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ABSTRACT RNAs and RNA-binding proteins (RBPs) in cells can bind with each other to form a nuclear
ribonucleoprotein (RNP) complex, playing important roles in life processes, and gene regulation. How to
accurately predict the RNA-binding proteins is a big challenge and hot research task. Here, we proposed a
new computational predictor called iRBP-Motif-PSSM for identifying RNA-binding proteins by combining
the motif information and the evolutionary information extracted from the Position Specific Scoring
Matrixes. Collaborative Learning was employed to address the instability problem of the predictor. The
experimental results showed that iRBP-Motif-PSSM showed better performance than other existing methods
for identifying NA-binding proteins, indicating that iRBP-Motif-PSSM is a useful tool for biological
analysis.

INDEX TERMS RNA-binding proteins, Motif-PSSM, collaborative learning.

I. INTRODUCTION
RNA is an important molecular playingmany important func-
tions [1]. RNA molecules can interact with RNA-binding
proteins (RBPs). In general, the majority of RNAs and
RNA-binding proteins (RBPs) in cells can bind with each
other to form a nuclear ribonucleoprotein (RNP) complex,
playing an important role in life processes, and gene regu-
lation. Because a RBP may have many corresponding target
RNAs, investigation of the interaction between RNA and
protein is the key to explore RNA functions. If the reg-
ulation is abnormal, it will lead to various diseases, such
as cancer [2], [3], myeloid leukaemia [4], [5], etc. How to
accurately predict the functions of these RNA-binding pro-
teins is a big challenge and hot research task in the field of
genomic function annotation. Because of the limitations of
the biological experimental methods (time consuming and
expensive), it is desired to develop predictors to detect these
RNA-binding proteins only based on the sequence informa-
tion. In the past few years, several experimental predictors
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[6]–[11] were proposed to identify RNA-binding proteins.
They aremainly based on nucleic acid and amino acid physic-
ochemical properties, for example SPOT-Seq-RNA [6] is a
template-based technique using Z-score and energy to distin-
guish RBPs. RNAPred [11] uses the evolutionary information
extracted from PSSMs, and outperforms other sequence-
based methods. The RBPPred predictor [10] incorporates the
representative physicochemical properties.

All these methods have obviously facilitated the develop-
ment of this important field. However, with the fast growth
of the number of protein sequences, there are still some
problems should be addressed in this field: (1) In general,
the available features failed to accurately represent the protein
sequences for RBP prediction, preventing the performance
improvement of the existing predictors. (2) How to efficiently
combine the different features and classifiers to construct a
more accurate predictor is still a challenging problem.

As short conserved patterns in protein sequences, motifs
are critical for the structural and functional activities of
proteins [12], [13]. Furthermore, the profiles contain the
evolutionary information [14], such as PSSMs. Both motifs
and PSSMs are important for RBP identification. Can we
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combine these two important features to introduce a more
discriminative feature? To answer this question, in this study,
we introduced a new feature called Motif-PSSM sharing the
advantages of both motifs and PSSMs. The Motif-PSSM
features and some other sequence-based features were com-
bined via the framework of Collaborative Learning based on
Support Vector Machines (SVMs). Finally a predictor called
iRBP-Motif-PSSMwas proposed to predict the RBPs. Exper-
imental results showed that iRBP-Motif-PSSM outperformed
other competing methods. Furthermore, iRBP-Motif-PSSM
is also useful for identifying new RBPs in human proteome.

II. MATERIALS AND METHOD
A. BENCHMARK DATASET
In this study, we used the benchmark dataset S constructed by
Zhang and Liu [10] containing S+ and S−.

S = S+ ∪ S− (1)

where ‘∪’ represents the ‘union’; S+ represents RNA-binding
proteins with 2780 samples; S− indicates non-RNA-binding
proteins with 7093 samples.

B. INDEPENDENT DATASET
An independent dataset including 68 RBPs and 100
non-RBPs reported in [11] was used to further test the
generalization capability of our predictor.

