of interest. The phase-space
trajectory which consists of all possible values of the position,
velocity and current of the control system (11) is plotted
in Figure 6.

In such portraits, the three controllers are distinct in their
responses to sinusoidal disturbances. It shows that system A
(i.e., the proposed controller with i) always yields the largest
phase-space volume throughout the four scenarios. On the
contrary, system C remains the smallest trajectory. Through
the characteristic phase-space portraits, it can be concluded
that the LQR in conjunction with ii and iii are able to render
a more stable closed-loop nonlinear system, due to the fact
that a compact size of the phase-space portrait indicates that
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FIGURE 6. Phase-space trajectory of the closed-loop system with coordinate transformations at f = 1: ( a) a = 0.5; ( b) a = 1.0; ( c)
a = 1.2; ( d) a = 1.25.

FIGURE 7. Simulation results with coordinate transformations at a = 0.5, f = 0.5 and a = 1.0, f = 1.0.

the states are closely surrounded the operating point. It is
therefore concluded that robustness of the control system
against sinusoidal disturbances can be adjusted and improved
evidently, by means of the proposed nonlinear coordinate
transformations.

Up to now, simulation results have represented responses
of the control system affected by sinusoidal disturbances with
different amplitudes. As the case stands, the performances
of each controller also differ when the frequency varies. For
illustration, the time evolutions of three control systems are
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FIGURE 8. Simulation results of input signal with coordinate
transformations at a = 1.0, f = 1.0.

TABLE 2. Comparisons among different coordinate transformations.

displayed in Figure 7. It is revealed that the controller with
iii has an advantage over the others throughout respecting the
capability of disturbance attenuation.

For most practical systems, a large fluctuation in the con-
trol signal is commonly undesirable concerning dynamics of
the actuator. Hence, an in-depth analysis of the variations
of three controllers are carried out. In Figure 8, input signal
of the control system with three coordinate transformations
under the conditions of a = 1.0, f = 1.0 are revealed. It can
be found that three nonlinear controllers in conjunction with
ii and iii behave in a like manner, while the controller with i
exhibits a greater variation in the control signal.

In addition, the peak-to-peak value, which is the altitude
of a signal from the crest to the trough, is used to quantify
the variation of control signal, as listed in Table 2. It is
noted that the peak-to-peak value of both states or control
input increases with increment either in the amplitude or
the frequency of the external sinusoidal disturbance. Being
consistence with the conclusions above, the LQR coupled
with coordinate transformation iii (i.e., system C) outputs the
least peak-to-peak value.

V. CONCLUSIONS AND DISCUSSIONS
A. CONCLUSIONS
In this paper, a novel concept of nonlinear controller design
targeted for the MLSs has been presented, which can regulate
the position of an iron ball subject to sinusoidal disturbances.
The key approach for implementing the proposed controller
lies in the pioneering nonlinear coordinate transformations
which is in line with the requirement of practical applications.
In the absence of prior knowledge of periodic disturbances,
the proposed controller can improve the control performance

of the classical linearization feedback controller in the aspect
of robustness to consistent sinusoidal disturbance forces,
in spite of employing conventional linearization techniques.
Simulation results have demonstrated the capability of the
proposed controllers in terms of both stabilization of the iron
ball and attenuating disturbances.

B. DISCUSSIONS
Despite satisfactory results have been obtained in this work,
the proposed control method is still far frommature. From the
perspective of the authors, there are several topics that require
further research.

1) Due to conciseness of the framework and flexibility of
the synthesis, the proposed concept in this work is highly
compatible with other advanced control methods, such as the
sliding mode control and predictive control, but not confined
to the LQR. It is important to proceed in combination of the
nonlinear transformation and other proven control theories.

2) The robustness of the proposed controller to a single
periodic disturbance force with constant parameters have
been validated. However, it is essential to consider a linear
combination of sinusoids. Furthermore, the random distortion
should be seriously considered as well.

3) The experimental results may better reveal feasibility
and capability of the proposed controller design. Hence, it is
a quite significant work to carry out experimental validations
and comparations to other new research findings.

4) Although the system under consideration in this work
focuses on the magnetic levitation control of an iron ball,
the design concept is readily to be integrated into other indus-
trial applications. There is a significant potential in applying
the method in maglev bearing systems, mechanical arms, and
other nonlinear systems.
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