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ABSTRACT Data offloading through vehicular ad hoc networks (VANETs) is one of the most promising
methods for overcoming the overload problem in cellular networks. As data delivery by service providers
consumes resources such as bandwidth, storage and power, the incentive scheme with the optimal pricing
strategy must be identified. In the literature, most incentive schemes focus on offloading through fixed
nodes, such as roadside units (RSUs). It remains very challenging to motivate a moving vehicle to help
other users deliver their data due to the high mobility of vehicles. Game theory is a widely adopted method
for analyzing pricing issues in wireless networks. Therefore, this paper proposes an optimal pricing strategy
that uses the Stackelberg game to model the interaction between a service provider and a service requester.
Then, the Stackelberg equilibrium is derived under the corresponding conditions. Next, an algorithm is
proposed for selecting the service provider that offers the lowest price based on the results of the Stackelberg
equilibrium. Finally, the simulation results demonstrate that the proposed algorithm can effectively reduce
the downloading time of a task while maximizing the utilities of both the service provider and the requester.

INDEX TERMS Data offloading, stackelberg game, VANETs, incentive scheme, Internet of Vehicles.

I. INTRODUCTION
With the rapid proliferation of smart mobile devices such as
smart phones, tablets and wearable electronics, data-hungry
applications such as 4k/8k video streaming, augmented real-
ity/virtual reality (AR/VR), high-precision mapping, and
social sharing are popularly used on these devices. The data
traffic that is produced by these applications is experiencing
explosive growth. According to Cisco’s forecast [1], global
mobile traffic will increase sevenfold between 2016 and
2021, and video data will account for 78% of mobile traffic
by 2021. The continuously increasing data traffic imposes a
huge burden on cellular networks, which could cause over-
load and congestions in cellular networks in the near future.
Congestions in backhaul, backbone and access networks may
result in severe degradation of the quality of service (QoS),
including reduced data rate, packet loss, and packet delay.

For addressing these issues, upgrading cellular networks
is the most straightforward approach. The deployment of
base stations (BSs) provides additional bandwidth, process-
ing and storage resources to accommodate more traffic. How-
ever, upgrading networks is expensive and the continuously
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increasing demands for bandwidth may soon surpass the
capacity of new infrastructures. Opportunistic data offload-
ing, which leverages the opportunistic network that is formed
by mobile nodes to offload traffic, has been recently con-
sidered as a complementary solution [2]. In opportunistic
data offloading, some traffic data can be directly transmitted
between mobile nodes without help from the infrastructure.
Thus, popular content can be downloaded by only a few
mobile nodes and transmitted to other nodes via opportunistic
communication.

Numerous vehicles are equipped with sensors, commu-
nication, computing, storage and positioning devices. Such
vehicles are connected and become moving nodes of vehicu-
lar ad hoc networks. VANETs have attracted substantial atten-
tion from both academia and industry. Supported by 5G- and
IEEE 802.11p-related technologies, VANETs are expected to
be realized in the near future [3]. VANETs support various
types of applications, including safety-related applications
(e.g., collision detection, lane change warning and coop-
erative merging), smart and green transportation manage-
ment (e.g., traffic signal control, intelligent traffic scheduling,
and fleet management), location-dependent services (e.g.,
point of interest and route optimization), and entertain-
ment applications (e.g., online games, videos, Wechat, and
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Facebook) [4]. Content requests from drivers and passengers
are substantially increased, thereby resulting in a huge bur-
den on cellular networks. Moreover, VANETs have unique
features such as high vehicle mobility, frequent link break-
ages and high topological dynamicity. These features ren-
der it more difficult for cellular networks to satisfy the
QoS requirements of all applications. Hence, to reduce the
load of cellular networks, it is necessary to offload traf-
fic to opportunistic networks that are formed by moving
vehicles.

VANETs include two communication modes: vehicle-to-
infrastructure (V2I) and vehicle-to-vehicle (V2V). Based on
the data offloading paths, current offloading schemes can
be classified into two categories [3]: V2I-based and V2V-
based data offloading. For V2I-based data offloading, road-
side units serve as ‘‘bridges’’ between cellular networks and
vehicles, which can download and store popular data and
transmit them to passing vehicles. However, the deployment
of RSUs is expensive, and it is almost impossible to provide
seamless coverage. Compared to V2I mode, V2V mode is
more flexible and can be used in ad hoc mode. Therefore,
V2V-based offloading is a low-cost method. In this paper,
we focus on V2V-based data offloading. By establishing a
one-hop or multi-hop path between two vehicles, data can
be transmitted directly between them. Vehicles are selected
for downloading and storing popular content from the Inter-
net and transmitting them to other vehicles via one-hop or
multi-hop V2V communications. However, it requires extra
resources such as bandwidth, storage and power for service
providers to download, store and deliver this content. It is
challenging to encourage vehicles to share their resources and
to facilitate the transmission of other vehicles’ packets. The
main technical and commercial issues for service providers
and requesters are as follows:

1) How can an appropriate service provider be selected?
2) How can the amount of data that should be offloaded

to the service provider be selected?
3) What is the optimal pricing strategy for both the service

provider and the requester?
Game theory is an effective method for analyzing the inter-

actions between offloading service providers and requesters.
Game-theory-based approaches have been widely used in
incentive schemes for data offloading [27]–[36]. A classical
game typically has three components: a set of players (or
participants), available strategies for each player and a util-
ity function for each player [5]. In a data offloading game
through VANETs, service providers and requesters are play-
ers and they take actions to maximize their own utilities.
At the end, if no player has an incentive to unilaterally
deviate from its current strategy, the state is named the Nash
equilibrium (NE). Therefore, we can find the optimal pric-
ing and offloading strategy by seeking the NE state of an
offloading game. Out of all games, the Stackelberg game has
been extensively used to address the pricing problem in data
offloading. The basic strategy of the Stackelberg game is that
one player, who is referred to as the leader, has the right to

take the first action. Then, the other player, who is referred
to as the follower, observes the leader’s action and make his
own decision accordingly. The main advantages of exploiting
the Stackelberg game are as follows: first, it is played in
sequential steps, which describes the interaction between
a service provider and a service requester very accurately;
second, the difference between the leader and the follower
accords with the unequal positions of a service provider
and a service requester; and third, it can offer an optimal
price and a percentage of the offloaded data for both a ser-
vice provider and a requester if the Stackelberg equilibrium
exists [5]–[6].

