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ABSTRACT A parametric model order reduction method combined with a polynomial spectral approxi-
mation is applied for the first time to a Volume Integral Equation method accelerated by a low–rank matrix
compression technique. Such an approach allows for drastically reducing the computational cost required
by uncertainty quantifications in electromagnetic problems. Moreover, the proposed numerical tool can be
adopted for computing stochastic information (e.g. mean, variance, probability density function) of any
electromagnetic quantity of interest, in order to test the reliability of industrial devices with uncertainties
on the material parameters. Conductive, dielectric, and magnetic media which exhibit uncorrelated and
correlated random material parameters are considered by the proposed method.

INDEX TERMS Uncertainty quantification, integral equation method, parametric model order reduction,
spectral approximation, electromagnetics, low–rank approximation, hierarchical matrices.

I. INTRODUCTION
In many electromagnetic (EM) applications the values
of the material parameters are affected by unavoidable
uncertainties [1], [2]. Moreover, conductivity, permittivity,
and permeability of media are often strongly influenced
by technological uncertainties and external uncontrolled
phenomena, such as temperature, pressure, humidity, and
other environmental quantities [3]. If not taken into account
during the design stage, uncertainties on material parameters
may significantly affect the reliability of devices, leading
to a wrong evaluation of the system performances and the
production of low–quality components [1].

Whenever the interest is the extraction of stochastic infor-
mation (e.g. mean, variance, correlation) of some quan-
tity of interest coming from the aleatory uncertainty in the
input material parameters, the traditional Monte Carlo (MC)
method can be adopted. However, even considering its
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generality, MC requires to solve several deterministic prob-
lems (usually not less than 10,000), often resulting in a
prohibitive computational effort.

To avoid this problem, many different techniques have
been proposed in the literature, e.g. [1], [4], [5]. Most of them
are based on the polynomial chaos expansion (PCE) [6], [7],
which unfortunately does not allow for easily considering
correlated random variables. The PCE technique has already
been successfully applied to differential methods [8] and
the Finite Integration Technique (FIT) method for mag-
netostatic [9], eddy-current [10], and electrokinetic [11]
problems. Moreover, in [12], PCE has been successfully
applied to an Integral Equation (IE) approach [13] based on
the unstructured Partial Element Equivalent Circuit (PEEC)
method [14], [15]. However, when the intrusive PCE in [12]
is applied to IE methods, the computational cost and the
memory requirement for the storage of densematrices rapidly
grow with the number of aleatory parameters. In this regard,
low–rank compression techniques could be adopted to com-
press dense integral equation matrices and thus reduce the
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computational cost [16]. Unfortunately, the application of
PCE to IE methods modifies the structure of the final sys-
tem of equations which exhibits a complex pattern with
both dense and sparse matrix blocks. Thus, the coupling of
PCE–IE methods with low–rank matrix compression results
numerically tricky.

Recently, in [17], an interesting and efficient alterna-
tive to the PCE technique, which allows for both uncorre-
lated and correlated material parameters, has been proposed
for electrokinetic problems based on FIT method. This
approach is based on Parametric Model Order Reduction
(PMOR) [18], [19] and spectral approximation and it allows
for drastically reducing the computational cost of uncer-
tainty quantifications when random material parameters are
considered.

Following [17], the idea behind the proposed numerical
approach is to combine the well–known advantages of PMOR
with the efficiency of spectral approximation technique in
the context of VIE method coupled with low–rank approx-
imation. In this paper, the numerical approach presented
in [17] is sped up and applied for the first time to a Volume
Integral Equation (VIE) method [20], [21]. In the presented
VIE formulation, full Maxwell’s equations are considered
and conductive, dielectric, and magnetic media are included
in the simulations. Moreover, unlike the PCE–PEEC method
in [12], the proposed numerical approach can be easily
combined with low–rank compression techniques. In this
regard, the highly optimized HLIBPro library [22] based
on Hierarchical (H) matrix representation [23] and Adaptive
Cross Approximations (ACA) [24] is adopted, significantly
reducing the computation time and memory required by VIE
method [16]. For the sake of simplicity, in this paper the anal-
ysis is restricted to frequency values which allow neglecting
the time delay effects on the propagation of the EM field,
without falling back into the well–known numerical issues
of VIE methods (see, e.g., [25], [26]).

The aim of this work is to provide a fast numerical tool
for uncertainty quantification whenmedia exhibit both uncor-
related and correlated random parameters. Thanks to the
well–known advantages of VIE methods, which avoid the
air discretization, the proposed approach can be efficiently
applied for the study of devices surrounded by large air
domains and/or with small air gaps, e.g. integrated circuit,
electronic components, filters, etc. [14].

The computational cost required by the proposed approach
is headed by the solution of only few deterministic VIE
problems that, thanks to the use of low–rank approximation,
can be significantly reduced. Moreover, thanks to the fea-
tures of the proposed VIE formulation, the dense integral
equation coupling matrices must be evaluated only once in
compressed H–form, whereas the sparse material matrices
must be only updated. This leads to a very fast and efficient
method where the time required for the assembly of the matri-
ces and the dimension of the system to be solved is the same
of a deterministic problem. Both 3–D and axisymmetric EM
problems with a (relatively) high number of random material

parameters can be considered by the algorithm and the
obtained results demonstrate the efficiency and accuracy of
the proposed method. As shown in the numerical studies,
the EMmedia can exhibit complex material quantities, where
the real and the imaginary parts are considered as two poten-
tially independent aleatory variables.

Numerical cases show that a very small dimension of the
reduced order model is sufficient to attain very high accuracy.
Indeed, with respect to [17] (where PMOR applied to FIT
for an electrokinetic problem with only three parameters pro-
duces a reduced order model of dimension 20), the numerical
results of this paper suggest that a reduced order model of
much smaller dimension is needed when PMOR is applied to
VIE. Moreover, the exponential convergence of the spectral
approximation discussed in [7] is here observed.

