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ABSTRACT Personalized PageRank (PPR) is an important variation of PageRank, which is a widely
applied popularity measure for Web search. Unlike the original PageRank, PPR is a node proximity measure
that represents the degree of closeness among multiple nodes within a graph. It is also widely applied
to diverse domains, such as information retrieval, recommendations, and knowledge discovery, due to its
theoretical simplicity and flexibility. However, computing PPR in large graphs using naive algorithms such
as iterative matrix multiplication and matrix inversion is not fast enough for many of these applications.
Therefore, devising efficient PPR algorithms has been one of the most important subjects in large-scale
graph processing. In this paper, we review the algorithms for efficient PPR computations, organizing them
into five categories based on their core ideas. Along with detailed explanations including recent advances
and their applications, we provide a multifaceted comparison of the algorithms.

INDEX TERMS Personalized PageRank, graph data mining, graph Analysis.

I. INTRODUCTION

Finding the proximity among multiple entities using dis-
tance/similarity measures is one of the core operations of
data mining and knowledge discovery. Likewise, finding
the closeness among multiple nodes within graphs is also
an important problem in graph data mining. Personalized
PageRank (also known as ““Random Walk with Restart’) is
one of most intensely studied node proximity measures for
graph data mining and has also been adopted by a wide range
of applications.

Personalized PageRank (PPR) is a variation of PageRank,
which is a way of measuring the importance of hyperlinked
webpages [32]. The core idea of PageRank is the introduc-
tion of the random walk model. It assumes that a walker
resides on a node at a specific time and travels on the graph
through its edges. PageRank of each node can be seen as
the probability that the walker resides on each node when
it infinitely ‘“‘random walks” or jumps to a random node
with a constant probability. Thus, PageRank can measure the
importance of each node considering the link structure of
graphs and it has been successfully adopted by Web search
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systems such as Google. Like the original PageRank, PPR
is also defined using a random walk model. However, PPR
assumes that a traveling walker infinitely returns (jumps) to
their “restarting nodes”, which is a specific set of nodes,
instead of all nodes. In PPR, the result is skewed toward the
restarting nodes, and thus, PPR is a measure of the proximity
of each node to the restarting nodes. A node with a high
PPR score can be considered as a node that is close to the
restarting nodes. It produces relatedness scores among nodes
such as the traditional distance/similarity measures, i.e., the
shortest path distance and the maximal flow. PPR considers
every possible direct/indirect connection among nodes while
the traditional measures utilize only limited information. For
example, the shortest path distance considers only the short-
est connection between two nodes, while other connection
information is not used. In contrast, PPR considers every
path for reaching the target node that a “‘random walker” can
follow. Thus, PPR can reflect the overall structural features of
graphs.

Due to its merits, PPR has been applied to a wide range
of applications such as information retrieval, context-aware
recommendations, social network analysis, computational
linguistics, image processing, anomaly detection, and bioin-
formatics.
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Since PPR can be interpreted as a simple linear equation,
it can be computed using basic equation solving algorithms
such as iterative matrix multiplication and matrix inversion.
However, for large graphs consisting of over 10 million
nodes, such as social networks and the World Wide Web,
these basic methods are not fast enough to meet the require-
ments of most applications. Therefore, finding efficient algo-
rithms for PPR has been one of the major subjects of graph
data processing research and, consequently, many advanced
algorithms have been proposed.

The advanced algorithms for the computation of PPR have
a wide range of diverse and distinctive features. For exam-
ple, sampling-based methods return answers quickly while
matrix inversion requires heavy computational costs; how-
ever, sampling-based methods do not guarantee error bounds
while matrix inversion always returns exact results. To prop-
erly utilize PPR, one should choose the most appropriate
method among multiple algorithms while considering their
characteristics. However, to the best of our knowledge, there
is yet to be a comprehensive survey on PPR computations
with a multifaceted comparison of the algorithms.