Therefore, in this paper, we propose a Stackelberg-game-
based pricing scheme for data offloading in software-defined-
network (SDN)-based VANETs, which obtains the optimal
price and offloading percentage to facilitate data delivery
from service providers to service requesters. In contrast to
the available approaches, this scheme uses moving vehicles
as service providers and considers the special features of
moving vehicles, such as the mobility of vehicles, the V2V
contact duration, the bandwidths among BSs, the service
provider and the service request, and the popularity of the
content. If a moving vehicle needs to obtain content, one
of its neighboring vehicles that offers the lowest price is
selected as the service provider so that the vehicle can obtain
a part of the content from the BS and the remaining content
from the service provider. The Stackelberg game is used
to model the interaction between a service provider and a
service requester. Based on the derived Stackelberg equi-
librium, an algorithm is proposed for selecting the optimal
service provider. The main contributions of this paper are
threefold:
• First, we formulate the interaction between a service
provider and a requester as a Stackelberg game, which
considers the movements of vehicles, the V2V con-
tact durations, the bandwidths among BSs, the service
provider and the requester, and the popularity of the
content.

• Second, we derive the Nash equilibrium and the cor-
responding existence conditions. On the basis of these
conditions, a selection algorithm is proposed for a ser-
vice requester to select the service provider that offers
the lowest unit price.

• Third, extensive simulations are conducted to evalu-
ate the performance of the proposed algorithm. The
experimental results demonstrate that the proposed algo-
rithm can effectively reduce the downloading time of a
task while maximizing the utilities of both the service
provider and the requester.

The remainder of this paper is organized as fol-
lows: Section II reviews related work on data offload-
ing. Section III describes the problem and system mod-
els. Section IV presents the Stackelberg-game-based scheme
for data offloading in VANETs, followed by the simulation
results and performance analysis of the proposed scheme in
Section V. Section VI summarizes this paper.
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II. RELATED WORKS
A. DATA OFFLOADING THROUGH WIFI APS OR MOBILE
NODES
Data offloading has recently attracted extensive research
attention.Many schemes have been proposed in the literature.
In [7]–[9], WiFi access points (APs) are used to offload
data from cellular networks. Lee et al. [7] studied human
mobility patterns and found that approximately 65% of the
traffic of cellular networks can be offloaded to WiFi and 55%
of the battery power can be saved. However, they did not
discuss how to offload data to APs. Balasubramanian et al. [8]
designed a system, namely, Wiffler, that augments the capac-
ity of cellular networks by leveraging delay tolerance and fast
switching. Simulation results demonstrate that 45% of the
traffic can be offloaded to WiFi, while the delay tolerance is
60 seconds. Nevertheless, this method is not suitable for real-
time applications. Higgins et al. [9] proposed a mechanism,
namely, Intentional Networking, for using network diver-
sity to improve the aggregate bandwidth. This mechanism
can substantially reduce the system latency by offloading
data to WiFi networks. However, the amount of data that
should be offloaded to WiFi networks is unknown. In the
above schemes, APs serve as the offloading nodes. Further-
more, mobile nodes are selected as the offloading nodes
in [10]–[13]. Barbera et al. [10], [11] discussed a social-
attribute-based method for selecting the offloading nodes and
the considered social attributes, such as betweenness, close-
ness, degree, closeness centrality and pagerank. However,
neither themobility of nodes nor the link quality is considered
in thismethod. In contrast to [10]–[11],Wang et al. [12] lever-
aged social network services such as online impact spreading
and offlinemobility patterns to build a social graph. However,
the link quality was not considered. Barua et al. [13] reported
a link-quality-based algorithm, namely, select best (SB), for
selecting the offloading nodes with the highest link quality.
However, the selection procedure introduces an additional
delay.

B. DATA OFFLOADING THROUGH VANETS
Data offloading throughVANETs is one of themost challeng-
ing and active topics. Current strategies in the literature can
be classified into two categories: V2I- and V2V-based data
offloading.

To overcome the challenge of fleeting connection times
between vehicles and RSUs, Chen et al. [14] used a two-
phase resource allocation process, which consisted of link
scheduling and bandwidth allocation, to engineer the utiliza-
tion patterns of wireless and backhaul links. Zhioua et al. [15]
considered the offloading procedure as an optimization prob-
lem of maximizing a set of flows to offload cellular data
through RSUs. However, the mobility of vehicles is not con-
sidered in the above two schemes. To overcome this problem,
Malandrino et al. [16], [17] introduced a fog-of-war model
for expressing the prediction accuracy of vehicle mobility
and exploited mobility prediction to decide which data RSUs

should fetch from cellular networks and deliver to vehicles.
However, capacity of the links and the load balance of RSUs
are not considered. Therefore, Sun et al. [18] used a coop-
erative downloading scheme to offload data of online videos
from cellular networks through RSUs. Based on predicting
vehicle mobility and throughput, the cooperative scheme uses
a storage-time aggregated graph to plan the transmission
times of data. However, the performance of this scheme
strongly depends on the accuracy of the adopted model of
vehicle movement. Thus, this scheme may not perform well
in complex scenarios such as urban roads. To increase the
resource utilization efficiency, Si et al. [19] explored a new
architecture, namely,DaVe, for offloading delay-tolerant data
to VANETs. Nevertheless, the offloaded data may suffer from
long delays.

While the aforementioned schemes use RSUs to offload
data, moving vehicles can also be used as offloading
nodes [20]–[26]. Zhioua et al. [20] used a model, namely,
VOPP, to determine the potential for offloading data from
cellular networks through VANETs. The objective is to select
the maximum number of data flows that can be routed to
the downloaders. Li et al. [21] formulated the offloading
problem as a utilization maximization problem under linear
constraints and proposed an algorithm for determining when
erasure coding can be used to improve the system perfor-
mance and how to allocate network resources. However,
in the above two schemes, the authors considered only a
snapshot of the VANETs and modeled the offloading prob-
lem as a maximization problem. The mobility of vehicles
was not considered. To select the most suitable offloading
nodes, a selection scheme that considers users’ interests and
near-future contact predictions is proposed in [22]. However,
the selected offloading nodes may become the bottleneck of
the system. Huang et al. [23] designed a control scheme for
offloading data from cellular to V2V paths under the SDN
inside the mobile edge computing (MEC) architecture. The
SDN controller calculates whether a V2V path exists between
two vehicles and decides whether to switch to the V2V path.
However, the centralized management mechanism and the
procedure for path discovery may result in a huge overhead.
Kolios et al. [24] established a flexible network flow model
for capturing the movement patterns of vehicles. Based on
the flow model, they used an optimal forwarding decision
strategy for V2V-assisted offloading. However, it is difficult
to predict the movements of vehicles. Thus, the performance
of the proposed scheme will degrade if the prediction is
not accurate. Huang et al. [25] investigated a credit-based
clustering (CBC) scheme for point of interest (POI) geo data
sharing in vehicular social networks. In each cluster, a vehicle
is selected as the cluster head to download POI geo data from
the cellular network and share them with its cluster members.
Thus, it is highly important to select a proper head cluster,
and the stability of a cluster head strongly influences the per-
formance of the strategy. Feng et al. [26] presented a vehicle-
assisted offloading (VAO) scheme that uses the vehicle queue
that is waiting for a red light to transfer data traffic from cells
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of busy street intersections to its idle adjacent cells. However,
motivating the vehicles to participate in offloading remains
challenging.

