
Received October 23, 2019, accepted November 6, 2019, date of publication November 11, 2019,
date of current version November 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952762

A Novel Semi-Autonomous Teleoperation
Method for the TianGong-2 Manipulator System
CHONGYANG LI , ZAINAN JIANG , ZHIQI LI , CHUNGUANG FAN , AND HONG LIU
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Corresponding author: Zainan Jiang (jiangzainan@hit.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1300400, and in
part by the National Natural Science Foundation of China under Grant 61803124.

ABSTRACT Semi-autonomous teleoperation based on Learning from Demonstration is an effective method
of remote operation of space manipulators, especially in the scenarios with limited communication and
repeated operation problems. However, the joint trajectories generated by those methods may not be
suitable for space manipulator control. In this paper, we present a novel semi-autonomous teleoperation
method, which has been used for the TianGong-2 manipulator system. The proposed method can not only
reproduce trajectories for the tasks according to the current environment, but also generate the smoother and
smaller joint control torques. To implement the method, we first collected kinesthetic demonstrations by the
space manipulator teaching platform as prior knowledge. Then, based on these kinesthetic demonstrations,
we designed the joint control commands with Dynamics Constraint Learning fromDemonstration algorithm.
We finally evaluated our method with the simulation and on-orbit experiment by locating the dexterous hand
to the pre-screwing bolt. Our results show a significant reduction of joint control torque fluctuations and
peak-to-peak values, and also can reduce energy consumption.

INDEX TERMS Learning from demonstration, linear quadratic tracking, space manipulator, teleoperation.

I. INTRODUCTION
In recent years, with the development of space technology
and robotic technology, space manipulators are used more
and more widely in space exploration missions, including
on-orbit servicing, space stations assembling, fueling, space-
craft on-orbit inspecting, and so on [1]–[5]. With the help
of space manipulators, not only the risks of extra-vehicular
working can be reduced, but also space exploration efficiency
can be improved greatly [6], [7]. Hence, space manipula-
tors have attracted much attention all over the world. Since
1990s, China has started the project of building and oper-
ating a permanent space station. On September 15, 2016,
the TianGong-2 manipulator system was launched with the
TianGong-2 space laboratory, to gain experience for on-orbit
servicing tasks using manipulators. Many on-orbit servicing
tasks were scheduled, including screwing off an electrical
connector, removing a multilayer covering and loosening
bolts using a hand drill [8]. As a result, it is necessary to
propose a proper control method to carry out the above
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tasks. Currently, there are some common methods of operat-
ing space manipulators, such as on-ground pre-programming
offline trajectory [9], on-orbit teleoperation [10], and on-
ground teleoperation [11].

However, their applications have been limited by some
shortcomings. For example, on-ground pre-programming
offline trajectory method has poor adaptability to the envi-
ronment. Even if the method is combined with vision infor-
mation [12] or laser information [9], it still works poorly
when the working condition is different from the expected.
For the on-orbit teleoperation method, operators must stay in
the spacecraft [13].

Compared with the other two methods, on-ground tele-
operation method could combine the human experience and
wisdom with the implementation capacity of space manipu-
lators [11], [14]. As an extension of human perception and
behavior, the method could be applied to the tasks under
expected or unexpected working conditions, especially by
increasing force [15] and visual [16] feedback. Using this
method, operators can operate space manipulators on the
ground. However, this method also suffers some limitations.
Firstly, large communication time-delay (about six seconds)
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and limited communication [17], [18] have a great effect on
the teleoperation process. Two solutions are proposed cur-
rently: a) to establish a dedicated communication link [19],
which can reduce the time-delay to tens of milliseconds,
and improve the transparency of teleoperation, but increase
the cost; b) to use the virtual reality simulation instead of
real space scenes [20], [21], which is cheaper but may be
dangerous, if there is a large difference between simulation
models and real space scenes. Secondly, the operator can only
complete one task in one teleoperation process, and thus has
to repeat the operation once again even if the task is similar
to the previous one. As a result, the on-ground teleoperation
method may increase the workload of the operator. Thirdly,
the required joint control torques and their fluctuations are
large. The phenomenon results from the fact that the manip-
ulator directed trajectories are a mapping of human arm tra-
jectories, and it is difficult for the operator to produce smooth
enough trajectories, especially when being fatigue.

The former two disadvantages of on-ground teleoperation
can be overcome by semi-autonomous teleoperation method.
This method is usually divided into two steps: the first step
is to collect the prior knowledge from human operators; and
the second is to reproduce Cartesian or joint trajectories based
on the actual state and the prior knowledge [22]. Loannis
Havoutis and Sylvain Calinon used this method in an under-
water ROV teleoperation context to assist the operator, and
completed the previously learned tasks autonomously when
the communication was limited [23].

To solve all the above three shortcomings, in this paper,
we present a novel semi-autonomous teleoperation method.
In this method, kinesthetic demonstrations could be col-
lected by the operator with the space manipulator teaching
platform. More importantly, based on those demonstrations,
space manipulators could obtain the smaller and smoother
joint control torques for the tasks by applying Dynamics Con-
straint Learning from Demonstration (DC-LfD) algorithm.
The smaller and smoother joint control torques can reduce
the energy consumption and make the manipulator joint
drivers work in a linear range, thus improving joint drives
output accuracy. More specifically, in our work, the space
manipulator teaching platform consists of virtual reality plat-
form and teleoperation device with the force feedback, and
the virtual reality platform includes the simulation models
of the TianGong-2 manipulator system and the expected
working environment. Compared with other Learning from
Demonstration methods, DC-LfD algorithm, presented in
this paper, not only reproduces task trajectories in the task
space [24]–[28], but also obtains the improved joint control
torques of the manipulator based on the current conditions.

The rest of the paper is structured as follows: in Section II,
we introduce the TianGong-2 manipulator system, the main-
tenance task unit and the space manipulator teaching plat-
form. In Section III, we present the novel semi-autonomous
teleoperationmethod and its keymethodology, DC-LfD algo-
rithm. In Section IV, based on the on-orbit servicing task
of the TianGong-2 manipulator system, a simulation and an

FIGURE 1. The TianGong-2 manipulator system.

experiment are carried out to verify the semi-autonomous
teleoperation method. The results are also analyzed and dis-
cussed. Finally, the paper is summarized in Section V.