In this paper, we summarize PPR computational algo-
rithms. We group them into five categories: optimized iter-
ative equation solving, optimized direct equation solving,
bookmark coloring algorithms, dynamic programming, and
Monte-Carlo sampling. Our survey includes an overview of
the basic ideas and recent advancements of each approach,
and compares the approaches/algorithms according to the fol-
lowing
criteria.

o Precomputation Time: Most recent algorithms require

a precomputation phase to optimize query answering
time. Though precomputation is not added to the query
response time, it should be optimized so as to keep the
graph update overhead in control. If the query results
should be updated daily, the precomputation time should
not be longer than a day.

o Query Answering Time: The query results should be
returned as quickly as possible. The query answering
time largely affects the overall running time of data
mining tasks that require frequent PPR computations
(e.g., node clustering).

o Auxiliary Data Size: Algorithms that require precom-
putation phase often construct auxiliary data struc-
tures during the phase (e.g., sampled random walk
traces). If the size of the data is too large to be
contained in main memory, overall system perfor-
mance including query answering time can be severely
degraded. Thus, reducing the size of the auxiliary data
without degrading other criteria is one of the major
challenges.

o Precision: The quality of the output varies with the
computation methods. If a certain degree of error is not
tolerable, algorithms that cannot meet the requirements
cannot be adopted regardless of its performance in other
features.
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TABLE 1. Table of symbols.

Symbol Definition
G Given graph
N Number of nodes in G
P Transition matrix of G
c Damping factor (1 — ¢ = restart probability)
PPR(¥) PPR vector of a given query vector ¥
PPR,(¥) Initial guess vector for a given query vector ¥
n; The i node
v, A unit vector defined as v,[k] = {1' le=i
L t 0, otherwise
on;) Out neighbor node set of n;
deg(n;) Degree of n;

We expect that our study will provide effective guidance
for choosing proper algorithms for PPR computations and
conducting further research on the subject.

The remainder of this paper is organized as follows.
Section 2 presents the theoretical basis of PPR. Sev-
eral important and useful characteristics of PPR are also
introduced. Section 3 presents the use cases of PPR.
Section 4 presents the advanced PPR algorithms categorized
into five types of approaches. In section 5, detailed discus-
sions with a multifaceted comparison of the approaches are
provided. Section 6 concludes the report by summarizing the
survey.

Il. PRELIMINARIES: RANDOM WALK, PAGERANK, AND
PERSONALIZED PAGERANK

In this section, we describe theoretical basis of PPR, includ-
ing its definition and characteristics. For self-contained
explanation, we starts with random walk and PageRank that
PPR is based on, then we provide detailed discussions on PPR
based on the previously explained concepts. The difference
between PageRank and PPR is also explained. Table 1 pro-
vides the definitions of the symbols that are used in the
following sections.

A. BASICS ON RANDOM WALK
PPR is one random walk-based proximity measure. Thus,
we first start with a brief explanation of the random walk in
order to provide a self-contained introduction to PPR. The
random walk model assumes that a particle, which is called
a random walker, walks on a given graph through its edges.
For example, we can think that a random walker that resides
on node n; will be on ny or n3 from the above assumption
(Fig. 1).

The state of a random walker can be expressed as a prob-
ability vector v with N dimensions. Each dimension of
v corresponds to each node, and the entry represents the
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FIGURE 1. Random walk example.

probability that a random walker resides on the node. For
example, a state vector 1%)) = (1,0,0,0, O)T represents
the state that a random walker resides on node n; without
uncertainty, and a state vector \ﬂ)) = (0,1/2,1/2,0, O)T
represents the state that a random walker may reside on node
ny or n3 with an even probability. We can say that if the current
state is (o), the next state is v(7) from the assumption of the
random walk. Generally, the transition of a random walker
can be represented as a probability matrix PT, which is called
the transition matrix. The entry of PT can be defined by the
following rule:

1
—, j€O0n)

|0(ny)| ’ M
0, otherwise

T _
Pij—

The transition matrix P” for the graph in Fig. 1 can be
calculated as follows:

0 12 1/2 0 0
12 0 12 0 0
Pl=11/3 1/3 0 1/3 0 )
0 0 12 0 1,2
0 0 0 1 0

We can use the matrix PT to compute the state vector of
the next step from the state vector of the current step using
the following equation: v—(k:?) = Pv—(k_)). Therefore, the state
of a random walker after k™ steps can be expressed as
Vi = P*v), where v(g) denotes the initial state.

B. DEFINITION OF PAGERANK

Before discussing PPR, we need to review PageRank since
PPR is a generalization of PageRank, a popularity measure
for webpages.

PageRank assumes an imaginary Web surfer that visits one
webpage at a time and randomly moves through hyperlinks.
With the assumption, PageRank measures the popularity of
each node by the probability of the surfer resides on each node
after infinite number of steps.

This assumption can be precisely interpreted into the ran-
dom walker model. Thus, PageRank can be represented by the
probability distribution of the random walker over the graph.