The main outcomes of the implemented algorithm con-
sist of: 1) a reduced order model of the parametric prob-
lem (section II-B) and, 2) a spectral expansion of any
quantity derived from the unknowns of the EM problem
(section III-B). Unlike approaches in the literature based on
PCE, e.g. [12], the stochastic analysis can be carried out
by assuming different probability distributions between the
material parameters and correlation can be considered as
well. Indeed, once obtained the spectral expansion of the
quantity of interest, different stochastic analysis can be car-
ried out without the need of re–running the algorithm.

Unlike [17], where the reduced order model is constructed
through a greedy algorithm and a dense grid is adopted, in this
paper a random selection strategy is used instead, thus avoid-
ing the well–known problem of the curse of dimensionality
during the construction of the reduced order model. Further-
more, the use of a random–based approach allows for improv-
ing the robustness of the PMOR algorithm, also avoiding
stagnation problems [27]. Unlike [17], sparse grids are also
successfully adopted for the spectral expansion, therefore
mitigating the problem of the curse of dimensionality and
significantly accelerating the algorithm. Thus, as shown in
section IV where a problem with ten random material param-
eters is solved in few minutes only, the proposed numerical
tool can be efficiently applied with some tens (e.g. 20-30) of
random parameters.

The rest of the paper is organized as follows. In section II,
the deterministic VIE formulation based on [28] is shortly
presented. Then, the structure of the parametric problem is
described. In section III, the stochastic method is then pre-
sented and subdivided in three parts. First, in section III-
A, a PMOR algorithm which drastically reduces the dimen-
sion of the parametric problem is presented and widely
discussed. In section III-B, a spectral approximation is
applied to describe the relationships between the (aleatory)
material parameters and the quantities of interest derived
from the unknowns of the parametric VIE problem. Then,
in section III-C, an MC simulation is finally applied to
the spectral approximation with a negligible computational
cost. In section IV, with the aim of validating and showing
the computational performances of the proposed approach,
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the analytical test case of a multi–shell dielectric sphere is
considered. Finally, the model of the induction cookware
presented in [29] is analyzed by the Stochastic–PMOR–VIE
to show the performances of the method when applied to
problems of industrial interest.

II. DETERMINISTIC VOLUME INTEGRAL EQUATION
METHOD
In this paper, the deterministic VIE formulation proposed in
[28], where the PEECmethod is formulated in the framework
of VIE, is considered. For the sake of clarity, the key points
of [28] are here shortly reported.

A. VOLUME INTEGRAL EQUATION METHOD
Conductive, dielectric, and magnetic media are considered
in the formulation. As it is customary, the term dielectric
and magnetic specify media with permittivity and permeabil-
ity different from those of vacuum, respectively. Moreover,
the electric domain �e (i.e. the union of the conductive
and the dielectric regions) and the magnetic domain �m are
introduced together with the definitions of their boundaries,
0e = ∂�e and 0m = ∂�m. Linear media which exhibit
inhomogeneous and anisotropic properties can be considered
as well. The whole EM problem is ruled by the following
equations

E(r) = −iωAe(r)−∇ϕe(r)−
1
ε0
∇ × Am(r)+ Eext (r),

(1)

H(r) = −iωAm(r)−∇ϕm(r)+
1
µ0
∇ × Ae(r)+Hext (r),

(2)

where E is the electric field, H is the magnetic field, Ae
and Am are the vector potentials, and ϕe and ϕm are the
scalar electric andmagnetic potentials introduced in [28]. The
angular frequency is ω, i is the imaginary unit, r is the field
point, and ε0 and µ0 are the vacuum permittivity and per-
meability, respectively. Eext andHext are the incident electric
and magnetic fields, respectively. Equations (1) and (2) are
complemented by constitutive relationships

E(r) = ρe(r)Je(r), r ∈ �e, (3)

H(r) = ρm(r)Jm(r), r ∈ �m, (4)

where Je and Jm are the electric andmagnetic current density
vectors, respectively, whereas ρe and ρm are the equivalent
electric and magnetic resistivity, defined as

ρe(r) =
1

σ (r)+ iωε0(εr (r)− 1)
, r ∈ �e, (5)

ρm(r) =
1

iωµ0(µr (r)− 1)
, r ∈ �m, (6)

where σ is the electric conductivity, εr is the relative permit-
tivity, and µr is the relative permeability.
Following [28], vector and scalar potentials in (1) and (2)

are given by their classical integral expressions which depend

on Je and Jm. Then, (1)–(4) are combined together, Je and
Jm are expanded by means of Whitney face shape functions,
and the resulting equations are tested by Galerkin approach
(i.e. by using the same Whitney face shape functions as test
functions). This results in

(Re + iωLe +
1
iω

DaT
�e
PeDa

�e
)je + Z12jm = e0, (7)

(Rm + iωLm +
1
iω

DaT
�m

PmDa
�m

)jm + Z21je = h0, (8)

where je = (jek ) and jm = (jmk ) are the arrays of DoFs
corresponding to the fluxes of Je and Jm through the faces
of the mesh, respectively, e0 = (e0k ) and h0 = (h0k ) are
the DoFs corresponding toEext andHext , respectively. Sparse
resistance matrices Re and Rm are the only matrices that
depend on material parameters. Their coefficients are:

Rehk =
∫
�e

ρe(r)wh(r) · wk (r)d�, (9)

Rmhk =
∫
�m

ρm(r)wh(r) · wk (r)d�, (10)

where wk is the face shape function related to the kth face
of the mesh of �e or �m. Other matrices in (7) and (8) are
defined in [28] and are with coefficients not depending on
material parameters.

Equations (7) and (8) are obtained from the discretization
of the integral continuum equations (1) and (2), where je and
jm have been chosen as unknowns. However, different choices
of the unknowns are possible, as that ones described in [30]
or [31], which lead to alternative VIE methods [25], [26].
Moreover, depending on the kind of EMproblem to be solved,
many techniques can be applied to improve the numerical
properties of the final system [30], avoid the numerical issues
common to IE methods (e.g. breakdown in frequency) [32],
[33], and strongly enforce the div–free condition of the cur-
rent density [34]. For the sake of simplicity, these methods
(which mostly require a change of basis and a projection
of (7) and (8) into a new set of equations [34]) are not
discussed here. However, any numerical technique which
preserves the structure of (7) and (8) can be applied without
compromising the following discussion.