C. INCENTIVE SCHEMES FOR DATA OFFLOADING
All the above works focus on the technical perspective of
data offloading without considering economic incentives.
Economic incentives are important for offloading through
opportunistic networks that are formed by vehicles, as data
offloading consumes bandwidth, storage and power resources
of service vehicles. Game theory is an effective approach for
addressing the above issues and provides service providers
and requesters with the optimal price and task allocation
schemes. However, most of the available incentive schemes
are designed for data offloading through APs or mobile
nodes. Few approaches are designed for data offloading
through VANETs.

Kang and Sun [27] investigated the interactions between
WiFi APs and mobile network operators (MNO) and pro-
posed an incentive mechanism that uses both salary and
bonus to attract WiFi APs to participate in data offloading.
Wang et al. [28] developed a distributed market framework
for pricing the offloading service and characterized the inter-
action between service providers and requesters as a multi-
leader multi-follower Stackelberg game. However, in [27]
and [28], the authors did not distinguish data according to
priorities and APs according to capacity, and only consid-
ered the size of the offloaded data and the unit price. Fur-
thermore, Shah-Mansouri et al. [29] divided access point
owners (APOs) into two types: price-setting and price-taking
APOs. Then, a three-stage Stackelberg game is used to
study the MNO’s profit maximization problem. However,
features of the data are still not considered in [29]. Similarly,
Zhang et al. [30] divided the data into two types, namely,
delay-tolerant and delay-sensitive, and utility functions were
designed for the two types of data. However, the mobility of
nodes is not considered.

In vehicular environments, Cheng et al. [31] proposed an
approach for predicting the WiFi offloading potential and
access cost, based on which they introduced two offload-
ing mechanisms: auction-game-based offloading (AGO) and
congestion-game-based offloading (CGO). However, the pre-
diction approach does not consider the locations of vehic-
ular users or the features of the application sessions.
Su et al. [32] encouraged parked vehicles to facilitate con-
tent delivery in VANETs so that moving vehicles could
obtain content from both RSUs and parked vehicles. More-
over, a price model is developed so that three parties,
namely, moving vehicles, RSUs and parked vehicles, can
attain their maximum utilities. However, both RSUs and
parked vehicles are stationary. Based on the architecture of
SDN, Aujla et al. [33] designed a Stackelberg-game-based
intelligent network selection scheme for data offloading
in vehicular networks. However, the centralized offloading
management mechanism introduces additional overhead.
Therefore, Liu et al. [34] reported two decentralized data

offloading mechanisms: multi-item auction (MIA)-based and
congestion game (COG)-based. Xu et al. [35] proposed a
fast cloud-based network selection scheme for vehicular net-
works. Vehicles select the optimal access networks via a
coalition formation game approach. However, in [34] and
[35], the mobility of vehicles is not considered. In contrast
to the above incentive schemes, Dua et al. [36] developed a
game-theory-based algorithm for selecting the optimal vehi-
cle onto which to offload data from RSUs that considers the
connectivity, density of vehicles, distance, speed and angle
of movement. However, features of the data are still not
considered. TABLE 1 compares the available approaches.

In contrast to the available incentive schemes for data
offloading in VANETs, this paper uses moving vehicles as
offloading nodes. The proposed scheme considers the special
features of moving vehicles, which include the mobility of
vehicles, the V2V contact duration, the bandwidths among
BSs, the client vehicles and helper vehicles, and the popular-
ity of contents.

III. PROBLEM OVERVIEW AND SYSTEM MODELS
This section describes the participants in the Stackelberg
game. Then, the scenario and basic assumptions are presented
in detail. Finally, the traffic model, mobility model, commu-
nication model and interest model are presented.

A. PARTICIPANTS IN THE STACKELBERG GAME
Client: A client is a vehicle user who has a downloading
task that needs to be offloaded. A client can be denoted
as a 5-tuple, namely, c = {λ,DC , rBC , vC , pC }, where λ
is defined as the offloading rate, namely, the proportion of
the downloading data size that the client decides to offload;
DC is the total data size of the downloading task (bit); rBC
represents the downloading data rate (bit/s) between the base
station (BS) and the client; vC is the velocity (m/s) of the
client; and pCdenotes the instantaneous position of the client.
Helper:A helper is a vehicle user who has idle bandwidths

that can be used to help download and deliver other users’
data. A helper can be represented by a 7-tuple, namely,
h = {η, εBH , εHC , rBH , rHC , vH , pH }, where η denotes the
unit price ($/bit) the helper charges for helping download
and deliver the offloaded data; εBH and εHC represent the
unit costs ($/bit) for downloading the offloaded data from the
BS and delivering it to the client, respectively; rBH and rHC
denote the data rates (bit/s) between the BS and the helper
and between the helper and its client, respectively; and vH and
pH denote the velocity (m/s) and the instantaneous position,
respectively, of the helper.

B. SCENARIO AND ASSUMPTIONS
As illustrated in FIGURE 1, we consider the multi-lane high-
way scenario of VANETs, where base stations of cellular
networks are deployed alongside the road to provide seamless
coverage and are connected to the content servers in the Inter-
net through wire-line links. All vehicles are equipped with
two wireless interfaces: a cellular network interface and an
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TABLE 1. Comparison of available approaches.

FIGURE 1. Network scenario.