C. FEATURE EXTRACTION STRATEGY
We introduced a novel feature extraction method named
Motif-PSSM. However, a single feature usually fails to accu-
rately represent the proteins in all situations [12], [1], and it
will be also affected by the data fluctuation. To cope with
such limitations, some state-of-the-art sequence-based fea-
tures were combined with the proposed Motif-PSSM feature
to accurately capture the characteristics of proteins, including
ACC-PSSM [15], Kmer [16], [17], Top-n-gram [15], and
CKSAAP [18], [19].

1) MOTIF-PSSM
Given a protein P whose length is L. P can be represented as:

P = A1A2A3A4A5A6A7 · · ·AL (2)

where A1 is the first amino acid, A2 is the second amino acid,
etc.

For the given protein sequence as shown in Eq. 2, its cor-
responding PSSMmatrix was calculated by PSI-BLAST [20]
based on the NRDB 90 database [21] with default parameters.

Previous studies showed that motifs have impact on the
structural and functional activities of proteins [22], [23].
The motifs are short protein subsequences, which are the
structural components of specific functions with specific
spatial conformations [24]. In the past few decades, various
computational methods, such as MEME SUITE [25] have
been proposed for identifying, characterizing, and search-
ing the motifs. According to the characteristics, the motifs

are mainly divided into three categories including sequence
motifs, structural motifs, and short linear motifs. Sequence
motifs are sequence patterns of residues in protein sequences.
Structural motifs represent structural patterns in protein struc-
tures. Short linear motif is subsequence mediating the pro-
cess of protein–protein interaction. In this study, we focused
on the short linear motifs and structural motifs. From
the MegaMotifBase [26], 301 structural motifs related to
RNA-binding proteins were extracted and converted toMeme
Motif Format [25] by using Multiple Sequence Alignment.
The 164 short linear motifs with fixed length were extracted
from ELM database [27], [28]. The detailed information for
these motifs is given in Supplementary Information S1.
To construct a powerful predictor for RBP prediction, one

of the keys is to represent protein sequences with an effective
mathematical expression reflecting their intrinsic correlation
with the characteristics to be identified [12], [29]. In this
regard, we proposed the Motif-PSSM feature (see Fig. 1).
The process of generating the Motif-PSSM feature will be
introduced in the following section.

(1) All the motifs were converted into frequency matrices.
For the 164 short linear motifs, their corresponding frequency
matrices were downloaded from ELM database [27], [28].
For the 301 structural motifs, their corresponding Multiple
Sequence Alignments (MSAs) were converted into frequency
matrices.

(2) For each motif, its corresponding frequency matrix (M)
was searched against the PSSM segments of the target protein
P(S) with the same size as themotif by using a slidingwindow
approach with step size as 1. The MS was calculated by:

MiSj =Mi × Sj (3)

The total value (val) of the elements in MiSj was calculated
by:

val j =
∑

MiSj (4)

whereMi is the i-th motif frequencymatrix, j is the j-th search
for S.
Therefore, for each motif, the corresponding feature vector

can be generated by combining all the val for each search.

MOTIFi = [val1,val2, val3, . . . , valL−l+1] (5)

where L is the length of S, and l is the length of Mi.
The average and max values ofMOTIFi can be calculated

by Eq6 and Eq7, respectively.

avei =
∑

MOTIFi/Ni (6)

max i = Max(MOTIFi) (7)

Finally, the resulting feature vector based on 465 motifs was
generated by:

P = [max1,ave1,max2, ave2 . . . ,max465, ave465] (8)
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FIGURE 1. The process of generating Motif-PSSM feature based on PSSM matrix.

2) ACC-PSSM
ACC-PSSM [30] measures the correlations between two
amino acids based on PSSMs [31]. ACC contains two parts,
including AC and CC. A protein sequence can be repre-
sented by ACC by combining AC and CC. The AC-PSSM
is calculated by [30]

AC (i, d) =
∑L−d

j=1

(
si,j − si

) (
si,j+d−si

)
(L − d)

(9)

where i is one amino acid residue, d represents the distance
between two amino acids along the protein, L indicates the
protein length , Si,j represents the score of residue i to appear
at position j in the corresponding PSSMmatrix, S i represents
the average score of residue i.
The AC-PSSM is calculated by [30]

CC (i1,i2, d) =
∑L−d

j=1

(
si1,j−si1

) (
si2,j+d−si2

)
(L − d)