B. PARAMETRIC PROBLEM
The deterministic VIE problem is now transformed into a
parametric problem. Let�a = �e∪�m be the active domain
consisting of K sub–domains �k , with k = 1, · · · ,K , where
the electric and magnetic resistivity are piecewise constant
functions equal to ρ̄ek and ρ̄mk in each sub–region �k , i.e.
ρe(r) = ρ̄ek and ρm(r) = ρ̄mk with r ∈ �k . Thus, (7) and (8)
can be recast into a unique matrix system

[R+ U]x = b, (11)

where U, x, and b are defined independently of the subdivi-
sion of �a:

x =
[
je
jm

]
, b =

[
e0
h0

]
, (12)
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U =

iωLe + 1
iω

DaT
�e
PeDa

�e
Z12

Z21 iωLm +
1
iω

DaT
�m

PmDa
�m

 .
(13)

The resistance matrix R is given by

R =
K∑
k=1

ρ̄kRk , (14)

with

ρ̄kRk =

[
ρ̄ekRek 0

0 ρ̄mkRmk

]
, (15)

whereRek andRmk are defined as in (9) and (10) by setting a
value of the electric and magnetic resistivity equal to 1 in the
kth sub–region and 0 elsewhere. For the sake of simplicity and
with a slight abuse of notation, the general resistivity ρ̄k equal
to ρ̄ek in�e and to ρ̄mk in�m has been introduced in (14) and
(15).

Equation (11) can now be transformed into a paramet-
ric problem. Each resistivity value ρ̄ek and ρ̄mk (with k =
1, · · · ,K ) can be considered as a function of a small number
Q of parameters ξ1, · · · , ξQ stored in the vector array ξ , i.e.
ρ̄k = ρ̄k (ξ ). Each parameter ξk , with k = 1, · · · ,Q, varies in
the set [−1, 1]. Thus ξ varies in the set4 = [−1, 1]Q, i.e. the
Q–dimensional master hypercube. Therefore, the parametric
EM problem is ruled by[ K∑

k=1

ρ̄k (ξ )Rk + U
]
x(ξ ) = b. (16)

If ρ̄k are modeled with a given Probability Density Func-
tion (PDF), anMCmethod can be applied to extract stochastic
information of some quantity of interest. Therefore, (16) must
be solved for each MC sample. Thus, due to the slow conver-
gence of the MC approach, this method usually results in a
prohibitive computation time. Moreover, if the assumption
on the PDF of the resistivity changes, the MC simulation
must be performed again. In section III, an alternative method
which drastically reduces the computation time required by
the stochastic analysis is proposed.

As shown by many works in the literature [16], [35], [36],
low–rank compression techniques can be efficiently applied
to integral equation methods. Indeed, although fully popu-
lated, matrix U contains low–rank off-diagonal blocks that
make U compressible in some sense. In this regard, many
toolboxes based on different kinds of low–rank matrix rep-
resentation are available, e.g. Hierarchical Off–Diagonal
Low–Rank (HODLR) [37], Hierarchical–Semi–Separable
(HSS) [38]–[41], and Hierarchical H and H2 [22] format.
Such methods based on hierarchical matrices allows for rep-
resenting U in a suitable data–sparse format that stores its
rank–deficient blocks by computing a reduced number of
entries only. It should be noted, however, that in (16) a
sparse matrix is summed up a dense matrix, therefore the
chosen low–rank library must support the representation of

sparse matrices in hierarchical format and the matrix–matrix
addition in hierarchical–matrix arithmetic. In this work,
the highly optimized HLIBPro library based on H–matrix
representation (andH2–matrices for the construction of clus-
ter bases) is adopted [22]. However, other choices are also
possible [42]–[44].

III. STOCHASTIC VIE METHOD
The key idea is not to completely avoid the use ofMC, which,
beyond its slow convergence, is a general and robust method.
Instead, the goal is to drastically reduce the computational
effort of the problem and finally apply MC to a simple
equation. At this purpose, a parametric model order reduction
is first applied to (16) and then a spectral expansion is applied
to the reduced order model. Finally, MC is applied to the
spectral expansion with a negligible computational effort.
In the following, these three steps are described.

A. PARAMETRIC MODEL ORDER REDUCTION
The reduced parametric model of (16) is constructed by using
an iterative approach based on Parametric Model–Order
Reduction [18], [19]. In this paper, an enhanced version of
the algorithm proposed in [17] is adopted. In [17], a greedy
algorithm [45] and a (dense) grid obtained as the Cartesian
product of Gaussian Points of Legendre polynomials were
adopted for the construction of the reduced order model,
incurring in the curse of dimensionality problem. In this work,
a random–based method for the construction of the reduced
order model is used instead, thus avoiding the problem of
the curse of dimensionality and significantly accelerating the
algorithm without loosing accuracy, as shown in section IV.
Moreover, the use of a random–based approach allows for
improving the robustness of the PMOR algorithm, avoid-
ing stagnation problems [27]. Such accelerated procedure
is reported in Algorithm 1 and thoroughly discussed in the
following.

According to the PMOR Algorithm 1, at step 0, the pro-
jection matrix V0 is initialized to the empty set and the
index c, counting the number of iterations of the algorithm,
is initialized to 1.

Then, at step 1, the parametric problem ruled by (16)
is solved in H–arithmetic for a given choice of ξ , which
is initialized to zero, i.e. ξ = 0, at the beginning of the
algorithm.

At step 2, the projection matrixVc is evaluated by applying
a Gram-Schmidt orthogonalization (GSO) to the set of vec-
tors made of x(ξ ) (i.e. the solution of the parametric problem
obtained at step 1) and columns of Vc−1:

Vc = GSO([Vc−1, x(ξ )]). (17)

Columns of Vc are orthonormal basis vectors of the space
spanned by all the solutions obtained at step 1. Thus, Vc is a
Nx × c orthonormal matrix, where Nx is the dimension of the
parametric problem (i.e. the dimension of x(ξ )).