II. PRELIMINARIES
In this section, we introduce the TianGong-2 manipulator
system, the maintenance task unit and the space manipula-
tor teaching platform. Among them, the TianGong-2 manip-
ulator system and the maintenance task unit are in the
space capsule for on-orbit servicing tasks, where the for-
mer is used to test the novel semi-autonomous teleoperation
method, and the latter provides tools and operation objects.
The space manipulator teaching platform is located on the
ground, and is used to collect kinesthetic demonstrations of
tasks.

A. THE TIANGONG-2 MANIPULATOR SYSTEM
The TianGong-2 manipulator system is developed for on-
orbit servicing tasks, andmainly consists of four components:

(1) A six degree of freedom (6-DoFs) lightweight manip-
ulator [29] with a five-fingered dexterous hand [30] and a
hand-eye camera which is mounted at the end of the manip-
ulator, as shown in Fig. 1 (a);

(2) An electrical cabinet including a center controller and
a power management system, as shown in Fig. 1 (b);
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FIGURE 2. The maintenance task unit.

FIGURE 3. The space manipulator teaching platform.

(3) An on-orbit teleoperation platform composed of a tele-
operation laptop, a space mouse and a data glove (Cyber-
glove), as shown in Fig. 1 (c);

(4) Two global cameras mounted at the ceiling of the space
capsule.

B. THE MAINTENANCE TASK UNIT
The maintenance task unit is composed of the tools and
operation objects, employed in the on-orbit servicing tasks.
It includes a spring, a hand drill, a multi-layer covering, two
bolts, and an electrical connector, etc., as shown in Fig. 2.

C. THE SPACE MANIPULATOR TEACHING PLATFORM
BASED ON VIRTUAL REALITY
In order to get kinesthetic demonstrations of tasks,
we design a space manipulator teaching platform. As shown
in Fig. 3 this platform consists of two parts, the master part
and the slave part.

The teleoperation device CyberForce (CyberGlove System
Inc., the USA) is employed as the master part, which can
track the 6-dimensional pose of the operator’s wrist with
the accuracy of 60µm and 0.09◦. The 3-dimensional force
feedback, of which the upper limit is 10N, can report the
operation conditions of the slave part and thus can help the
operator to adjust the operation strategy.

FIGURE 4. The virtual reality platform.

FIGURE 5. On-ground teleoperation system.

The slave part is the virtual reality platform designed by
Open Inventor Coin3D. As shown in Fig. 4, the virtual reality
platform includes the simulation models of the TianGong-
2 manipulator system, the maintenance task unit, the global
cameras and parts of the space capsule. The virtual real-
ity platform can also detect the collision during simulation,
with the method presented in [31]. Once a collision occurs,
the virtual reality platform will produce a virtual force, and
transfer it to the master part. Then, the operator can receive
the force feedback from CyberForce, and thus the safety of
the obtaining kinesthetic demonstrations is ensured.

III. METHODOLOGY
A. OVERVIEW
For the on-orbit servicing tasks, if using on-ground teleop-
eration directly, we have to face the problem of large time-
delay [18]. In the traditional solution, the operator needs to
operate the virtual manipulator in virtual reality environment
instead of operating the real space manipulator. And then, the
operation trajectories will be sent to the space manipulator
controller, to control the real manipulator [17]. The architec-
ture of the method is shown in Fig.5:

This method has three shortcomings: Firstly, the inaccurate
virtual reality environment would bring danger; secondly,
the operator has to repeat the operation once again even if
the tasks are similar to each other; thirdly, the required joint
control torques and their fluctuations are large.

To solve the above shortcomings, we present a novel semi-
autonomous teleoperationmethod for the TianGong-2manip-
ulator system in this section. In this method, the trajectories,
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FIGURE 6. The novel semi-autonomous teleoperation method.

from the operators operating the virtual reality, are treated as
the prior knowledge, and the manipulator reproduces the task
trajectory based on prior knowledge and the target position.
The frame of this method is shown in Fig.6. The semi-
autonomous teleoperation method can be divided into three
steps:

Step 1: Getting kinesthetic demonstrations of directed
tasks as prior knowledge. In this step, the space manipulator
teaching platform is used, and the tasks are carried out in the
virtual reality platform guided by CyberForce [32]. In addi-
tion, the recorded Cartesian trajectories of the manipulator
model are demonstrations of the task trajectory, and kines-
thetic demonstrations of the tasks can be calculated by them.

Step 2: Designing the joint control commands, with
DC-LfD algorithm. This step will be described specifically
later.

Step 3: Executing the joint control torques by the
TianGong-2 manipulator system.

The DC-LfD algorithm is the core algorithm of this semi-
autonomous teleoperation method, and it can be done in two
phases:
Phase 1: Gaussian Process-based Learning from Demon-

stration (GP-based LfD). In this phase, we firstly formulate
the trajectories based on the dynamical system theory, and
motion models are obtained. Then, for one task, with the
kinesthetic demonstrations obtained in Step 1, we train the
motion model by Gaussian process algorithm, and the model
parameters are obtained. Finally, the motionmodel is applied,
together with the positions and orientations of the target
and space manipulator, to reproduce the directed Cartesian
trajectory and its confidence intervals by Gaussian process
regression.
Phase 2: Trajectory-based controller. In this phase, at first,

we map the directed Cartesian trajectory from Phase 1 into
joint space, using the inverse kinematics model. Next,

according to the dynamics model of the manipulator,
we design the joint controller according to optimal control
theory, and obtain the appropriate joint control torques of
this task by the differential dynamic programming (DDP)
algorithm. Moreover, the confidence intervals will be the
boundary conditions.

These two phases are serially connected, that is, the outputs
of the Phase 1, the directed Cartesian trajectory and its confi-
dence intervals, are the inputs of the Phase 2. More details of
these twowill be illustrated in Section III.B and Section III.C,
respectively.