IEEE 802.11p network interface. Therefore, they can connect
to the cellular network using the 2G/3G/4G protocol, and
they can also communicate with each other using the IEEE
802.11p protocol. In the following, we do not distinguish
between the term ‘‘user’’ and the term ‘‘vehicle’’. The SDN
controller is deployed to manage the data offloading and
delivery, and it can communicate with the cellular network,

vehicle users and content servers. The SDN controller acts
as the intermediary between users and content servers. If a
client wants to download content, it sends a request to the
SDN controller via the cellular network. Then, the SDN
controller sends back the set of helpers and the informa-
tion on the requested content, which depend on where the
requested content is stored. If a neighboring vehicles of the
client have replicas of the requested content, the helpers are
these vehicles; otherwise, the helpers are all neighboring
vehicles of the client. Meanwhile, the SDN controller sends
a message to all helpers that asks them to participate in the
competition. Next, helpers send their own information to the
client. Finally, the client selects the best helper from the set
of helpers according to the knockdown price. The helper with
the lowest knockdown price is selected to help download and
deliver part of the data to the client. If the knockdown prices
that are offered by all helpers are too high, the client will
download from the BS directly. A vehicle in the system can be
either a client or a helper, depending on the link quality and
the content it already has. However, during the time period
that we consider, the identity of a vehicle user is stable and
absolute. In the system, there are C +H vehicle users, which
are labelled as i ∈ {1, 2, · · ·,C + H}, where C is the number
of clients that have downloading tasks and H is the number
of helpers that have sufficient resources for helping download
and deliver a portion of the data. The basic assumptions are
as follows:
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• The velocity and direction of each vehicle remain
unchanged during the period of offloading that we con-
sider.

• Data offloading only occurs between two vehicles when
they have a one-hop V2V communication link to protect
the reliability of data transmission, namely, the data of a
client can only be offloaded to its one-hop neighbors.

• Each client can only offload its downloading task to
one helper; however, each helper can provide services
to multiple clients.

C. SYSTEM MODELS
1) TRAFFIC AND MOBILITY MODELS
Let C and H denote the set of clients and the set of
helpers, respectively, where C = {ci | i ∈ {1, 2, · · ·,C}} ,
|C| = C and H ={hi|i ∈ {1, 2, · · ·,H}} , |H| = H .
According to [32] and [37], the velocity of each vehicle in
sets C and H can be divided into Ydiscrete levels: vi ∈{
v0, v1, · · ·, vy, · · ·, vY−1

}
. The arrival rates of vehicles that

enter the coverage of a BS or the coverage of a client with
velocity vy are defined as ρBSy and ρCy , respectively. Then,
the occurrence probability zBSy of each velocity level for a BS
and the occurrence probability zCy of each velocity for a client
are obtained by

zBSy =
ρBSy

Y−1∑
y=0

ρBSy

, (1)

and

zCy =
ρCy

Y−1∑
y=0

ρCy

. (2)

According to [38] and [39], the velocity of each vehicle
in the coverage of a BS or a client can remain stable. Then,
the time that a vehicle with velocity vy is in the coverage of a
BS or a client can be calculated as

τy =
2RBS
vy

, (3)

and

τy =
2RV
vy
, (4)

where RBS and RV are the transmission ranges of the BS and
the vehicle, respectively.

2) COMMUNICATION MODEL
Since every BS has the same coverage radius RBS , a vehi-
cle ican communicate with a BS only if it moves into the
coverage of the BS, namely, if ‖ pi − pBS ‖≤ RBS , where
pi and pBS are the instantaneous positions of vehicle i and
the BS, respectively. Similarly, two moving vehicles i and j
can opportunistically communicate with each other only if
they move into each other’s transmission ranges, namely, if

‖ pi − pj ‖≤ RV . For simplicity, the data rate rBS−i from the
BS to vehicle i and the data rate ri−j between two vehicles i
and j are considered fixed during the offloading period that
we consider [40].

3) INTEREST MODEL
In a system with multiple data items, some data items are
popular and many users want to download them, while other
data items are not popular and only a few users are inter-
ested in them. In this work, we model the popularity of data
items by users’ interest distributions on keywords [41]–[42].
Suppose the system has K keywords, which are denoted by
the set K. D denotes the set of all data items. Any data item
d , where d ∈ D, is described by a subset Kd of keywords,
Kd ⊆ K . To indicate the importance of a keyword k, k ∈ K ,
where wk is used to represent the weight ofk . Without loss of
generality, we assume

∑
k∈K

wk = 1. To model users’ interests

in various keywords, we define I ku as the degree of user u’s
interest in keyword k . Without loss of generality, we assume∑

k∈K I
k
u = 1. Thus, the interest probability Pduof useru in

data item d is defined as

Pdu =
∑

k∈Kd
wk I ku . (5)

The variables and notations that are used in this paper are
listed in TABLE 2.

IV. GAME ANALYSIS
This section analyzes the interaction between a client and a
helper as a Stackelberg game. First, the utility function of
each participant is introduced. Second, we model the interac-
tion between the client and the helper as a Stackelberg game.
Third, the optimal strategy of each participant is determined
by deriving the Nash equilibrium. Fourth, an algorithm is
proposed for selecting the helper with the lowest knockdown
unit price based on the results of the Nash equilibrium.

A. UTILITY FUNCTIONS
1) UTILITY FUNCTION OF A CLIENT
The utility function of a client can be defined as the difference
between the time that is saved by offloading and the cost of
obtaining the data. The utility function of a client is defined
as

UC = F(T ,T ′)− H (η), (6)

where F(T ,T ′) is the user satisfaction function on the time
difference, T is the time it needs to download the data without
a helper, T ′ is the time it needs to download the data with a
helper, and H (η) denotes the payment to the helper.
If a client downloads the data from a BS all by itself,

the time it needs is calculated as

T =
DC
rBC

. (7)

If a client downloadsλDC bits from the helper and
(1− λ)DC bits from the BS, the time it needs is calculated
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TABLE 2. Variables and notations.

as

T ′ = max
[
(1− λ)DC

rBC
, γ
λDC
rBH
+
λDC
rHC

]
, γ ∈ {0, 1} , (8)

whereγ represents whether the helper already has the
required data in its storage before the client sends a request.
If yes, γ = 0; otherwise, γ = 1. Here, we assume that
the cellular network interface and the IEEE 802.11p network
interface that are equipped on each vehicle can operate simul-
taneously. If the helper already has the required data, it will
transmit the data to the client directly; in this case, γ = 0.
Then, (8) can be simplified to

T ′ = max
[
(1− λ)DC

rBC
,
λDC
rHC

]
. (9)

Otherwise, the helper will download the data from the BS
and transmit the data to the client; in this case, γ = 1.