At step 3, the parametric reduced model Mc is finally
constructed by projecting (16) onto the space spanned by the
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Algorithm 1 PMOR Algorithm
Input: MatricesU andRk inH–format and the functions

ρ̄k (ξ ), (with k = 1, · · · ,K )
Set V0 = ∅ //{0}
Set c = 1
Set ξ = 0
Set r = +∞
Set Nrand (e.g. Nrand = 10)
Set a desired value of η (e.g. η = 10−3)
while r > η do

Find the solution x(ξ ) of (16) inH–arithmetic:
x(ξ ) =

[∑K
k=1 ρ̄k (ξ )Rk +U

]
\ b. //{1}

Update the orthonormal basis of dimensionMc:
Vc =GSO([Vc−1, x(ξ )]) //{2}

Generate the reduced order model Mc (in H–
arithmetic):

Ûc = VT
c UVc,

R̂ck = VT
c RkVc, with k = 1, · · · ,K //{3}

Generate Nrand random values of ξ ∈ 4 //{4}
for h = 1, · · · ,Nrand (parallel) do

Select the hth random point ζ h
Find the solution x̂(ζ h) of the reduced order prob-
lem (18) and then evaluate x̃(ζ h) = Vcx̂(ζ h) //{5}
Evaluate the residual:

r ′h =

∥∥∥∥[ K∑
k=1

ρ̄k (ζ h)Rk + U
]
x̃(ζ h)− b

∥∥∥∥ / ‖b‖
//{6}

end for
Find M ∈ [1, · · · ,Nrand ] such that

r ′M = max(r ′h,with h = 1, · · · ,Nrand )
Set r = r ′M
Set ξ = ζM //{7}
if r > η then

Set c = c+ 1
end if

end while
Output: Reduced order modelMc consisting of Ûc and
R̂kc , with k = 1, · · · ,K , and the projection matrix Vc

columns of Vc, i.e.[ K∑
k=1

ρ̄k (ξ )R̂ck + Ûc

]
x̂(ξ ) = b̂c, (18)

where:

b̂c = VT
c b, (19)

Ûc = VT
c UVc, (20)

R̂ck = VT
c RkVc. (21)

Ûc and R̂ck (with k = 1, · · · ,K ) are square matrices of
dimension c× c, b̂ is a vector array of dimension c, and x̂(ξ )
is the solution ofMc for a given choice of ξ .

It is worth noting that Ûc and R̂ck are usual uncom-
pressed matrices (of small dimension), whereas U and Rk
are compressed H–matrices. Thus, matrix–matrix multipli-
cation in (20) and (21) must be performed in H–arithmetic.
Therefore, the chosen low–rank library must support H
matrix–vector multiplication, which is indeed supported by
HLIBPro.

A parametric reduced order model Mc of dimension c is
now constructed. This model of reduced dimension allows for
obtaining an approximate solution of the original parametric
problem (16). Indeed, when x̂(ξ ) is obtained by solving (18),
an approximate solution of (16), i.e. x(ξ ) ' x̃(ξ ), is given by

x̃(ξ ) = Vcx̂(ξ ). (22)

In the following steps of the algorithm, Mc is tested against
a selected number Nrand (e.g. Nrand =10) of random values
of ζ ∈ 4 to check if the reduced model actually provides
an accurate approximation of the original parametric prob-
lem (16).

Thus, at step 4, random points ζ h ∈ 4 with ζ h =
1, · · · ,Nrand are generated and, at step 5, (18) is solved for
each value of ζ h, and the approximate solutions x̃(ζ h) are
evaluated according to (22).

Then, at step 6, the accuracy of each approximate solution
x̃(ζ h), with h = 1, · · · ,Nrand , is tested by evaluating the
related hth residual (inH–arithmetic) as

r ′h =

∥∥∥[∑K
k=1 ρ̄k (ζ h)Rk + U

]
x̃(ζ h)− b

∥∥∥
‖b‖

. (23)

If for each point ζ h, the residual r
′
h is smaller than the required

tolerance η, then the algorithm stops and the reduced order
modelMc of dimension c is obtained. Instead, if r ′h is greater
than η for some points of ζ h, the one which maximizes the
value of the residual is chosen as the next candidate of a
further iteration of the algorithm.

Thus, at step 7, ξ is set equal to the random point ζM which
maximizes the residual r . Then, if r > η, the value of the
counter c is updated (i.e. c = c+1) and the algorithm restarts
from step 1. At each iteration of Algorithm 1, the reduced
order model is not re–constructed from scratch. Instead, only
the new information obtained from the solution of (16) for
a new selected random point is added to Mc−1, resulting
intoMc. It is worth noting that, thanks to the Gram-Schmidt
orthogonalization, only the orthogonal components of the
new solution (i.e. the new informations) are added toMc.
The dimension c of the reduced order model Mc is

generally much smaller than Nx (i.e. the dimension of the
original parametric problem). Thus, in the context of stochas-
tic analysis, an MC approach can now be performed by
solving the reduced order model Mc for each sample ξh,
with h = 1, · · · ,NMC and NMC is the number of MC
samples. The adoption of a PMOR strategy for uncertainty
quantifications has been already proposed for different kinds
of problems [46]–[49]. However, since the MC method
exhibits aO(1/

√
NMC ) convergence rate, when the stochastic
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analysis requires a high accuracy, the value of NMC grows
significantly, and therefore also the computation time, using
the parametric reduced-order model.

In section III-B, with the aim of further reducing the com-
putational cost required by the stochastic analysis, a spectral
approximation is applied to the reduced order modelMc.