B. GAUSSIAN PROCESS-BASED LEARNING FROM
DEMONSTRATION
In this section, we present a Learning from Demonstration
algorithm, GP-based LfD. Compared with other similar algo-
rithms, this algorithm trains the motionmodel and reproduces
task trajectories by Gaussian Process. The pseudocode of the
GP-based LfD algorithm is shown in Algorithm 1.

In Algorithm 1, in order to ensure the coherence and clar-
ity of the section, we described the framework of the DC-
LfD algorithm. And the GP-based LfD algorithm is located
between the dash-dotted lines.

As shown in the pseudocode and Fig. 6, GP-based LfD
algorithm can not only expressmore complexmotions and the
influence of sensors noise, but also calculate the confidence
intervals of the reproduced trajectories, to provide inputs for
subsequent algorithms. The detailed process of this algorithm
is as follows:

1) FORMULATING THE TASK TRAJECTORIES AND
KINESTHETIC DEMONSTRATIONS
As shown in [33], the task trajectories can be formulated
into a first-order autonomous ordinary differential equation
according to the dynamical system theory. In addition, this
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Algorithm 1 Dynamics Constraint Learning from Demon-
stration

Input: kinesthetic demonstrations {(ξ i ∈ RD, ξ̇ i ∈

RD)|i = 1, . . . ,N}, mean function m(·), covariance func-
tion Ker(·, ·), noise ε ∼ N (0, σ 2I), initial position ξ∗0 ∈
RD, target position ξtarget ∈ RD, sampling period 1t ∈ R,
tolerable error Etol ∈ R
Initialize t ← 0, ξ ∈ RD×N and ξ̇ ∈ RD×N composed with

kinesthetic demonstrations
ξ̇ ← f (ξ) ∼ N (m(ξ ),K (ξ, ξ)) // training the motion
model
while abs(ξ∗t − ξtarget ) > Etol do
m(ξ∗t )←K(ξ∗t , ξ )· (K(ξ , ξ )+σ 2I)−1 · f (ξ ) //Ki,j(ξ , ξ ) =
Ker(ξi, ξj)
ξ̇
∗

t ← m(ξ∗t )
6(ξ∗t )← K(ξ∗t , ξ

∗
t ) + σ

2I-K( ξ∗t , ξ )· (K(ξ , ξ ) + σ 2I)−1·
K(ξ , ξ∗t )
ξ∗t+1← ξ∗t + ξ̇

∗

t ·1t
t ← t + 1
Store ξ∗t and 6(ξ∗t ) at each step t in ξ∗, 6(ξ∗)
end while
u∗ ← Trajectory-based controller (ξ∗, 6(ξ∗)) // calculat-
ing joint control commands
Return joint control commands sequence u∗

method is robust to spatial and temporal perturbations. Then,
the dynamical system equation is:

ξ̇ = f (ξ ) + ε (1)

where f : Rn
→ Rn is a nonlinear continuous and con-

tinuously differentiable function, and this function has only
one equilibrium point ξ̇

∗
= f (ξ∗) = 0. ε ∈ Rn is the

noise of the dynamical system, from inaccuracy of sensor
measurement, andwe assume that this noise is Gaussian noise
ε ∼ N (0, σ 2I). ξ ∈ Rn is the input state variable of the
function, and could be joint angles, Cartesian positions of the
manipulator’s end-effector, Cartesian positions and velocities
of the manipulator’s end-effector, etc. In addition, the differ-
ent ξ correspond to the different order of the equations f (ξ ).
In this paper, we encode both positions and velocities of the
manipulator’s end-effector in ξ [34].
In terms of the selected form of the input variables,

the kinesthetic demonstrations in this paper are the position
and orientation information of N given points on L trajecto-
ries. There are many methods to get kinesthetic demonstra-
tions, such as dragging the manipulator using the zero-force
control, visual detection, and so on.We used the spacemanip-
ulator teaching platform to obtain kinesthetic demonstrations.
On-ground operators manipulate the TianGong-2 manipula-
tor model in the virtual reality platform to complete the task
using the master device CyberForce. The Cartesian trajecto-
ries of the end-effector would be recorded, and the position
and orientation information of those trajectories would be
used to calculate the kinesthetic demonstrations of the task.

There are many advantages of this method, such as ease of
operation, adaptation human habits, safety, and so on.

2) REPRODUCING THE DIRECTED TRAJECTORIES AND
CONFIDENCE INTERVALS
In order to acquire the specific relationship of (1) by kines-
thetic demonstrations, we introduce Gaussian process in this
paper. Compared with other machine learning algorithms,
Gaussian process provides the outputs with probability dis-
tributions. It is a non-parametric model, and can be used to
describe complex and non-linear functions [35]. In addition,
Gaussian process can deal with the inaccuracy of sensor
measurements and errors resulted from imperfect demonstra-
tions. As the result, we use Gaussian process in Learning
from Demonstration framework to reproduce the directed
trajectories and their confidence intervals, which provide the
foundation for building Trajectory-based controller.

Kinesthetic demonstrations {(ξ i ∈ RD, ξ̇ i ∈ RD)|i =
1, . . . ,N} are obtained from L sample trajectories, and D
represents the dimension of each variable. Without consid-
ering observation noise, the kinesthetic demonstrations can
be treated as the training set of the motion model in Gaussian
Process. ξi indicates the input variable, and ξ̇ i represents the
corresponding directed output. Then we could get a joint
multivariate Gaussian distribution f (ξ ) as the motion model:

ξ̇ = f (ξ) ∼ N (m(ξ ),K (ξ, ξ)) (2)

where ξ ∈ RD×N and ξ̇ ∈ RD×N are matrixes, composed
with kinesthetic demonstrations. m(ξ ) ∈ RN is the mean
vector. K(ξ , ξ ) ∈ RN×N is the covariance matrix, and each
element Ker(ξi, ξj) of this matrix represents the covariance of
ξi and ξj. Ker(·, ·) is also called kernel function of Gaussian
process, and we choose the isotropic squared exponential
kernel function in this paper, defined as:

Ki,j=Ker
(
ξ i, ξ j

)
=

1

σ 2
f

· exp

(
−

(
ξ i − ξ j

)T (
ξ i − ξ j

)
2 · `2

)
(3)

where σf , ` ∈ R are the parameters of the isotropic squared
exponential kernel, and can be calculated by minimizing the
negative log marginal likelihood. Since the sum of multiple
independent Gaussian random variables is also Gaussian,
we can predict the output distribution of the input variable
ξ∗ with the prior distribution f (ξ ) as follows (we assume that
noise ε and ε∗ are the same):[
f (ξ)
f
(
ξ∗
) ]+ [ ε

ε∗

]
∼ N

([
m(ξ )
m(ξ∗)

]
,

[
K (ξ, ξ)+ σ 2I K

(
ξ, ξ∗

)
K
(
ξ∗, ξ

)
K
(
ξ∗, ξ∗

)
+ σ 2I

])
(4)

where I ∈ RN×N . Then, we can get ξ̇
∗
, based on (1) and (4):

ξ̇
∗
=
(
f
(
ξ∗
)
+ ε∗

∣∣ξ, ξ∗ ) ∼ N
(
m
(
ξ∗
)
, 6

(
ξ∗
))

(5)
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where m(ξ∗) and 6(ξ∗) are defined as the following
equations:
m
(
ξ∗
)
= K

(
ξ∗, ξ

)
·

(
K (ξ, ξ)+ σ 2I

)−1
· f (ξ)

6
(
ξ∗
)
= K

(
ξ∗, ξ∗

)
+ σ 2I

− K
(
ξ∗, ξ

)
·

(
K (ξ, ξ)+ σ 2I

)−1
·K

(
ξ, ξ∗

)
(6)

In this paper, the input variable is the position and orien-
tation of the trajectories, so we can set ξi = [xi, yi, zi, rxi,
ryi, rzi]. xi, yi, zi ∈ R are the coordinates of the simulated
manipulator’s end-effector in the Cartesian space, and rxi,
ryi, rzi ∈ R are the orientation components (RPY). And the
output variable is ξ̇ i = [ẋi, ẏi, żi, ωxi, ωyi, ωzi], representing
the linear velocities and angular velocities in Cartesian space.
Then, based on kinesthetic demonstrations, we used Gaussian
process to train the dynamical system (1), and obtained the
motion model of this task (a mapping from ξi to ξ̇ i). Because
the input and output variables of the system are both six
dimensions (multiple-input and multiple-output), to ensure
the independence of the output variables, each output vari-
able should be trained individually with all input variables
(multiple-input and single-output). Thus, themotionmodel of
this task is composed of six equations. We took the equations
of the velocity in the X direction as an example. In the
direction, the velocity part of kinesthetic demonstrations is
calculated by ẋi = (xi − xi−1) · Fs, where Fs ∈ R is
the sampling frequency of the virtual reality platform. Thus,
according to (2), we obtained the motion model of ẋ as shown
in (7):

fẋ(ξ ) ∼ N (mẋ(ξ ),Kẋ(ξ, ξ )) (7)

Then, for each input position and orientation ξt , we calcu-
lated the distribution of ẋt as shown in (8):

ẋt = fẋ
(
ξ t
)
+ εt ∼ N

(
mẋ
(
ξ t
)
, 6ẋ

(
ξ t
))

(8)

where mẋ(ξt ) and 6ẋ(ξt ) are defined as the following
equations:
mẋ(ξ t ) = Kẋ

(
ξ t , ξ

)
·

(
Kẋ (ξ, ξ)+ σ

2I
)−1
· fẋ(ξ )

6ẋ(ξ t ) = Kẋ
(
ξ t , ξ t

)
+ σ 2I

− Kẋ
(
ξ t , ξ

)
·

(
Kẋ (ξ, ξ)+σ

2I
)−1
·Kẋ

(
ξ, ξ t

)
(9)

where mẋ(ξt ) represents the mean of this distribution, and
6ẋ(ξt ) represents the covariance. By applying mẋ(ξt ), the
position of the next step along the X direction can be cal-
culated as follows:

xt+1 = xt + mẋ(ξ t ) ·1t (10)

where 1t ∈ R indicates the sampling period, which can be
determined in accordance with tasks.

Each position is calculated according to the last position.
By iterating (8) - (10) from a given initial state until reaching

the target position, we can reproduce the completely directed
trajectory along the X direction. With the same method and
process, we also could obtain the directed trajectory alone the
Y and Z direction. For orientation trajectories, the process is
the same except for the angular velocities ωxi, ωyi and ωzi of
the kinesthetic demonstrations as shown in (11):ωxiωyi
ωzi

 =
 0 − sin(rxi) cos(rxi) · cos(ryi)
0 cos(rxi) sin(rxi) · cos(ryi)
1 0 − sin(ryi)


·

 rzi − rzi−1
ryi − ryi−1
rxi − rxi−1

 · Fs (11)

As shown in (8), when we get the mean mẋ(ξt ), we also
can get the variance 6ẋ(ξt ). And then, we can calculate the
confidence interval based on confidence level. For instance,
in this paper, we set the confidence level as 68.27% (3-sigma
rule). Then, by iterating, we can get the confidence interval
of the completely directed trajectory, and it works as the
constraint of Trajectory-based controller in next phase.

C. TRAJECTORY-BASED CONTROLLER
In Section III.B, we reproduce the directed trajectory for
competing tasks by GP-based LfD algorithm. However, the
reproduced trajectories are all based on kinesthetic demon-
strations, which are from human operators. Thus, the trajec-
tories may not be smooth enough for manipulator control.
In fact, during collecting kinesthetic demonstrations by the
space manipulator teaching platform, operators have to pay
more attention to the current operation tasks, instead of
making demonstrations smooth. Additionally, it is difficult
for operators to sense and control whether the velocity and
acceleration of the human hand are smooth, especially after
working a long time. That would make the required joint
control torques and their fluctuations larger, and increase
energy loss and cause instability in control. In order to solve
this problem, we designed a trajectory-based controller. The
pseudocode is shown in Algorithm 2.