Therefore, from (7) and (8), the time that is saved by
offloading is

T ′ − T =
DC
rBC
− max

[
(1− λ)DC

rBC
, γ
λDC
rBH
+
λDC
rHC

]
,

×γ ∈ {0, 1} . (10)

F(T ,T ′) is defined as

F
(
T ,T ′

)
= ln

(
1+

DC
rBC
−max

[
(1−λ)DC
rBC

, γ
λDC
rBH
+
λDC
rHC

])
,

×γ ∈ {0, 1} , (11)

For a client, the cost is mainly the total payment to the
helper. Thus, the cost function H (η) is defined as

H (η) = ηλDC . (12)

From (11) and (12), the utility function of a client is

UC (λ)= α1 ln
(
1+

DC
rBC
−max

[
(1−λ)DC
rBC

, γ
λDC
rBH
+
λDC
rHC

])
−α2ηλDC , γ ∈ {0, 1} , (13)

where α1 and α2 are willingness factors that represent the
preference of the client for the task, which satisfyα1+α2 = 1,
0 ≤ α1 ≤ 1, and 0 ≤ α2 ≤ 1.
As the client and the helper are both moving vehicles,

the total transmission time of the offloaded data should be less
than the inter-contact duration between the client and helper:

γ
λDC
rBH
+
λDC
rHC
≤
‖ pC − pH ‖

1v
, γ ∈ {0, 1} (14)

where 1v denotes the velocity difference between the client
and the helper, namely, 1v = vC − vH .

2) UTILITY FUNCTION OF A HELPER
The strategy of a helper is to maximize the revenue by deter-
mining the price. The revenue includes the direct revenue,
which is the profit that is earned by relaying the data to the
client, and the indirect revenue, which is the profit that is
earned by delivering the downloaded data to other users that
are interested in the data. As bandwidth, storage and power
resources are required for downloading and relaying the data,
the cost should be considered. Thus, the utility function of the
helper can be defined as

UH = H (η)+ H ′(λ)− L(λ), (15)

where H (η) is the direct profit, H ′(λ) is the indirect profit,
and L(λ) is the cost of delivering the data.

The more popular a data item is, the higher the profit it may
bring to the helper, as the helper can deliver it to other users,
in addition to the client. Thus, H ′(λ) is defined as

H ′ (λ) = λ
∑

u∈U

∑
k∈Kd

wk I ku , (16)

where U is the set of users in a region and U denotes the
number of users in set U.

The cost of a helper is defined as

L (λ) =
(
γ εBH + εHC

)
λDC , γ ∈ {0, 1} . (17)

From (12), (16), and (17), the utility function of a helper is

UH (η) = β1
(
η − γ εBH − εHC

)
λDCβ2γ λ

×

∑
u∈U

∑
k∈Kd

wk I ku ,γ ∈ {0, 1} , (18)

where β1 and β2 are the weights of the direct and indirect
profits, respectively, which satisfy β1+ β2 = 1, 0 ≤ β1 ≤ 1,
and0 ≤ β2 ≤ 1. If the helper already has the required data,
γ = 0, and both the cost for downloading the data from
the BS and the indirect revenue will be 0. Then, the utility
function of the helper can be simplified to

UH (η) = (η − εHC )λDC . (19)

Otherwise, γ = 1.
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FIGURE 2. A two-stage non-cooperative Stackelberg game.

B. STACKELBERG GAME
We model the data request of a client and the pricing of a
helper as a non-cooperative Stackelberg game, in which the
helper is the leader of the game and the client is the follower
of the game. As illustrated in FIGURE 2, the Stackelberg
game consists of two stages: In stage I, each potential helper
offers its unit price η. In stage II, the client determines the
percentage λ of data to obtain from each helper according
to the price η. Finally, the client chooses the helper with the
lowest η. In the game, each party is selfish and individual,
and pursues its maximum utility. Therefore, the problem can
be formulated as follows:
Problem 1:

max UC (λ)

= α1 ln
(
1+

DC
rBC
−max

[
(1−λ)DC

rBC
, γ
λDC
rBH
+
λDC
rHC

])
−α2ηλDC , γ ∈ {0, 1} ,

such that
{
0 ≤ λ ≤ 1
γ λDCrBH

+
λDC
rHC
≤
‖pC−pH ‖

1v
(20)

Problem 2:

max UH (η)

= β1
(
η−γ εBH−εHC

)
λDC+β2γ λ

∑
u∈U

∑
k∈Kd

wk I ku ,

γ ∈ {0, 1} .

such that γ εBH + εHC≤η ≤ ηmax , (21)

where ηmax denotes the maximum unit price that a helper can
offer.

C. STACKELBERG EQUILIBRIUM SOLUTION
According to whether the helper has the required data before
the client sends a request, the discussion of the Stackelberg
equilibrium can be further divided into two situations. In each
situation, we adopt the backward induction method [32] to
solve the Stackelberg game, which means we derive the
optimal offloading rate λ∗ for the client in stage II firstly,
given that the helper’s strategy is fixed, and then we obtain
the optimal unit price η∗ for the helper in stage I.

FIGURE 3. Scenario (1): the helper has the required data.

1) THE HELPER HAS THE REQUIRED DATA
When the helper already has the required data before the
client sends a request, the helper delivers the data to the client
directly, as illustrated in FIGURE 3. Then, the problem can
be simplified as

maxUC (λ)=α1 ln
(
1+

DC
rBC
−max

[
(1−λ)DC

rBC
,
λDC
rHC

])
−α2ηλDC

s.t.0 ≤ λ ≤ min(1,
rHC1τ
DC

),1τ =
‖ pC − pH ‖

1v

,

(22){
maxUH (η) = (η − εHC )λDC
s.t.εHC ≤ η≤ηmax

(23)

Stage II: When the helper has determined its price,
the client must decide the percentage λ of data to obtain from
the helper to maximize its utility function. Let λ0 denote the
value of λ that satisfies (1−λ)DC

rBC
=

λDC
rHC

. Then, we obtain
λ0 = rHC

rHC+rBC
. According to the relationship among 1, rHC1τDC

,
and λ0, UC (λ) can be further divided into three cases.
Case 1: rHC1τDC

≤ λ0 ≤ 1

UC (λ) = α1 ln
(
1+

λDC
rBC

)
− α2ηλDC , 0 ≤ λ ≤

rHC1τ
DC

.

(24)

We calculate the first derivative of UC (λ) with respect to
λ and obtain

∂UC
∂λ
=

α1
rBC
DC
+ λ
− α2ηDC . (25)

Then, we calculate the second derivative of UC (λ) with
respect to λ and obtain

∂2UC
∂λ
= −

α1(
rBC
DC
+ λ

)2 < 0. (26)

It is easy to prove that the function UC (λ) is a strictly
concave function. Therefore, we can determine the optimal
strategy by solving ∂UC

∂λ
= 0. λ# denotes the value of λ that

166442 VOLUME 7, 2019



F. Yang et al.: Stackelberg-Game-Based Mechanism

satisfies ∂UC
∂λ
= 0, namely, λ# = 1

DC

(
α1
α2η
− rBC

)
. Then,

the optimal strategy λ∗of the client is expressed as

λ∗ =



0, η ≥
α1

α2rBC
1
DC

(
α1

α2η
− rBC

)
,

α1

α2 (rBC + rHC1τ)
< η <

α1

α2rBC
rHC1τ
DC

, η ≤
α1

α2 (rBC + rHC1τ)
(27)

Case 2: λ0 < rHC1τ
DC
≤ 1

UC (λ) =


α1 ln

(
1+

λDC
rBC

)
− α2ηλDC , 0 ≤ λ < λ0

α1 ln
(
1+

DC
rBC
−
λDC
rHC

)
− α2ηλDC ,

λ0 ≤ λ ≤
rHC1τ
DC

(28)

If λ0 ≤ λ ≤ rHC1τ
DC

, ∂UC
∂λ
=

−α1
DC
rHC

1+ DC
rBC
−
λDC
rHC

− α2ηDC < 0.