(10)

where i1, i2 represent two amino acids, d represents the dis-
tance between two amino acids in the protein, Si1,j represents
the socre of residue i1 to appear at position j in PSSMmatrix,
Si2,j+d represents the score of residue i2 to appear at position
j+d in PSSMmatrix and Si1 and Si2 represent average scores
of residues i1 and i2 in the protein, respectively.
Since ACC-PSSM combines AC-PSSM and CC-PSSM,

the number of AC-PSSM variables is 20 × D, the number
of CC-PSSM variables is 380×D. Therefore, the the number

of ACC-PSSM variables is 400× D. In the study, we set the
D as 7.

3) KMER
Kmer [16], [32], [33] is a widely used feature. A kmer is a
subsequence in a protein with k amino acids. The parameter
k in this study was set as 2. The frequencies of kmers can be
calculated by:

f (r)=
N (r)
L

, r ∈ {AC,AD,AE, · · ·YV,YW,YY} (11)

where N (r) represents the total number of kmer type r , ∈
means ‘‘member of’’ and L is the protein length.

4) TOP-N-GRAM
Top-n-gram [34] incorporates the evolutionary information,
and has been applied to solve many tasks in bioinformat-
ics. In this study, the Top-n-gram feature was calculated by
BioSeq-Analysis2.0 with default parameters except that the
parameter in Top-n-gram was set as 2.

5) CKSAAP
The CKSAAP [18] calculates the frequencies of amino acid
pairs with distance k in the protein. In this study, the k
was set as 5. The detailed information has been introduced
in [35]–[38].
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FIGURE 2. A flowchart to show how the SVM-based collaborative
learning works.

D. CLASSIFIER CONSTRUCTION
1) SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine (SVM) was used as the classifier
to construct the predictor in this study. SVM was trained
by using the encoded features to represent the model for
prediction, which has been widely used in bioinformatics
[24], [39]–[44]. The publicly available Scikit-learn package
was employed as the implementation of SVM algorithm [45]
with RFB kernel with two parameters: one is penalty param-
eter C for the regularization and another is γ for the kernel
width. The grid search was used to optimize these parameters.

2) SVM-BASED COLLABORATIVE LEARNING
An ensemble predictor combining various individual
predictors will achieve better performance than a single
predictor [43], [46]–[52]. There are two major problems
in constructing ensemble predictors. i) How to select the
individual classifiers with low correlation; ii) how to con-
struct an ensemble classifier by assembling the selected
classifiers [43]. In the study, we used different features and
parameters to generate several predictors so as to ensure the
low correlation among the predictors, and we employed the
SVM-based Collaborative Learning, which passes messages
among meta-predictors in training process, and combines the
results of each meta-predictor for the final training. In the
study, we constructed four meta-predictors for SVM-based
Collaborative Learning. The first meta-predictor is based on
Motif-PSSM and ACC-PSSM. The second meta- predictor
is based on Motif-PSSM, CKSAAP and the message passed
from the first predictor, the third meta- predictor is based on
Motif-PSSM, Kmer and the message passed from the second
meta-predictor, the fourth meta-predictor is based on Motif-
PSSM, Top-n-gram, and the message passed from the third
predictor. This process was shown in Fig. 2.

TABLE 1. The performance of different meta-predictors combination
orders on the benchmark dataset with 10-fold cross-validationa.

E. PERFORMANCE MEASURES AND CROSS VALIDATION
We employed the 10-fold cross-validation to evaluate the
performance of the proposed method [53].

We used four metrics to evaluate a predictor’s quality [46],
[48], [53]–[61] as shown in Eq. 12.

Sn =
TP

TP+ FN

Sp =
TN

TN + FP

Acc=
TP+ TN

TP+ FN + TN + FP

MCC=
TP×TN−FP×FN

√
(TP+FN ) (TN+FN ) (TP+ FP) (TN+FP)

(12)

where TP is the number of true positive samples (correctly
predicted RBP samples); TN is the number of true neg-
ative samples (correctly predicted non-RBP samples); FP
represents the number of false positive samples (non-RBP
samples wrongly predicted as RBP samples); FN represents
the number of false negative samples (RBP samples wrongly
predicted as non-RBP samples).