In random walker model, the probability vector converges
after infinite steps. We can compute the converged probability
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vector by solving the following equation:
— —
¥ =Pr

P presents the N x N transition matrix of the Markov chain
that is derived from the graph. The i™ entry of vector 7
represents the probability that the random walker resides at
node i.

The probability is changed by introducing the damping
factor. The justification within the random walker model is
that the walker does not move over an infinite number of
links but gets bored sometimes and jumps to another node
at random. The following equation represents PageRank with

the damping factor:
1
7 =cPT + (- o1 3)

Thﬂ)s, P7 represents the transition from the current state, and
ﬁ 1 represents the uniform state. In summary, equation (3)
represents the recursive process through which a random
walker follows the Markov process with probability ¢ and
jumps to random node with probability 1 — ¢. The solution
7 of equation (3) is PageRank vector, and PageRank value
of a specific node i is the i™ entry of 7.

PageRank value represents the centrality of node i within
the graph. The value is larger when the node is related to other
important nodes. The value is smaller when the node has few
edges or PageRanks of the related nodes are also small. The
sum of the value is 1 because it is sum of the probabilities.

C. DEFINITION OF PERSONALIZED PAGERANK
PPR can also be represented in recursive form. The following
equation represents PPR:

T =cP7 +(1-07% 4)

The only differfgce from the original PageRank is the second
term where Ilv 1 is replaced with 5. It means that now
the random walker jumps to the nodes that are specified by
the probability vector 5. For example, if the i entry of
S is 1 and all other entries are zeros, the random walker
continuously returns to node i with probability 1 —c. In PPR,
the probability vector 7 is relatively more skewed toward
5 than in PageRank. The solution 7 of the equation (4) is
PPR vector, which is denoted as PPR(_s>). The jth entry of
PPR(Y) represents the proximity of node j from the nodes
that are specified by 5. If the {0 entry of 5 is 1 and all other
entries are zeros, PPR (_s>) represents the proximity of each
node from node i. If PPR (_s)) [/]1s higher than PPR (_s)) k1,
we can say that node j is more strongly connected to node i
than node « is.

In summary, the difference between PageRank and PPR is
that PPR assumes that the random walker randomly returns to
specific states (i.e., query states), which is unlike PageRank
that assumes that the random walker returns to any node with
uniform probability.

The Personalized PageRank problem is defined as the

problem of computing PPR (_s)) vector when the graph and
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the restart vector s are given. The fully Personalized PageR-
ank problem, which is also a well-studied problem, is defined
as the problem of computing the PPR (E)) vector for every
node n; in the given graph.

The thing that makes the Personalized PageRank problem
harder than PageRank problem is that PPR has infinite possi-
ble queries. The PageRank vector remains unchanged unless
the graph is changed. Thus the vector can be computed off-
line and reused until the graph is updated. However, PPR (_s>)
vectors should be recomputed when node proximity value is
needed since 5 can be any stochastic vector. Considering
that the tasks require PPR computation such as Web search
and graph data mining need frequent proximity computation,
it is obvious that the algorithms for PageRank computation
are not sufficient for PPR computation. Consequently, there
exist tons of studies focusing on efficient PPR computation.
We will provide detailed discussion on them in section 4.

D. CHARACTERISTICS OF PERSONALIZED PAGERANK
PPR has some useful characteristics. The most important and
frequently utilized ones are the linearity and the decomposi-
tion theorem [23].

The following equation represents the linearity:

PPR(wi @ +w2 V) =wiPPR(W) +woPPR (V) (5)

It means that we can compute PPR (W17 + wz7) when
we know PPR (_u)) and PPR (7) without solving a lin-
ear equation. For example, if PPR((0,0,0,1,0)") and
PPR ((1, 0,0,0, O)T) are known, we can compute PPR
vector of any linear combination of (0,0,0, I, O)T and
(1,0,0,0,0)7 such as (0.2,0,0,0.8,0)7 via weighted sum-
mation of the known PPR vectors. This property is utilized
by several optimization methods such as Bookmark Coloring
Algorithm (Section 4. C).