Thus, if λ = λ0, UC (λ) is maximal. The optimal strategy λ∗

of the client is expressed as

λ∗ =



0, η ≥
α1

α2rBC
1
DC

(
α1

α2η
− rBC

)
,

α1(rHC + rBC )

α2(r2BC + rHCrBC + rHCDC )

< η <
α1

α2rBC
rHC

rHC + rBC
, η ≤

α1(rHC + rBC )

α2(r2BC + rHCrBC + rHCDC )
(29)

Case 3: λ0 ≤ 1 < rHC1τ
DC

UC (λ) =


α1 ln

(
1+

λDC
rBC

)
− α2ηλDC , 0 ≤ λ < λ0

α1 ln
(
1+

DC
rBC
−
λDC
rHC

)
− α2ηλDC ,

λ0 ≤ λ ≤ 1
(30)

Equation (30) is very similar to (28). The optimal strategy
of the client in case 3 is the same as the strategy that is
expressed in (29).

Stage I: The helper determines the unit price in this stage.
In the complete information game, the helper knows the
strategy and utility function of the client. From (27) and (29),
it follows that λ∗ ∈

{
0, rHC1τDC

, rHC
rHC+rBC

, 1
DC

(
α1
α2η
− rBC

)}
.

Case 1: λ∗ = 0. No offloading occurs and the client
downloads the data on its own.
Case 2: λ∗ =

rHC1τ
DC

or rHC
rHC+rBC

. We calculate the
first derivative of UH (η) with respect to η and obtain
∂UH
∂η
= λDC > 0. Thus, the optimal strategy of the helper

is η∗ = ηmax .

Case 3: λ∗ = 1
DC

(
α1
α2η
− rBC

)
. Then, UH (η) is

UH (η) = (η − εHC )
(
α1

α2η
− rBC

)
. (31)

We calculate the first derivative of UH (η) with respect to
η and obtain

∂UH
∂η
=
α1εHC

α2η2
− rBC . (32)

Then, we calculate the second derivative of UH (η) with
respect to η and obtain

∂2UH
∂η
= −

2α1εHC
α2η3

− rBC < 0. (33)

Similarly, it is easy to prove the UH (η) is a concave
function. Therefore, we can obtain the optimal strategy by
solving ∂UH

∂η
= 0. η# denotes the value of η that satisfies

∂UH
∂η
= 0, namely, η# =

√
α1εHC
α2rBC

. Then, the optimal strategy
of the helper is expressed as follows:
Case 1: rHC1τDC

≤ λ0 ≤ 1

η∗ =



max
(

α1

α2 (rBC + rHC1τ)
, εHC

)
,

η# ≤ max
(

α1

α2 (rBC + rHC1τ)
, εHC

)
√
α1εHC
α2rBC

,max
(

α1

α2 (rBC + rHC1τ)
, εHC

)
< η# < min

(
α1

α2rBC
, ηmax

)
.

min
(

α1

α2rBC
, ηmax

)
, η# ≥ min(

α1

α2rBC
, ηmax)

(34)

Case 2: λ0 < rHC1τ
DC
≤ 1 or λ0 ≤ 1 < rHC1τ

DC

η∗ =



max

(
α1(rHC + rBC )

α2(r2BC + rHCrBC + rHCDC )
, εHC

)
,

η# ≤ max

(
α1(rHC + rBC )

α2(r2BC + rHCrBC + rHCDC )
, εHC

)
√
α1εHC
α2rBC

,max

(
α1(rHC + rBC )

α2(r2BC + rHCrBC + rHCDC )
, εHC

)
< η# < min(

α1

α2rBC
, ηmax)

min
(

α1

α2rBC
, ηmax

)
, η# ≥ min(

α1

α2rBC
, ηmax)

(35)

2) THE HELPER DOES NOT HAVE THE REQUIRED DATA
If the helper does not have the required data, the helper must
download the data from the BS and deliver it to the client,
as illustrated in FIGURE 4. The problem is formulated as
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FIGURE 4. Scenario (2): the helper does not have the required data.

follows:

maxUC (λ) = α1 ln
(
1+

DC
rBC

− max
[
(1− λ)DC

rBC
,
λDC
rBH
+
λDC
rHC

])
− α2ηλDC

s.t.0 ≤ λ ≤ min
(
1,

rBH rHC1τ
(rBH + rHC )DC

)
,

(36)
maxUH (η) = β1(η − εBH − εHC )λDC

+ β2λ
∑

u∈U
∑

k∈Kd wk I
k
u

s.t.εBH + εHC ≤ η ≤ ηmax

(37)

Stage II: From (1−λ)DC
rBC

=
λDC
rBH
+

λDC
rHC

, we obtain
λ0 = rBH rHC

rBC rHC+rBC rBH+rBH rHC
. Similar to Scenario 1), UC (λ)

can also be divided into three cases according to the relation-
ship among 1, rBH rHC1τ

(rBH+rHC )DC
and λ0.

Case1: 1τ rBH rHC
DC (rBH+rHC )

≤ λ0 < 1

UC (λ) = α1 ln
(
1+

λDC
rBC

)
− α2ηλDC ,

0 ≤ λ ≤
1τ rBH rHC

DC (rBH + rHC )
. (38)

As in Scenario 1),UC (λ) is a strictly concave function. Let
∂UC
∂λ
= 0. Then, λ# = 1

DC

(
α1
α2η
− rBC

)
. The optimal strategy

of the client is

λ∗ =



0, η ≥
α1

α2rBC
1
DC

(
α1

α2η
− rBC

)
,

α1(rBH + rHC )
α2(1τ rBH rHC + rBCrHC + rBCrBH )

<η<
α1

α2rBC
1τ rBH rHC

DC (rBH + rHC)
,

η ≤
α1(rBH + rHC )

α2(1τ rBH rHC + rBCrHC + rBCrBH )
.