As shown in the pseudocode, due to the algorithm works
in joint space, the reproduced directed trajectories must be
mapped into the joint space at first. Then, we derive the
cost function and the state equation (the linearized dynamics
model of the manipulator), and formalize the problem of
designing the joint controller into an optimal control prob-
lem. Finally, we calculate the joint control torques, by the
DDP algorithm which can be used to solve the optimal
control problem. The confidence intervals in Section III.B
would become the boundary constraint of the optimal con-
troller problem. In order to obtain the batter joint torques,
we improve the joint controller by modifying the parameters
Q, R and Qf .

1) DYNAMICS MODEL OF THE MANIPULATOR AND
LINEARIZATION
According to [36], we can obtain that the manipulator
dynamics model, which can be formulated by the following
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Algorithm 2 Trajectory-Based Controller

Input: directed Cartesian trajectory ξ∗ ∈ RD×N and
confidence intervals 6(ξ∗) ∈ RM×N ,
control period 1T , manipulator
parameterModel.

Boundary← BuildBoundary(ξ∗, 6(ξ∗))
q← InverseKinematic(Model, ξ∗)
q̇, q̈← CalculateVelocityAndAcceleration(q)
Initialize Q, Qf , R, M← Qf , P← − Qf · [q(N , :), q̇(N ,
:)], i← N
Mcell{N}←M, Pcell{N}←P, flag← 0
while flag == 0 do
while i > 0 do
[A, B, Bia]← LinearDynamics(Model, q(i, :),
q̇(i, :), q̈(i, :))

Ṁ←M · B · inv(R) · B’ ·M-M · A- A’ ·M-Q
Ṗ ← - A’ · P +M · B · inv(R) · B’ · P-M · Bia +
Q · [q(i, :), q̇(i, :)]’

M←M- Ṁ ·1T , P← P- Ṗ ·1T
Mcell{i}←M, Pcell{i}←P
i← i− 1
end while
Initial i←0, q∗(0, :)← q(0, :), q̇∗(0, :)←(0, :),
q̈∗(0, :)← q̈(0, :)

while i < N + 1 do
[A, B, Bia]← LinearDynamics(Model, q∗(i, :),
q̇∗(i, :), q̈∗(i, :))

u∗(i)← -inv(R) · B’ ·Mcell{i} · [q∗(i, :), q̇∗(i, :)]’
-inv(R) · B’ · Pcell{i}

[q∗(i+ 1, :), q̇∗(i+ 1, :)]’← [q∗(i, :), q̇∗(i, :)]’
+ (A · [q∗(i, :), ∗(i, :)]’ + B · u∗(i) + Bia) ·1T

i← i+ 1
end while
ξ ← ForwardKinematic(Model, q∗)
if ξ in Boundary && u∗ is small enough then
flag← 1

else
flag← 0, update Q, Qf , R

end if
end while
Return joint control commands sequence u∗

equation:

H · q̈+ C
(
q, q̇, f x

)
= u (12)

where q, q̇, q̈ ∈ Rn represent the vectors of joint position,
velocity and acceleration of the space manipulator, respec-
tively, and n is the number of joints. u, f x ∈ Rn are vectors
of the joint control torques and external forces. H ∈ Rn×n is
the joint space inertia matrix, which is a symmetric, positive
definite matrix. C is the joint space bias force, and it is the
function of q, q̈ and f x . We linearize the dynamics model
based on (12), and the process is presented as follows:

When the space manipulator works in the free workspace,
and has no contact with the environment, we can set f x = 0.
Then (12) can be linearized by the first-order Taylor expan-
sion each sampling time, as the following equation shows:

u ≈ û

= H · q̈+ C
(
qi, q̇i

)
+
∂C (q, q̇)
∂q

·
(
q− qi

)
+
∂C (q, q̇)
∂ q̇

·
(
q̇− q̇i

)
(13)

We simplify (13), shown as follows:

a · q̈+ b · q̇+ c · q+ d = û (14)

where a, b, c, and d are defined as the following equations:

a = H

b =
∂C (q, q̇)
∂ q̇

c =
∂C (q, q̇)
∂q

d = C
(
qi, q̇i

)
− c · qi − b · q̇i

(15)

If s = [q̇, q]T is defined as the state variable, the state
equation can be derived from (14) and (15) as follows:

ṡ = A · s+ B · u+ Bia (16)

where A, B, and Bia are defined as the following equations:

A =
[

0 I
−a−1c −a−1b

]
B =

[
0

a−1

]
Bia =

[
0

−a−1d

]
(17)

2) DESIGNING THE JOINT CONTROL COMMANDS BY
OPTIMAL CONTROL THEORY
In this section, according to the optimal control theory,
we design the trajectory-based controller and calculate the
joint control torques. The controller should be armed with the
following two functions:

(1) Tracking the directed trajectory. The joint control
torques, which are calculated by trajectory-based controller,
can drive the space manipulator to track the directed tra-
jectory reproduced by the GP-based LfD algorithm in
Section III.B, and the tracking error should not exceed the
confidence interval.

(2) Reducing joint control torques. Due to the fact that
the reproduced directed trajectory relies on teaching process
totally, the trajectory may not be smooth and thus the joint
control torques and their fluctuation may be large. We need
to reduce it to decrease the energy consumption and ensure
the control stability.

Based on functions (1) and (2), we design the single step
cost function of optimal controller, as shown in (18):

R (s(t),u(t)) =
(
s(t)− s∗(t)

)T
·Q ·

(
s(t)− s∗(t)

)
+uT (t) · R · u(t) (18)
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where s∗(t) = [q̇∗(t), q∗(t)]T ∈ R2n is the state variable of
the directed trajectory at time t. n is the number of joints of the
space manipulator. s(t) ∈ R2n is the state variable of the real
trajectory. u(t) ∈ Rn is the vector of the joint control torques.
It is the output variable of the trajectory-based controller. The
relationship of s(t) and u(t) is shown in (16). Q ∈ R2n×2n

and R ∈ Rn×n are the parameters of the cost function, Q is
a positive semi-definite matrix, and R is a positive definite
matrix. In (18), the former item (s(t)- s∗(t))· Q· (s(t)- s∗(t))
corresponds to function (1), and can make the state locate
close to the directed state. The latter item uT (t)· R· u(t)
corresponds to function (2), and it is used to smooth the joint
control torques.