B. SPECTRAL APPROXIMATION
Let us now assume that a given quantity of interest, w(ξ ),
is obtained as a function of x(ξ ) (i.e. the solution of the
parametric problem (16)), as

w(ξ ) = F(x(ξ )). (24)

For instance, w(ξ ) can be the electric or the magnetic field
components in a given target point, the joule losses, the equiv-
alent impedance of a device (which is the case of the induction
cookware considered in section IV-B), etc. All these quanti-
ties can be directly obtained from x(ξ ) by applying a proper
operator here defined as the continuous function F(·).
A spectral approximation can be then applied and reads [7]

w(ξ ) =
∑
|α|≤P

wαψα(ξ ), (25)

where wα is the projection of w(ξ ) onto ψα(ξ ), i.e.

wα =
∫
4

w(ξ )ψα(ξ )dξ . (26)

In (26), α = (α1, · · · , αQ) is a multi–index of Q elements
with |α| = α1 + · · · + αQ, and

ψα(ξ ) = ψα1 (ξ1)ψα1 (ξ2) · · ·ψαQ (ξQ−1)ψαQ (ξQ), (27)

in which ψp, with p = 0, · · · ,P, are the first P+ 1 Legendre
polynomials defined in [−1, 1]. Functions ψα , with |α| ≤ P,
form a basis of all polynomials in Q variables and of degree
smaller or equal to P, with dimension

Npol =
(
P+ Q
P

)
. (28)

Starting from the reduced order model Mc (i.e. the out-
put of Algorithm 1), the spectral approximation of w(ξ )
shown in (25) can be obtained with the non–intrusive method
described in Algorithm 2.
According to Algorithm 2, at step 8, a Q–dimensional

grid defined as χ is constructed. For the moment, this grid is
assumed to be the Cartesian product of Q sets of P Gaussian
points of Legendre polynomials resulting in Nχ = PQ grid
points. However, as discussed in the following, other choices
of χ are possible. The points of the grid are indicated as ζ h,
with h = 1, · · · ,Nχ . At step 9, the reduced order model
obtained as output of Algorithm 1 is solved for all the points
of χ . Thus, for each solution x̂(ζ h), with h = 1, · · · ,Nχ ,
the approximate solution x̃(ζ h) is obtained from (22). At step
10, according to (24), an approximation ofwh(ζ h) is obtained
and then stored in the array w = (wh), with h = 1, · · · ,Nχ .

Algorithm 2 Spectral Approximation Algorithm

Input: Reduced order model Mc consisting of Ûc and
R̂kc , with k = 1, · · · ,K , and the projection matrix Vc
Construct χ // {8}
for h = 1, · · · ,Nχ (parallel) do
Extract the hth grid point ζ h of χ
Find the solution x̂(ζ h) of the reduced order
problem (18) and then evaluate x̃(ζ h) =

Vcx̂(ζ h) // {9}
Evaluate the approximated quantity wh(ζ h) '

F(x̃(ζ h)) // {10}
Store wh in the vector array w = (wh)

end for
for |α| ≤ P (parallel) do
Set wα = 0
for h = 1, · · · ,Nχ
do
wα = wα + whWhψα(ζ h) // {11}

end for
end for
Output: Spectral approximation of w(ξ )

Finally, at step 11, the αth spectral projection of w(ξ ) is
approximated by numerically integrating (26) with a Gaus-
sian quadrature rule in the grid points of χ :

wα =
Nχ∑
h=1

whWhψα(ζ h), (29)

where Wh is the weight related to the hth Gauss point, with
h = 1, · · · ,Nχ .
The two for–loops in Algorithm 2 (as well the one of

Algorithm 1) can be executed in parallel by the workers
of multi–core computers or clusters. However, due to the
curse of dimensionality, the number of points of χ (i.e.
Nχ = PQ) exponentially increases with the dimension Q.
Therefore, the computation time required by the for–loops in
Algorithm 2 significantly increases withQ, even with a paral-
lelized for–loop. A (partial) solution to this problem consists
in replacing the Gaussian grid χ with a sparse grid χ∗ [7].
Sparse grids have been introduced as a computationally more
efficient method of integrating multidimensional functions.
The Gaussian grid χ is obtained as a (complete) tensor prod-
uct of Q sets of Gaussian points, whereas the sparse grid χ∗

is obtained as a much smaller subset of the tensor product.
The sparse grid MATLAB R© toolbox in [50] based on the
Clenshaw-Curtis rule is used in the implementation. Different
kinds of quadrature rules can however be used [51]. The
number of points of the sparse grid for this rule is

Nχ∗ ≈
2LQL

L!
, with Q� 1, (30)

where L denotes the level of the sparse grid [7]. Moreover,
unlike to the Gauss–Legendre points, the Clenshaw-Curtis
points are mostly located on the boundary of the grid. In such

163924 VOLUME 7, 2019



R. Torchio et al.: Fast Uncertainty Quantification in Low Frequency EM Problems by an IE Method

a way the spectral approximation explores the boundary of
4 which usually holds useful information of the parametric
problem.

C. MONTE CARLO ANALYSIS
The procedure described above is completely deterministic.
Let us now assume that the interest is to quantify the uncer-
tainty of w deriving from the uncertainty of the material
parameters (i.e. ρ̄k , with k = 1, · · · ,Q). MC analysis can
be efficiently carried out by using the spectral approximation
of w. NMC Monte Carlo samples ξh, with h = 1, · · · ,NMC ,
are generated according to the Probability Density Func-
tion (PDF) of each hth parameter. Then, w(ξh) is efficiently
evaluated by using (25). Thus, even when NMC is very large
(e.g. NMC > 106), the whole computational effort can be
reasonably addressed. In this manner unprecedented levels of
accuracy in the stochastic analysis when random variables are
correlated can be achieved. Moreover, as discussed in [17],
a further advantage of the proposed method is the completely
independence on the PDF of the material quantities. Further-
more, the case of correlation between the material parameters
can be considered as well.

Finally, a significant advantage over other methods pro-
posed in the literature is that the spectral approximation of w
can be adopted assuming different PDFs of the Q parameters
without re–running Algorithm 1 and Algorithm 2.