The decomposition theorem is also an interesting property
that is closely related to the graph structure. The following
equation represents the decomposition theorem:

> PPR(V) (6

nj€Out(ny)

— — l—c
PPR (Vi) =cVvi + N
It means that we can compute PPR (71)) if we know all
PPR vectors from the out neighbor nodes of n1. Assume that
we want to compute PPR (71)), and we know PPR of all
out neighbor nodes. Then, in the example graph in Fig. 1,
the following equation holds according to the decomposition
theorem:

PPR(V}) = v} + %PPR (%) + %PPR (%)

Therefore, we can compute PPR (71)) as the summa-
tion of vectors if we know the vectors corresponding to
PPR(v3),PPR(V3), PPR(v;) and PPR (v5) beforehand.
Since solving linear equation is an expensive task, utilizing
the above properties is one of major approaches for PPR
computations.
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Another important property of PPR is that it can be rewrit-
ten in summation form as follows:

oo
PPRG) = (1—-¢) ) c*Pks )
k=0
This interpretation of PPR can be seen as iterative summation
of the state vectors for each step of a random walker that
follows the transition behavior of PPR. If we assume that
the initial state 7 = s, then the state vector of the 1%
step 7~ can be computed as (1—c)s + cPs by equation (4).
The state vector of the 2" step can be obtained in the
same fashion as follows: 7( b = (1—-¢)s + cP7(]) =
(1-¢)s + (1 —c)cPs + 2P*s. If we repeat the for-
mer process infinitely, we can eventually reach the equa-
tion 777 = (1—=¢)5 + (1 —c)cP5 + (1 —¢) P25 +
(1 —¢)3P3s + -, and the equation can be rewritten as
the summation form of the equation (8). This property is uti-
lized in several important methods including sampling-based
algorithms [6], [22].

Another property is weighted symmetry. Basically, PPR is
not a symmetric measure unlike other widely used similarity
measures such as Euclidean distance. That is, we cannot say
that the proximity of node i from node j is equal to that of
node j from node i in terms of PPR. In other words, we cannot
guarantee that PPR (VT) [/ = PPR (VJ)) [7] always holds.
However, PPR also has the property of partial symmetry when
the given graph is an undirected graph. Equation (9) shows the
property [25]:

deg (i) - PPR (V7 ) [j] = deg (j) - PPR (¥} ) il )

Though it is not a perfect symmetric property, it can be
utilized for optimization by avoiding repetitive computations.
If we have the vector PPR (7])) beforehand, we can get the
PPR (71:) [/] for any node k by using the property.

PPR also can be viewed as a solution of the linear system
(I — cP)F = (1 —c¢)5. The system matrix (I — cP) of the
above linear system has the following properties [31]:

1) (I — cP) is an M-matrix.

2) (I — cP) is nonsingular.

3) The row sums of (I — cP) are 1 — c.

4) 1 —cPlloo=1+c.

5) Since (I — ¢P) is an M-matrix, (I — cP)~! > 0.

6) The row sums of (I — cP)~! are (I — ¢)~!. Therefore,

|d =Pt = -o"
7) Thus, the condition number ko, (I — cP) = (1+¢)/(1 —
c)

The above properties guarantee the existence and uniqueness
of the solution of the given linear system. They also assure
that the solution can be computed using iterative methods for
solving linear equations such as the Jacobi method.

lll. APPLICATIONS

In this section, we overview the applications of PPR. As a
well-studied node proximity measure, PPR has been applied
to a broad range of fields including information retrieval,
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item recommendations, social network analysis, computa-
tional linguistics, computer vision, bioinformatics, proba-
bilistic reasoning, etc.

A. PERSONALIZED WEB SEARCH

One of well-known application examples of PPR is per-
sonalized web searches. Applying PPR to personalized web
searches was suggested at the birth of PageRank [32]. Its
actual application was studied later by Haveliwala [7]. In this
paper, the restart vector s is defined by topics that represent
personal preferences. In particular, let 7} be the set webpages
in the category ¢; on the Open Directory Project.! When
computing PageRank for topic ¢;j, the non-uniform vector v;
is used in place of the uniform vector ]ivi

1
) —, €T
vilil = 1 171 (10)
0, ieT;

By using the biased restart vector 7/) , the result of PageRank
can represent the importance of each page in terms of a
certain topic. The result of the experiment shows that using
a biased restart vector in place of an unbiased vector sig-
nificantly improves the precision of an information retrieval
system.

Gleich and Polito [43] also proposed an approximate PPR
algorithm and personalized web search system that can pro-
vide personalized search results to users without violating
the users’ privacy. Dou et al. [51] presented a large-scale
evaluation framework for personalized search strategies and
analyzed the effects of many personalization strategies.