The single step cost function can compute the cost at
the time t . Based on that, we define the cost of the whole
trajectory as shown in (19):
tf
6
t=0

R (s(t),u(t))=
(
s(tf )− s∗(tf )

)T
·Qf ·

(
s(tf )− s∗(tf )

)
+

tf−1
6
t=0

((
s(t)−s∗(t)

)T
·Q ·

(
s(t)−s∗(t)

)
+ uT (t) · R · u(t)

)
(19)

Because the cost function (19) is quadratic and the model
in (16) is linear, this optimal control problem can be treated
as a Linear Quadratic Tracking (LQT) problem [37]:

min
tf−1
6
t=0

((
s(t)− s∗(t)

)T
·Q·

(
s(t)− s∗(t)

)
+uT (t) · R · u(t)

)
+
(
s(tf )− s∗(tf )

)T
·Qf ·

(
s(tf )− s∗(tf )

)
s.t.

{
ṡ(t) = A(t) · s(t)+ B(t) · u(t)+ Bia(t)
s(t + 1) = s(t)+ ṡ(t) ·1T

(20)

where 1T is the control cycle of the trajectory-based con-
troller, and is set as 1ms in this paper. All variables in (20) are
the function of time t , except Q, R, Qf and1T . To solve the
LQT problem, DDP algorithm is applied, and the quadratic
cost function can be obtained as shown in (21):

J (s (t) , t) = h
(
s
(
tf
)
, tf
)
+

∫ tf

0
g (s (τ ) ,u (τ ) , τ ) dt (21)

where h(s(tf ), tf ) and g(s(t), u(t)t) are defined as the follow-
ing equations:
h
(
s
(
tf
)
, tf
)
=

1
2
·
[
s
(
tf
)
−s∗

(
tf
)]T
·Qf ·

[
s
(
tf
)
−s∗

(
tf
)]

g (s (t) ,u (t) , t)=
1
2
·
[
s (t)−s∗ (t)

]T
·Q ·

[
s (t)−s∗ (t)

]
+

1
2
uT (t) · R · u (t)

(22)

where Qf ∈ R2n×2 n is the value of Q at time tf .
If J∗ is the minimum value of J , it should satisfy

the Hamilton-Jacobi-Bellman equation (H-J-B), as shown
in (23):

J∗t +min
u(t)

{
g (s (t) ,u (t) , t)
+J∗s (A(t) · s(t)+ B(t) · u(t)+ Bia(t))

}
= 0

(23)

where J∗t = ∂J
∗ (s (t) , t) /∂t , J∗s = ∂J

∗ (s (t) , t) /∂s.
Then, we define the Hamiltonian function as follows:

Ha
(
s (t) ,u (t) , J∗s , t

)
= g (s (t) ,u (t) , t)+ J∗Ts (s (t) , t)

· (A (t) · s (t)+ B (t) · u (t)+ Bia (t)) (24)

In this case, minimizing J is the same as minimizing Ha by
controlling u(t). Therefore, we obtain:

∂Ha
∂u

(
s (t) ,u (t) , J∗s , t

)
= R · u (t)+ BT (t) · J∗s = 0

(25)

Since ∂2Ha/∂u2 = R is a positive definite matrix, we could
obtain u∗ as follows:

u∗ (t) = −R−1 · BT (t) · J∗s (26)

Considering (23), (24) and (26), we have:

0 = J∗t +
1
2
·
[
s (t)− s∗ (t)

]T
·Q ·

[
s (t)− s∗ (t)

]
−

1
2
· J∗Ts · B (t) · R

−1
· B (t)T · J∗s

+ J∗Ts · A (t) · s (t)+ J
∗T
s · Bia (t) (27)

Since the boundary condition of (21) is:

J∗
(
s
(
tf
)
, tf
)
=

1
2
·
[
s
(
tf
)
− s∗

(
tf
)]T
·Qf ·

[
s
(
tf
)
−s∗

(
tf
)]

(28)

It is reasonable to assume that:

J∗ (s (t) , t)=
1
2
· sT (t) ·M (t) · s (t)+ pT (t) · s (t)+η (t)

(29)

whereM(t) is a positive semi-definite matrix, p(t) is a vector,
and η(t) is a scalar.

Substitute (29) into (27), and we can obtain:

0=
1
2
· sT (t)

·

(
Ṁ(t)+Q−M(t) · B(t) · R−1 · BT (t) ·M(t)
+ 2 ·M(t) · A(t)

)
· s(t)

+

(
ṗT (t)−s∗T (t)·Q−pT (t)·B(t)·R−1 · BT (t)·M(t)
+ pT (t) · A(t)+ BiaT (t) ·MT (t)

)
· s(t)

+

η̇(t)+ 1
2
· s∗T (t) ·Q · s∗(t)

−
1
2
· pT (t) · B(t) · R−1 · BT (t)·p(t)+pT (t)·Bia(t)


(30)

Since that (30) is an identical equation for any s(t) and
s∗(t), the following conditions have to be satisfied, with the
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FIGURE 7. Loosening bolts using a hand drill.

boundary conditions M(tf ) = 0, p(tf ) = 0, and η(tf ) = 0.
We obtain:

Ṁ(t)=M(t) · B(t)·R−1 · BT (t)·M(t)− Q− 2·M(t)·A(t)
ṗ(t) =MT (t) · B(t) · R−1 · BT (t) · p(t)+ QT · s∗(t)

−AT (t) · p(t)−M(t) · Bia(t)

η̇(t) = −
1
2
· s∗T (t) · Q · s∗(t)

+
1
2
·pT (t) · B(t) · R−1 · BT (t) · p(t)−pT (t) · Bia(t)

(31)

In addition, by substituting (29) into (26), the improved
joint control torques would be obtain as follows:

u∗ (t) = −R−1 · BT (t) · (M (t) · s (t)+ p (t)) (32)

In the equation, M(t) and p(t) can be derived by a numer-
ical integration of (31), and then the improved joint control
torques u∗(t) are obtained. And we need to adjust the param-
etersQ,R andQf , to make the improved joint control torques
smoother, and the manipulator trajectory driven by them can
satisfy the confidence intervals in Section III.B.