IV. NUMERICAL RESULTS
The Stochastic–PMOR–VIE algorithm was implemented in
MATLAB R© and FORTRAN coupled with the C interface of
HLIBPro library. In this section, an analytical problem and a
industrial test case are considered. Simulations were run on a
Linux machine equipped with a Xeon E5-2643 v4 processor
(dual 6-core/12-thread, @3.40 GHz) and 512 GB RAM.

A. MULTI–SHELL SPHERE
In order to validate and test the performance of the proposed
method, the case of a dielectric multi–shell sphere consisting
of 5 concentric shells is considered (Fig. 1). The external
radius of the shields are 1 m, 0.8 m, 0.6 m, 0.4 m, and 0.2 m,
respectively. The thickness of each layer is 0.1 m. The sphere
is excited by an external plane wave Eext (r) = e−ik0 zux ,
where k0 = 2π f

√
ε0
µ0

and f = 5 MHz frequency.
The real and the imaginary part of the electric permittivity

of each layer is considered to be an aleatory variable. Thus,
the electric permittivity of the kth layer, with k = 1, · · · , 5,
is given by

εrk =<(εrm,k )+ξ2k−1<(1εrk )+ i
(
=(εrm,k )+ξ2k=(1εrk )

)
,

(31)

where the mean values and the variation ranges of the real and
imaginary parts are given in Table 1. Thus, for this analytical
case, the number of parameters is Q = 10 (i.e. the size of
ξ ). Two different cases are considered: 1) the real and the
imaginary parts of the permittivity values are considered as

FIGURE 1. Slice view (3/4 of multi–shell sphere model).

TABLE 1. Permittivity values for any shell.

10 statistically independent aleatory variables with uniform
PDFs in the ranges defined by Table 1 (uncorrelated case);
2) the same uniform marginal PDFs are assumed for the
10 aleatory variables and a Gaussian copula with correlation
matrix C, with non–zero entries

C(k, k) = 1, with k = 1, · · · , 10,

C(1, 6) = C(6, 1) = −0.7250,
C(9, 10) = C(10, 9) = −0.8023, (32)

is introduced (correlated case) [52].
The spectral approximation procedure described in

section III-B is applied to the active power losses generated in
the dielectric shells. Thus, in this analytical case, the quantity
of interest introduced in (24) is evaluated as

w(ξ ) = F(x(ξ )) =
1
2
<

(
x(ξ )TRx(ξ )

)
.

Different (approximated) sets of random samples of w
consisting of NMC = 10,000 values are extracted from the
Stochastic–PMOR–VIE algorithm: sets FMC−c, with c =
2, · · · , 13, are obtained by directly applying the MC method
on the reduced order model Mc (as described at the end
of section III-A); sets FSP−c are obtained by running an
MC method on the spectral approximation (25) of order
P = 5 starting from the reduced order model Mc with
c = 2, · · · , 13. Moreover, the Reference set FRef is obtained
by running anMCmethod on theMie solution of the problem
implemented in the free MATLAB R© tool available in [53].

Fig. 2 and Fig. 3 show the PDFs of w for the uncorrelated
and correlated cases, respectively. Such PDFs are extracted
from the sets of random samples described above. With the
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FIGURE 2. PDF of w for the uncorrelated case.

FIGURE 3. PDF of w for the correlated case.

aim of allowing a fair comparison, the same set of NMC
samples is adopted for all the MC simulations (i.e. one set for
the uncorrelated case, and another set based on the correlation
matrix C for the correlated case). Fig. 2 and Fig. 3 show a very
good agreement between the PDFs for both the correlated
and uncorrelated case. Moreover, even if only two correlation
coefficients have been introduced between the parameters,
a significant difference between the uncorrelated and corre-
lated cases can be noted.

Fig. 4 shows the PDFs ofw for the correlated case obtained
from the spectral approximation applied toM13 for different
sets of random samples with NMC = 102, 103, · · · , 107.
It can be seen that when high accuracy is required a large
number of random samples NMC is needed, which can be
easily handled by the proposed procedure.

Fig. 5 (a) shows the convergence of Algorithm 1 pro-
posed in this paper (random PMOR) and the convergence
of the greedy method introduced in [17] (greedy PMOR).
When tested against 10 random points ξh ∈ 4, with k =
1, · · · , 10, the reduced order model obtained from the ran-
dom method and the one obtained from the greedy algo-
rithm of [17] produce equivalent results (values differ less
than 0.1% in the parametric solution and show the same
accuracy when compared to the exact solution of (16)),
demonstrating that the random approach does not affect the
accuracy.

FIGURE 4. PDF of w for the correlated case obtained from the spectral
approximation for different sets of random samples with NMC = 102,
103, . . . ,107.

FIGURE 5. (a) Residual r of Algorithm 1 for iterations c = 2, . . . ,13
obtained from the proposed random and greedy PMOR methods.
(b) Kolmogorov Smirnov statistic (distance) between the set FMC−c , with
c = 2, . . . ,13, and the reference set FRef for the uncorrelated and
correlated cases.

Fig. 5 (b) shows the value of the Kolmogorov–Smirnov
statistic Dn [54], which is a measure of the distance between
the two empirical distribution functions obtained using the
analytical solution and the (random–based) PMOR method.
The null hypothesis that the corresponding random samples
come from different distributions is always rejected (at 5%
significance level), except for c = 2.
To quantify the size of the error introduced by the steps

of the algorithm, 10 samples ξ k , with k = 1, · · · , 10, for
which the value ofw goes from theminimum to themaximum
(with respect to FRef ) are selected. Fig. 6 (a) shows the value
of wk (where k = 1, · · · , 10, denotes the extracted sample
ξ k ) obtained from FRef (Reference), FMC−13 (MOR), and
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FIGURE 6. Values of w obtained from the MIE, H Full–VIE, PMOR, and spectral approximation for 10 selected ξ samples (a). Errors
introduced by H Full–VIE (b), PMOR (c), and spectral approximation (d).

TABLE 2. Computational time for the case of the multi–shell sphere.