(39)

Case 2: λ0 ≤ 1τ rBH rHC
DC (rBH+rHC )

≤ 1

UC (λ) =


α1 ln

(
1+

λDC
rBC

)
− α2ηλDC , 0 ≤ λ < λ0

α1 ln
(
1+

DC
rBC
−
λDC
rBH
−
λDC
rHC

)
− α2ηλDC ,

λ0 < λ≤
1τ rBH rHC

DC (rBH + rHC )
.

(40)

The optimal strategy of the client is

λ∗ =



0, η ≥
α1

α2rBC
1
DC

(
α1

α2η
− rBC

)
,

α1A
α2rBC (DCrBH + A)

< η <
α1

α2rBCrBH rHC
rBCrHC + rBCrBH + rBH rHC

,

η ≤
α1A

α2rBC (DCrBH + A)

(41)

where A = rBH rHC + rBCrHC + rBCrBH .
Case 3: λ0 < 1 ≤ 1τ rBH rHC

DC (rBH+rHC )

UC (λ) =


α1 ln

(
1+

λDC
rBC

)
− α2ηλDC , 0 ≤ λ ≤ λ0

α1 ln
(
1+

DC
rBC
−
λDC
rBH
−
λDC
rHC

)
− α2ηλDC ,

λ0 ≤ λ ≤ 1.
(42)

The optimal strategy of the client is the same as (41).
Stage I: From (39) and (41), it follows that

λ∗ ∈ {0, 1τ rBH rHC
DC (rBH+rHC)

, λ0, 1
DC

(
α1
α2η
− rBC

)
.

Case 1: λ∗ = 0. No offloading occurs and the client
downloads the data by itself.
Case 2: λ∗ = 1τ rBH rHC

DC (rBH+rHC)
or rBH rHC

rBC rHC+rBC rBH+rBH rHC
. The

optimal strategy of the helper is η∗ = ηmax .
Case 3: λ∗ = 1

DC

(
α1
α2η
− rBC

)
. UH is

UH (η) = β1(η − εBH − εHC )λDC
+β2λ

∑
u∈U

∑
k∈Kd

wk I ku . (43)

Similar to Scenario 1), it can be proved that UH (η) is
a strictly concave function. Therefore, we can obtain the
optimal strategy by solving ∂UH

∂η
= 0. From ∂UH

∂η
= 0,

we obtain η# =

√
α1

α2rBC
(εBH + εHC −

β2B
β1DC

), where

B =
∑

u∈U
∑

k∈Kd wk I
k
u . Then, the optimal strategy of the

client is as follows:
Case 1: 1τ rBH rHC

DC (rBH+rHC )
≤ λ0 < 1

The optimal strategy of the client is expressed in (44), as
shown at the bottom of the next page.
Case 2: λ0 ≤ 1τ rBH rHC

DC (rBH+rHC )
≤ 1 or λ0 < 1 ≤ 1τ rBH rHC

DC (rBH+rHC )
The optimal strategy of the client is expressed in (45), as

shown at the bottom of the next page.
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D. STACKELBERG-GAME-BASED ALGORITHM FOR
IDENTIFYING THE BEST HELPER
This section presents a Stackelberg-game-based algorithm
for selecting the helper with the lowest price from set HD
or HI , where HD and HI denote the set of helpers that
have the required data and the set of helpers that do not
have the required data, respectively. A vehicle user who has
a downloading task checks if there are vehicle users who
already have the data. If yes, it runs algorithm 1 to select
the best helper from set HD; if no, it runs algorithm 1 to
select the best helper from set HI .The time complexity of
algorithm 1 is O(n). Thus, its complexity is low and it is
suitable for running on a vehicle. In addition, to run algo-
rithm 1, a client must input the instantaneous information on
itself, the helpers and the required data item. The instanta-
neous information of the client includes (DC , rBC , vC , pC );
the instantaneous information of all helpers includes set HD
or HI and (εBH , εHC , rBH , rHC , vH , pH ) of each helper; the
information of the data item includes the set U and the
interest probability Pdu . As algorithm 1 runs on the client
vehicle, it has the information on itself. The information
on the helpers and the required data item can be obtained
from the helpers and the SDN controller. According to the
procedure for offloading that is presented in Section III-B,
the SDN controller returns the information regarding the data
items to the client. Then, each helper sends the information
about itself to the client. Therefore, it is feasible to implement
algorithm 1 on moving vehicles.

V. PERFORMANCE EVALUATION
This section evaluates the performance of the proposed
scheme via Monte Carlo simulation on MATLAB 2018b.
We present the settings of the simulation parameters and
conduct the performance evaluation and discussion.

A. PARAMETER SETTINGS
We consider a straight highway with 2 lanes and vehicles
move on the highway at speeds that are between 20 m/s
to 40 m/s. BSs are deployed alongside the road to provide
seamless coverage. The coverage radius of each BS is 500 m.
To generalize the simulation results, each result is obtained

Algorithm 1 A Stackelberg-Game-Based Algorithm for
Identifying the Best Helper from set HD or HI

1: Initialization: Given HD(orHI ), ηbest = ηmax , λbest = 0.
2: Repeat
3: ∀h ∈ HD(orHI )
4: If rHC1τDC

≤ λ0 ≤ 1(or 1τ rBH rHC
DC (rBH+rHC )

≤ λ0 < 1)
5: If ηmin > α1

α2rBC
6: λ∗ = 0, η∗ = 0
7: Else if ηmax < α1

α2(rBC+rHC1τ)
(orηmax <

α1(rBH+rHC )
α2(1τ rBH rHC+rBC rHC+rBC rBH )

)
8: λ∗ = rHC1τ

DC
(or 1τ rBH rHC

DC (rBH+rHC )
), η∗ = ηmax

9: Else
10: λ∗ = 1

DC

(
α1
α2η∗
− rBC

)
, η∗ is obtained via (34) (or (44))

11: End if
12: Else
13: If ηmin > α1

α2rBC
14: λ∗ = 0, η∗ = 0
15: Else if ηmax <

α1(rHC+rBC )
α2(r2BC+rHC rBC+rHCDC )

(or ηmax <

α1A
α2rBC (DC rBH+A)

)
16: λ∗ = rHC

rHC+rBC
(or rBH rHC

rBC rHC+rBC rBH+rBH rHC
), η∗ = ηmax

17: Else
18: λ∗ = 1

DC

(
α1
α2η∗
− rBC

)
, η∗ is obtained via (35) (or (45))

19: End if
20: End if
21: If η∗ < ηbest
22: ηbest = η

∗, λbest = λ
∗

23: End if
24: Pop h from HD (or HI )
25: Until HD(orHI ) = ∅

from 1000 simulations. The parameter settings of the simula-
tion are listed in TABLE 3 [32], [43]. The proposed algorithm
is compared with two methods [32], [43] that were recently
proposed in the literature:
• Gradient-based iteration (GBI): This algorithm is used
to obtain a three-party Stackelberg game equilibrium,
where the three parties are parked vehicles, RSUs and
moving vehicles [32].