IV. SIMULATIONS AND EXPERIMENTS
A. OVERVIEW
In order to verify the novel semi-autonomous teleoperation
method for the TianGong-2 manipulator system, we design
a simulation and an experiment, locating the dexterous hand
to the pre-screwing bolt. This experiment is the prerequisite
of loosening bolts using the hand drill, and loosening bolts
is a prototypical on-orbit operation. As shown in Fig. 7,
the platform mainly consists of the TianGong-2 manipulator,
the hand drill, the maintenance task unit and two global
cameras. In the maintenance task unit, a device is fixed unit
with two bolts, both of which should be loosed by the hand
drill. The global cameras are used to sense the positions and
orientations of the hand drill and bolts.

B. COLLECTING AND PROCESSING THE KINESTHETIC
DEMONSTRATIONS
In this paper, the kinesthetic demonstrations work as the prior
knowledge, and they are collected by the space manipulator

FIGURE 8. Collecting the kinesthetic demonstrations.

teaching platform. The teaching operation is carried out in
the virtual reality platform by the master device, CyberForce,
as shown in Fig. 8. From the figure, it can be concluded
that the process starts after the hand drill is pulled out of
the hand drill stand, and the manipulator model is controlled
until the hand drill moves to 20mm above each one of the
bolts.

To ensure the generalization of the kinesthetic demonstra-
tions and obtain the reasonable confidence intervals by the
GP-based LfD algorithm, the operator needs to repeat this
process 3 times in the study, with different start positions.
Moreover, to facilitate the calculation of the dynamical sys-
tem framework of GP-based LfD algorithm, we build a new
coordinate system, named the target coordinate system, at the
target location, and all subsequent Cartesian trajectories are
displayed in the coordinate system. In the experiment, the ori-
gin of the target coordinate system is 20mm above each one
of the bolts, and the direction of the coordinate axis is aligned
with the base coordinate system of the TianGong-2 space
manipulator. The demonstrations of the task trajectory in
this experiment are shown in Fig. 9. With the trajectories,
the kinesthetic demonstrations can be calculated as shown in
Section III.B.

As shown in Fig. 9, in order to test the adaptability of this
algorithm, we select three ‘bad’ trajectories as the demon-
strations. There are many disadvantages of these trajectories,
such as severe shaking, unsmooth velocity and acceleration,
a cross between of the trajectories, and so on. All of these
situations might occur in the actual operation.

C. SIMULATION OF DYNAMICS CONSTRAINT LEARNING
FROM DEMONSTRATION
Before the experiment, we set up a simulation to verify
the semi-teleoperation method in MATLAB. The simulation
includes the whole DC-LfD algorithm and the TianGong-2
manipulator system. The DC-LfD algorithm mainly consists
of two steps:

Step 1 is the GP-based LfD algorithm. We calculate the
reproduced directed trajectories and their confidence inter-
vals based on the kinesthetic demonstrations. We set the step
time 1t of the reproduced trajectories to 1s. And we also set
the noise of the dynamical system model in (1) to ε ∼ N (0,
0.1). In order to ensure the generality, we select some different
initial positions to reproduce the directed trajectories. The
result is shown in Fig. 10.
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FIGURE 9. Demonstrations of the task trajectory.

FIGURE 10. The reproduced directed trajectories.

In Fig. 10, the blue lines are the reproduced trajectories
from different start positions, and they can all converge to the
target position. Considering the safety of the task, the locating
error of the hand drill must be less than 3mm. In the sim-
ulation, this value is set to 1mm for a better performance.
To give more specific explanation, we take the initial position
(98.80 mm, −93.55 mm, −2.52 mm, 0◦, 0◦, 0◦) as an exam-
ple, and the reproduced directed trajectory and its confidence
intervals are shown in Fig. 11. This initial position is from an
experimental data on the ground.

In Fig. 11, the dashed blue lines are the projections of
the reproduced directed trajectory on three coordinate planes,
and the gray region are the confidence intervals, when we
set the confidence level as 68.27% (3-sigma rule). Accord-
ing to the process of GP-based LfD algorithm, the confi-
dence intervals are calculated based on the prior knowledge
(kinesthetic demonstrations) and the confidence level. The
wide reign of the confidence intervals mean the decentralized
demonstrations of the trajectory, and it can provide more
choices for the joint control torques improvement, and vice
versa.

Step 2 is to design the joint control commands by
trajectory-based controller. Before that, we would do some
pro-processing. Firstly, we need to convert the reproduced
directed trajectory and its confidence intervals from the tar-
get coordinate system to the base coordinate system of the
TianGong-2 manipulator. Secondly, we match the 1t in (10)
and 1T in (19) by interpolating the reproduced directed
trajectory. Finally, we convert the trajectory from Cartesian
space to the joint space.

FIGURE 11. Reproduced directed trajectory and confidence interval.

In the simulation, the initial joint angle of the TianGong-2
manipulator is [79.85◦,−9.44◦,−76.48◦,−83.47◦,−81.54◦,
−10.46◦]◦, and this data is from one on-ground experiment.
By adjusting the parameters in LQT, and crossing valida-
tion with the confidence intervals obtained in the last step,
we select Q = 100 · [I O;O O], Qf = [I O; O O], and R =
1000 · I. The corresponding joint control torques are shown
in Fig. 12. Moreover, as a comparison, we also compute
the joint control torques by the traditional optimal controller
and the computed torque controller. The traditional optimal
controller is divided into two steps: the first step is to optimize
the trajectory using the LQT algorithm; the second step is to
compute the joint control torques with the computed torque
method. The solid red lines represent the joint control torques
generated by the trajectory-based controller. In the compar-
isons, the dashed green and blue lines are those generated
by the traditional optimal controller and the computed torque
controller.