FSP−13 (Spectral) together with the values obtained from the
solution of (16) in H–arithmetic (Full–VIE). In the other
plots of Fig. 6, the errors introduced by the H–VIE method,
PMOR, and the spectral approximations are shown. It can be
observed that, even if small, the largest error is introduced by
theH–VIE discretization. Instead, the PMOR and the spectral
approximation generate errors of orders of magnitude smaller
than the H full–VIE one. The VIE model of the multi–shell
sphere consists of 12,960 DoFs. Thus, the storage of the
full (uncompressed) parametric VIE system would require
∼ 2.7 GB. Instead, thanks to the use of HLIBPro library,
the compressed system requires ∼ 0.86 GB (i.e. 32% com-
pression ratio) introducing a maximum error in the solution
less than 1%. It is worth noting that the compression ratio
would significantly decrease with the increase of the number
of DoFs [16].

In this case study, due to the large number of random
variables, the use of a sparse grid χ∗ is mandatory. Indeed,
because of the curse of dimensionality, the use of a dense
Gaussian grid χ with P = 5 gauss points would lead to Nχ =
PQ = 510 = 9,765,625 grid points, resulting in a prohibitive
computation time. Instead, for Algorithm 2, a sparse grid χ∗

with only Nχ∗ = 8,761 grid points was used. In Table 2,
the computation time required by the different steps of the
method are reported for the case c = 13 and NMC = 106.

FIGURE 7. Mean and standard deviation of the electric in [V/m].

FIGURE 8. Mean and standard deviation of the magnetic field
magnitude [A/m].

Table 2 shows that the major computational effort is due to
the solution of (16), which is solved for 13 selected choices
of ξ during Algorithm 1 by means of an H–LU precondi-
tioned GMRES solver [55] which requires ∼ 4.1 s. The
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FIGURE 9. Axisymmetric VIE model of the induction cookware. Dimensions are in mm. a) Stainless Steel (1), b) Aluminum (pot),
c) Magnetic Steel, d) Stainless Steel (2), e) External coil, f) Ferrite (flux concentrator), g) Aluminum (shield).

remaining part of the computation time is mostly due to
the (relatively) high dimensionality of the problem, which
requires a (relatively) large amount of grid points with Algo-
rithm 2. The timings required to generate FMC−13 and FSP−13
(consisting of NMC = 10,000 samples) are instead ∼ 19 s
and ∼ 0.27 s, respectively. It is noticeable that the spectral
approximation drastically reduces the time required by the
stochastic analysis with respect to the direct application of
MC toM13. Moreover, this gain further increases when NMC
grows (i.e. when an higher accuracy is required), and the same
spectral approximation can be used with different choices
of the PDF and correlation of the parameters. For the sake
of comparison, the time required by the direct application
of a (non–parallelized) MC method on (16) in H–arithmetic
would require ∼ 4.1 · 10,000 = 41,000 s, whereas, in usual
arithmetic (uncompressed case) ∼ 140 · 10,000 = 140,000 s
would have been required. The time required for the gen-
eration of FRef (MC with 10,000 on the Mie solution) is
∼ 272 s. ACAplus method has been adopted for the low–rank
compression, whereas the compression tolerance is set equal
to 10−6, the tolerance for H–LU is 10−5 and admissibility
value is equal to 2 (see [16] for more details concerning these
parameters).

Finally, the proposed algorithm can be adopted also for the
evaluation of stochastic information related to the EM fields
in the whole 3–D space. Fig. 7 and Fig. 8 show the mean
and the standard deviation of the electric and magnetic field
magnitude in the z = 0 plane obtained as post–processing
from the Stochastic–PMOR–VIE algorithm.

B. INDUCTION COOKWARE
As a more applicative test case, uncertainty quantification in
the induction cookware presented in [29] is considered.

In this kind of application the power electronic supply
consists of ac/dc rectifier, a bus filter, and a resonant inverter.
In resonant inverters zero–voltage or zero–current switch-
ing are attained when the R–L–C circuit, representing the
induction system and the matching capacitance, is resonat-
ing. In this condition, power switching losses are minimized
enabling high frequency operations, with limited size and
cost of the device. In this framework, the analysis of the

TABLE 3. Material parameters of the induction cookware.

equivalent impedance of the coupled inductor-vessel system
becomes mandatory in order to obtain an optimal design of its
supply system as discussed in [29]. Therefore, the proposed
Stochastic–PMOR–VIE method can been adopted to investi-
gate the effects of the uncertainties of the material parameters
on the value of the equivalent impedance.

In order to exploit the axial–symmetry of the EM problem,
a 3–D VIE model of the induction cookware has been first
created. Problem unknowns have been then constrained by
using the axial–symmetry condition in order to reduce the
number of DoFs of the problem. The geometry of the problem
is completely described by Fig. 9 where layers a, b, c, and d
constitute the bottom part of the pot, layer e is the external
current–driven coil (the problem excitation), f is themagnetic
flux concentrator, and g is the shield. In Table 3, the material
parameters of the various parts of the device are given with
their uncertainties. Themaximum values of the conductivities
are that ones given in [29], whereas the minimum values
are chosen assuming that the temperature (which can reach
different values in the various parts of the device) attains
the maximum value of 230◦C. The average value of the
permeability is again that one in [29] and a 25% uncertainty
is assumed (consistent with most of the data sheets provided
by ferromagnetic producers).

Thus, for this case, the number of parameters is Q = 7 and
the uncertain material quantities of Table 3 are considered
as 7 aleatory variables. The same uniform marginal PDFs
are assumed for any aleatory variable and a Gaussian copula
with correlation matrix C is introduced [52]. C has non–zero
off–diagonal entries equal to 0.5 for the 5 parameters which
model the uncertainties of materials a, b, c, and d indicated
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FIGURE 10. Real part of the PDF of w=Zeq obtained from Fcom, FMC ,
FSP−4, and FSP−4 − 106.

in Fig. 9, therefore modeling the correlation due to the tem-
perature.