η∗=



max
(

α1(rBH + rHC )
α2(1τ rBH rHC+rBCrHC+rBCrBH )

, εBH+εHC

)
, η# ≤ max

(
α1(rBH+rHC )

α2(1τ rBH rHC+rBCrHC+rBCrBH )
, εBH+εHC

)
η#,max

(
α1(rBH + rHC )

α2(1τ rBH rHC + rBCrHC + rBCrBH )
, εBH + εHC

)
< η# < min(

α1

α2rBC
, ηmax)

min
(

α1

α2rBC
, ηmax

)
, η# ≥ min(

α1

α2rBC
, ηmax),

(44)

η∗ =



max
(

α1A
α2rBC (DCrBH + A)

, εBH + εHC

)
, η# ≤ max

(
α1A

α2rBC (DCrBH + A)
, εBH + εHC

)
η#,max

(
α1A

α2rBC (DCrBH + A)
, εBH + εHC

)
< η# < min(

α1

α2rBC
, ηmax)

min
(

α1

α2rBC
, ηmax

)
, η# ≥ min(

α1

α2rBC
, ηmax).

(45)
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FIGURE 5. Utility of the client versus rBC: (a) the helper has the required data and (b) the helper does not have the required data.

FIGURE 6. Utility of the helper versus rBC: (a) the helper has the required data and (b) the helper does not have the required data.

TABLE 3. Simulation parameters.

• First come first serve (FCFS): A client vehicle chooses
the first accessing helper vehicle and selects λ0 and ηmax
as the offloading rate and the knockdown unit price. This
algorithm is used for comparison in [43].

B. SIMULATION RESULTS
FIGURE 5 and FIGURE 6 plot the utilities of the client
and the helper when the data rate from the BS to the client
changes. According to FIGURE 5 (a) and (b), the utility of
the client for algorithm 1 is greater than those for the GBI
and FCFS algorithms. This is because the utility function
of algorithm 1 differs from those of the GBI and FCFS
algorithms. The utility function is set to be always greater
than or equal to 0. Therefore, for the FCFS algorithm, the
utility of the client is always zero in both scenarios, which
means FCFS cannot optimize the utility of the client. Accord-
ing to FIGURE 5 (a) and (b), the utility of the client for
algorithm 1 gradually decreases as the data rate from the
BS to the client increases in both scenarios; this is because
when the value of rBC is small, it takes a long time to
download the task data from the BS without a helper. With
the increase of rBC , the time that it takes to download the
task data from the BS without a helper becomes small; hence,
the total revenue that can be obtained from offloading also
becomes small. The utility of a helper for algorithm 1 also
decreases as the data rate from the BS to the client increases
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FIGURE 7. Utility of the client versus the minimum unit price that is offered by the helper: (a) the helper has the required data and
(b) the helper does not have the required data.

FIGURE 8. Utility of the helper versus the minimum unit price that is offered by the helper: (a) the helper has the required data and
(b) the helper does not have the required data.

in both scenarios. This is because the knockdown unit price
decreases with the increase of rBC . As a result, the total
income that can be obtained is also decreased. In addition,
according to FIGURE 5 and FIGURE 6, the utility of the
client for the FCFS algorithm is 0 and the utility of the helper
is greater than that for algorithm 1; hence, FCFS cannot
optimize two utility functions simultaneously.

FIGURE 7 and FIGURE 8 plot the utilities of the client and
the helper when the minimum unit price that can be offered
by the helper changes. The minimum unit price equals εHC
in FIGURE 7 (a) and FIGURE 8 (a), while it equals εBH+εHC
in FIGURE 7 (b) and FIGURE 8 (b). In addition, the utility of
the client for algorithm 1 is gradually decreased as the min-
imum unit price that can be offered by the helper increases.
This is because the knockdown unit price increases with the
increase of the minimum unit price; hence, the money that the
client pays to the helper increases. In FIGURE 8 (a) and (b),
the utility of the helper for algorithm 1 decreases as the mini-
mum unit price that can be offered by the helper increases.

The decreased utility of the helper for algorithm 1 results
from the percentage of the data that are offloaded to the
helper decreasing with the increase of the minimum unit
price. Similarly, the utility of the client for Algorithm 1 is
greater than those for GBI and FCFS algorithms, as shown
in FIGURE 7 (a) and (b). In addition, the utility of the client
for FCFS is also 0, and the utility of the helper for FCFS is
greater than that of Algorithm 1.

FIGURE 9 analyzes the variation tendency of the knock-
down unit price with the increase of rBC . According to FIG-
URE 9 (a) and (b), the knockdown unit price for algorithm 1
decreases as the value of rBC increases. This is because as
rBC increases, the time that is needed to download the data
from the BS without a helper decreases, thereby increas-
ing the bargaining performance. As a result, the knockdown
unit price decreases. In addition, algorithm 1 can achieve a
lower knockdown unit price than GBI and FCFS algorithms.
Note that the price is set to ηmax during the simulations.
FIGURE 10 analyzes the relationship between the time that
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FIGURE 9. Knockdown unit price versus rBC: (a) the helper has the required data and (b) the helper does not have the required
data.

FIGURE 10. Time saved via offloading versus rBC: (a) the helper has the required data and (b) the helper does not have the
required data.

is saved via offloading and the data rate from the BS to
the client. According to FIGURE 10, the time that is saved
via offloading for algorithm 1 gradually decreases with the
increase of rBC . This is because the original time that is
required for downloading the data decreases with the increase
of rBC . In addition, the time that is saved by algorithm 1 is
greater than that byGBI. This is because algorithm 1 can yield
a better optimization result than GBI.

VI. CONCLUSION
This paper proposes a Stackelberg-game-based incentive
scheme for opportunistic data offloading in SDN-based
vehicular networks, which considers the mobility of vehicles,
the popularity of contents and the content storage of vehicles.
The Stackelberg-game-based model accurately describes the
interaction between a client and a helper. Based on the results
of the Stackelberg equilibrium, an algorithm is proposed for
selecting the helper that offers the lowest price to the client.
The simulation results demonstrate that the proposed scheme

can effectively reduce the downloading time of a task while
satisfying both the client and the helper.
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