Compared with the computed torque controller, the
trajectory-based controller has obvious advantages. In Fig.12,
we can find that the fluctuations of the joint control torques
of trajectory-based controller are reduced significantly. For
all six joints, the fluctuations are reduced from 4-5 peaks
to 1-2. In addition, using the trajectory-based controller,
the amplitudes of the joint control torques are also greatly
reduced. Taking joint 1 as an example, the peak-to-peak value
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FIGURE 12. Joint control torques of the simulation.

of the joint control torques generated by the computed torque
controller is 43.69N · mm, whereas the one generated by the
trajectory-based controller is 15.93N · mm, and the value is
reduced by 64%. And other joint control torques are also
reduced bymore than 60%. The reductions of the fluctuations
and the peak-to-peak values not only decrease the energy con-
sumption of the manipulator, but also improve the stability of
control. Compared with the traditional optimal controller, the
torques from the trajectory-based controller are smoother at
the beginning of the trajectory. In particular, at that moment,
the control torques of the joint 2 and 3 have a large jump to
more than 10 N · mm by using traditional optimal controller,
but the value is less than 1N · mm with trajectory-based
controller. Moreover, in terms of the fluctuations and peak-
to-peak values of the joint control torques, trajectory-based
controller is also better than the other one.

For the tracking accuracy, with the joint control torques
obtained by the trajectory-based controller, the Cartesian
trajectory of the manipulator is in the confidence intervals,
as shown in Fig. 13.

In Fig. 13, the manipulator Cartesian trajectories and the
confidence intervals are all expressed in the target coordinate
system. The dashed blue lines are the projections of the
manipulator Cartesian trajectory on three coordinated planes,
with the joint control torques obtained by the computed
torque controller. The grey regions mean the confidence level
is 3, which the value is 68.27%. The solid red and dashed
greens lines are the projections of the manipulator trajectory,
using the trajectory-based controller and the traditional opti-
mal controller. It can be concluded from the figures that the
lines are all in the grey regions, and thus can be applied in the
further control.

FIGURE 13. Cartesian trajectory in the confidence interval.

Smooth joint control torques contribute to smooth joint
velocities, as shown in Fig. 14. The solid red lines represent
the joint velocities, using trajectory-based controller, and the
dashed green and blue lines are produced by the traditional
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FIGURE 14. Joint velocities of the simulation.

FIGURE 15. The total energy variable with time.

optimal controller and the computed torque controller. Obvi-
ously, the red solid lines are smoother, and their fluctuations
are reduced from 2-4 to 1 compared with the dashed blue
lines. The green lines are intermediate. And different velocity
trajectories will lead the Tiangong-2 manipulator system to
consume different energy. The total energy variable with time
is shown in Fig. 15:

As shown in Fig. 15, clearly, using the trajectory-based
controller consumes the least amount of energy to accomplish
the same task. In comparison, using the traditional optimal
controller and the computed torque controller need to con-
sume 33.54% and 126.72% more energy respectively.

FIGURE 16. Experiment process.

D. ON-ORBIT EXPERIMENT OF THE
TIANGONG-2 MANIPULATOR SYSTEM
The actual experiment is carried out with the TianGong-
2 manipulator system in the space capsule. In the experiment,
the process of obtaining the kinesthetic demonstrations is the
same as the simulation in Section IV.C. Then, the kinesthetic
demonstrations are transmitted to the center controller of
the TianGong-2 manipulator system. The center controller
generates the joint control torques according to the position of
the bolt, with DC-LfD algorithm. Fig. 16 shows the process
of locating the dexterous hand to the first bolt.

In Fig. 16, the TianGong-2 manipulator system can
locate the bolt automatically and accurately. The start posi-
tion and orientation of the hand drill are (131.29 mm,
−93.28 mm, −2.19mm, 0◦, 0◦, 0◦) in the target coordinate
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FIGURE 17. Joint control torques of the on-orbit experiment.

FIGURE 18. Joint velocities of the on-orbit experiment.

system. And the initial joint of the manipulator are [74.52◦,
−17.6◦,−60.55◦,−84.53◦,−90.46◦,−22.04◦]. Because the
TianGong-2 manipulator system and the maintenance task
unit are reassembled on-orbit, the initial states of the two
are different from the states of the simulation and the ground
experiments. The joint control torques of this experiment are
shown in Fig. 17, the joint velocities are shown in Fig. 18,
and the total energy variable with time is shown in Fig. 19.

In Fig. 17, the joint control torques are measured by the
joint torque sensors. Despite the sensor noise, we can still find
that the torques produced by the trajectory-based controller
perform better than the others, i.e., the fluctuations are fewer,
and the peak-to-peak values are smaller.

The joint velocities in the experiment are shown in Fig. 18.
In Fig. 18, compared with the computed torque controller, the
trajectory-based controller can reduce the fluctuations from
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FIGURE 19. The total energy variable with time of the on-orbit
experiment.

2-3 to 1, and besides, it also can reduce the peak-to-peak
values.

Fig. 19, the energy variable figure, shows that using the
trajectory-based controller can lead to the less energy con-
sumption. For the experiment, using the computed torque
controller have to consume 88.45% more energy.

V. CONCLUSION
In this paper, we present a novel semi-autonomous teleoper-
ation method for the TianGong-2 manipulator system, which
could be used to operate the space manipulator remotely.
Compared with other semi-autonomous teleoperation meth-
ods, this method can not only reproduce trajectories for
completing tasks according to the current environment, but
also reduce the joint control torque fluctuations, peak-to-
peak values significantly and energy consumption. There
are two important steps in this method. The first step is to
collect kinesthetic demonstrations as prior knowledge, by
the space manipulator teaching platform. And the second
step is to obtain the joint control torques with DC-LfD
algorithm. The second step include two phases: GP-based
LfD and trajectory-based controller. GP-based LfD algo-
rithm is used to reproduce the directed trajectory and obtain
its confidence intervals based on the current environment.
Trajectory-based controller is used to generate the smoother
joint control torques. To verify this method, we carry out the
simulation and experiment to locate the dexterous hand to
the pre-screwing bolt. The results show that this method can
reduce the fluctuations and peak-to-peak value of the joint
control torques, and also can reduce energy consumption.
In the future, we aim to apply this method in contacting tasks
and free-flying manipulators.
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