The frequency of the problem is set to 20 kHz and the
extracted quantity of interest is the equivalent impedance
w(ξ ) = Zeq(ξ ) of the device at the coil terminals. An uniform
(external) current flows in the external coil. Different sets of
random samples of w(ξ ) are extracted from the Stochastic–
PMOR–VIE algorithm. Unlike the case of the sphere, for
this case the dimension of the reduced order model obtained
from Algorithm 1 is kept constant and equal to c = 7 with
a final residual of r = 1.82 · 10−4. Then, FMC is obtained
by directly applying the MC method on the reduced order
model M7. Instead, sets FSP−s are obtained by running an
MC method on (25), i.e. the spectral approximation (25) of
order s = 2, · · · , 6. Moreover, with the aim of comparing the
results obtained from the Stochastic–PMOR–VIE algorithm
with a different method, the set of random samples Fcom is
obtained by applying MC on an axisymmetric FEM simula-
tion performed with the COMSOL R© commercial software.
All the sets described above have been generated from the
same set of NMC = 10,000 samples ξ . Also for this case,
ACAplus method has been adopted for the low–rank com-
pression, whereas the compression tolerance is set equal to
10−3, the tolerance forH–LU is 10−2 and admissibility value
is equal to 2.

Fig. 10 and Fig. 11 show the PDFs of the real and imaginary
parts of w = Zeq obtained from FMC , FSP−4, and Fcom.
Moreover, the PDFs obtained by running MC on the spectral
approximation of order 4 with a different set of (correlated)
random samples consisting of NMC = 106 is also shown
and indicated as FSP−4 − 106. As can been seen, the three
PDFs obtained from FMC , FSP−4, and Fcom show excellent
agreements. Instead, the more accurate PDF obtained from
FSP−4 − 106 is quite detached from the others. This shows
that when high accuracy is required the MC analysis should
be performed with a large amount of samples. As a further
remark, this high level of accuracy (i.e. large amount of MC
samples) is actually achievable with the proposed algorithm,
whereas the application of other traditional approaches would
easily result in a prohibitive computation time.

FIGURE 11. Imaginary part of the PDF of w=Zeq obtained from Fcom,
FMC , FSP−4, and FSP−4 − 106.

FIGURE 12. Kolmogorov–Smirnov statistic between FSP−s, with
s = 2, . . . ,6, and Fcom.

TABLE 4. Computational time for the case of the induction cookware.

Fig. 12 shows the Kolmogorov–Smirnov statistic, Dn,
between the sets FSP−s, with s = 2, · · · , 6, and Fcom. Numer-
ical results show an exponential convergence of the adopted
spectral approximation.

In Table 4 the computation time required by the different
steps of the algorithm is reported for the case s = 5. For the
sake of comparison, the timings required for the generation of
Fcom and FMC (consisting of 10,000 samples) are ∼ 32,160
s and ∼ 359.0 s, respectively. Instead, the time required for
the generation of FSP−4 (NMC = 10,000) is only ∼ 0.17 s.
Likewise the multi–shell sphere, to alleviate the problem of
the curse of dimensionality in Algorithm 2 a sparse grid of
Nχ∗ = 2,437 points was adopted.
The axisymmetric VIE model of the induction cookware

consists of 10,328 DoFs. Thus, the storage of the full para-
metric uncompressed VIE system would require ∼ 1.7 GB.
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Instead, thanks to the use ofHLIBPro library the compressed
system only requires 145MB (i.e. 8.9 % of the uncompressed
one). Thanks to the axisymmetric kernel, smoother than the
3–D one, a low compression ratio is attained in this test
case. Moreover, HLIBPro library allows for reducing the
computation time for the solution of (16) from 8.6 s (time
needed for the solution of the uncompressed case) to 1 s,
solved with aH–LU preconditioned GMRES.

V. CONCLUSIONS
A Parametric Model Order Reduction (PMOR) technique
combined with a spectral approximation approach has been
successfully applied to a Volume Integral Equation (VIE)
method for uncertainty quantification analyses. 3–D and
axisymmetric electromagnetic problems involving conduc-
tive, dielectric, and magnetic media can be considered. The
electromagnetic media can exhibit complex material prop-
erties, whose real and imaginary parts can be considered as
independent random parameters.

The computational cost and the memory requirement of
the whole Stochastic–PMOR–VIE algorithm is headed by the
solution of only few deterministic problems and a low–rank
approximation technique based onH–arithmetic is adopted to
further reduce the overall computational effort. The adoption
of a random–based PMOR algorithm allows for avoiding the
problem of the curse of dimensionality during the construc-
tion of the reduced order model without loosing accuracy.
Moreover, sparse grids leads to a significant speed–up in the
interpolation for the spectral expansion. Thus, the problem
of the curse of dimensionality is alleviated and, with respect
to original algorithm proposed in [17], a significantly higher
amount of random parameters of the order of several tens can
be considered.

The proposed technique allows for both uncorrelated and
correlated problems. Moreover, the final spectral approx-
imation can be applied as is assuming different kinds of
probability distributions and correlations between the random
materials, without running the algorithm again.

Test cases demonstrate the accuracy and the efficiency of
the Stochastic–PMOR–VIE algorithm showing that a very
small dimension of the reduced order model is sufficient
to attain very high accuracy. In this regard, the comparison
between the numerical results of this paper and [17] suggest
that the application of PMOR to VIE methods leads to a
reduced order model of much smaller dimension with respect
the one obtained from PMOR applied to differential meth-
ods. Moreover, the exponential convergence of the spectral
approximation is observed in the numerical cases and the
errors introduced by the PMOR and the spectral approxi-
mation are smaller than that ones introduced by the H–VIE
discretization. The proposed approach is thus suitable for
the study of electromagnetic devices surrounded by large air
domains and/or with small air gaps.

With the aim of increasing the industrial applicability of
the proposed approach, future researches will investigate
the performances of the implemented stochastic code in the

case of high frequency problems. Moreover, other compres-
sion techniques based, e.g., on the Quantized Tensor Train
approach (which has already been efficiently applied to very
regular geometries and kernels such as the Boundary Element
Methods, but not yet to VIE method) will be the matter of
future researches.
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