B. SOCIAL NETWORK ANALYSIS

PPR is used for measuring importance of each users in SNSs
to analyze social network structures. Garcia et al. [55] ana-
lytically characterized all the possible values of PPR for any
node, and introduced a new concept concerning the com-
petitivity and leadership in networks. Pedroche er al. [14]
introduced a new parameter, the frequency, to the Leadership
group, which is a group of nodes that have higher PageR-
anks than others. Then, they analyzed some graphs using
the Leadership group while controlling the biasing factor €.
Additionally, PPR has been used as a link prediction tool of
SNSs [59]. Backstrom and Leskovec [60] developed an algo-
rithm called the ““Supervised Random Walk™ that combines
the information of a network structure and edge attributes to
predict the links in social network. They used the node and
edge attributes to guide the random walks toward the target
node. Liu and Lu [61] proposed a link prediction method
based on the local random walk that has much lower com-
putational complexity. Xia et al. [44] showed that Random
Walk with Restart (RWR) can be utilized to determine the rel-
evancy in a birelational network in the bibliographicdomain.

lOpen Directory Project, http://odp.org/
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Tong and Faloutsos [45] introduced the ‘“‘center-piece sub-
graphs” problem of a social network and proposed a fast
subgraph extraction algorithm. Jung et al. [62] proposed
Signed Random Walk with Restart (SRWR) for person-
alized rankings in signed networks using a signed surfer.
Devooght et al. [63] introduced a random walk based modu-
larity measure, which is computed using the paths instead of
the traditionally used edges, for analyzing social networks.

C. COMPUTATIONAL LINGUISTICS

PPR has made some achievements in the field of Compu-
tational linguistics. Liu et al. [16] applied PPR to generate
query-based multidocument summarizations. They used PPR
to rank the personalized prior probability of each sentence,
which is computed using their salience model and relevance
model. Agirre and Soroa [15] used PPR to solve the graph-
based word sense disambiguation (WSD) problem. In WSD,
a graph consists of nodes, which represent word senses,
and edges, which represent relations between pairs of word
senses. PPR is utilized when performing disambiguation by
applying a ranking algorithm to a graph. Pershina et al. [64]
introduced PPR-based random walk method to solve Named
Entity Disambiguation (NED) problem. They used PPR algo-
rithm on a graph where the vertices represent candidate links
and the edges represent links in Wikipedia. They achieved
state-of-the-art performance on a 27.8K named entity men-
tion dataset.

D. COMPUTER VISION

Computer vision is one of the fields where PPR has also
been widely applied. Kim et al. [19] addressed a multilabel
supervised image segmentation problem when initial labels of
some pixels are given. They introduced the generative model
for image segmentation using the steady-state probability of
RWR.

Since RWR considers all relevance relations between the
nodes in a graph (image), it is effective at addressing the
texture problem. Ham et al. [20] proposed a generalized
random walk with restart (GRWR), which is a generalized
version of RWR that adopts local and nonlocal approaches
for image regularization. They applied GRWR to depth map
upsampling and interactive image segmentation and showed
that the GRWR is more robust to outliers and can aggregate
texture information better. Wang et al. [65] utilized PPR
to refine image annotations. After a relevance model-based
algorithm determines the candidate annotations, RWR is used
to rerank the annotations based on the corpus information
and original confidence. Kim et al. [66] proposed a multi-
scale saliency detection algorithm that uses RWR to refine
a saliency map. Similarly, Kim et al. [67] proposed a spa-
tiotemporal saliency detection algorithm for video sequences
based on RWR. Lee er al. [68] proposed a robust dense stereo
reconstruction algorithm using RWR. Kim ez al. [69] devised
a modified data-driven RWR framework that can incorpo-
rate locally adaptive and data-driven restarting probabili-
ties to handle the colorization problem of grayscale images.
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Oh et al. [70] presented a probabilistic method for correspon-
dence matching using RWR.

E. BIOINFORMATICS

PPR can also be applied to scientific data analysis
[21], [47], [48]. Ivan et al. analyzed protein interaction net-
works using PPR [21]. They applied PPR to analyze protein-
protein interaction (PPI) networks that connect interacting
proteins. Sun et al. [71] proposed a global network-based
computational framework, which was called RWRIncD,
to infer potential human IncRNA-disease associations by
implementing the method on an IncRNA functional similarity
network. Chen et al. [72] proposed an Improved Random
Walk with Restart for a IncRNA-Disease Association Pre-
diction (IRWRLDA) model to predict novel IncRNA-disease
associations by incorporating IncRNA expression similarity
and disease semantic similarity. Chen et al. [73] proposed
a Network-based Random Walk with Restart on a Hetero-
geneous network (NRWRH) to predict potential drug-target
interactions on a large scale under the hypothesis that sim-
ilar drugs often target similar target proteins. Li et al. [74]
identified novel epigenetic factors by using a computational
method that applied RWR algorithm on a protein-protein
interaction (PPI) network using reported epigenetic factors
as seed nodes. Blatti and Sinha [75] presented a network-
based method, which involves RWR, for ranking the genes or
properties related to a given gene set. Chipman and Singh [76]
presented a method based on RWR, which captures aspects of
the network topology to classify potential genetic interactions
and applied it to biological networks.