III. RESULT AND DISCUSSION
We introduced a new predictor called iRBP-Motif-PSSM
based on SVM-based Collaborative Learning method by
combining the Motif-PSSM and various sequence-based
features. The results showed that iRBP-Motif-PSSM was
highly comparable, and even outperformed the other existing
methods for identification of RNA-binding proteins, indi-
cating that iRBP-Motif-PSSM will be helpful for biological
analysis.

A. THE PERFORMANCE OF iRBP-MOTIF-PSSM BASED
ON DIFFERENT COMBINATION ORDERS OF
META-PREDICTORS
We investigated the impact of the combination order of
the meter-predictors on the predictive performance. Four
different combination orders were tested, and their predictive
results were shown in Table 1, from which we can see that
the proposed iRBP-Motif-PSSM predictor achieved stable
performance with different combination orders of meta-
predictors. The combination order F1F2F3F4 was selected,
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TABLE 2. The performance of various methods on the benchmark dataset
(cf. Eq. 1) with 10-fold cross validation test.

TABLE 3. Performance of various methods on the independent test set.

because the corresponding predictor can achieve the
highest Acc.

B. COMBINING MOTIF-PSSM AND SEQUENCE-BASED
FEATURES CAN IMPROVE THE PREDICTIVE
PERFORMANCE
In order to solve the aforementioned two problems in the
field of RNA-binding protein identification, we combined the
proposed Motif-PSSM feature and various sequence-based
features via the SVM-based Collaborative Learning, and a
predictor called iRBP-Motif-PSSM was proposed. Its perfor-
mance was directly compared with another state-of-the art
predictor RBPPred [10] on the benchmark dataset, and the
results were listed in Table 2, from which we can obviously
observed that iRBP-Motif-PSSM outperformed RBPPred in
terms of all the four performance measures listed in Eq. 12.
Therefore, we concluded that the Motif-PSSM feature and
the SVM-based Collaborative Learning contributed to the
performance improvement of iRBP-Motif-PSSM.

C. INDEPENDENT TEST
Independent test is a way to validate the generalization
ability of the predictor [54]. In this study, we employed
a widely used independent test set reported in [11] con-
taining 68 RNA-binding protein and 100 non-RNA-binding
proteins to further evaluate the performance of the proposed
predictor.

In order to avoid overestimating the performance of our
method, we removed the sequences sharing more than 25%
sequence similarity with the sequences in the independent
dataset from the benchmark dataset, and retrained the model
based on the removed benchmark dataset. The trained model
was used to predict the proteins in the independent dataset to
give the final predictive results, and the corresponding results
were shown in Table 3. These results further confirmed that
the iRBP-Motif-PSSM is better than RNAPred.

TABLE 4. Performance of various methods on Gerstberger dataset.

D. APPLICATION OF iRBP-MOTIF-PSSM TO IDENTIFY
RBPs IN HUMAN PROTEOME
The iRBP-Motif-PSSM was applied to predict the RBPs in
the human proteome on the Gerstberger dataset [62], which
is a census of 1396 RBPs in human proteome [62] extracted
from Pfam database [63]. After removing the overlapping
proteins between the benchmark dataset and the Gerstberger
dataset from the benchmark dataset, the iRBP-Motif-PSSM
was retrained with the benchmark dataset to predict the pro-
teins in the Gerstberger dataset, and the results were shown
in Table 4, from which we can see that iRBP-Motif-PSSM
obviously outperformed RBPPred.

IV. CONCLUSION
In this study, we introduced a new computational predictor for
identifying RBPs. Compared with other existing predictors,
it has the following advantages: 1) It incorporated a new fea-
ture called Motif-PSSM, considering both the evolutionary
information from the PSSM and the function and structure
information from the structural motifs and linear motifs;
2) It combined various meta-predictors via the SVM-based
Collaborative Learning. It can be anticipated that the pro-
posed Collaborative Learning framework would be applied
to solve many important problems in bioinformatics, such
as protein disordered protein prediction [64], DNA replica-
tion origin prediction, protein post-translational modification
sites [65], etc.
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