F. OTHERS

There are many other fields where PPR is applied. The
FolkRank is a folksonomy-based algorithm that is used for
tag recommendations. Kim and El Saddik [17] proposed a
new way to efficiently compute the FolkRank by representing
it as a linear combination of PPR vectors.

In first-order probabilistic representation systems, infer-
ence by grounding can be very computationally expensive.
Wang et al. [42] proposed a first-order probabilistic language
to approximate the local grounding by applying PPR to a
small graph.

Nykl et al. [77] evaluated a citation network that was built
using the ISI Web of Science database. Their aim was to find
an evaluation method that best matches the list of authors who
received ACM Fellowships or ACM SIGs. The best ranking
method included PPR where the personalization is based on
PageRank journal values.

Local graph diffusion is an effective tool for solving graph
clustering problems. Avron and Horesh [78] proposed an
efficient local algorithm for approximating a graph diffusion,
which generalizes PPR and the heat kernel.

Tabrizi et al. [52] proposed a Personalized PageRank
Clustering (PPC) algorithm that utilizes the random walk
and modularity to accurately reveal the inherent clusters
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of graphs. It also gives a hierarchy of the clusters given linear
time and space complexity.

Andersen et al. [50] presented a generalized local parti-
tioning algorithm for undirected graphs to strongly connect
directed graphs by computing PPR vector.

Guo et al. [13] proposed the Access Time-length and
Frequency-based PageRank to prefetch web pages for web
page caching.

With respect to databases, Balmin er al. [38] devised
a method called “ObjectRank”, which is a variation of
PPR, to perform keyword searches based on authority.
Chakrabarti [40] proposed HubRank, which is a proxim-
ity search platform for Entity-Relation graphs, using the
dynamic PPR.

IV. COMPUTATION OF PERSONALIZED PAGERANK

In this section, we introduce the two basic algorithms for
computing PPR—the power iteration and equation solving—
and summarize the advanced studies about computing PPR.

There are two basic algorithms to solve the problem: the
power iteration and direct solving. These algorithms are
directly derived from the definition of PPR. The power iter-
ation performs the following iteration until 7™ converges:
Fth = cpF™ 4 (1 — ¢)5. The direct solution method
solves the following equation: 7 = cPF + (1 — ¢)s. Thus,
the solution 7 = (1 — ¢)(I — ¢cP)~!5 is the answer to PPR
query about the query state 5.

These algorithms have obvious drawbacks. First, the power
iteration algorithm requires multiple matrix-vector multipli-
cations. One iteration requires O(N 2) time. The direct solu-
tion algorithm is even worse. As we can see in the equation,
it includes the computation of the inverse matrix. Since its
time complexity is O(N?), it can be applied to small sized
graph data only. Furthermore, generally, matrix inversion
does not preserve the sparsity of the original matrix. This
means that we cannot utilize the sparse matrix representation
of graphs.

From the observation, we can see that the basic algorithms
cannot handle large-scale graphs. To solve the situation, there
have been many studies on the efficient computation of PPR.

Though there have been many studies on the efficient
computation of PPR, most of them can be categorized into
one of the following categories.

« Optimized iterative equation solving

o Optimized direct equation solving

« Bookmark coloring algorithm

o Dynamic programming method

« Monte-Carlo sampling-based method
Each category has distinctive characteristics in terms of

accuracy and costs. In the following sections, we provide
detailed discussions of each category.

A. OPTIMIZED ITERATIVE EQUATION SOLVING

These studies can be viewed as advanced versions of the
power iteration. Actually, the power iteration itself is identical
to the Jacobi method, which is the most basic iterative method
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of solving general linear equations. Since equation (4) is a lin-
ear equation, any iterative method for linear equation solving
can be applied, and as we stated in section 2.D, PPR equation
converges to the unique solution with iterative methods due to
its mathematical properties. Therefore, linear equation solv-
ing algorithms such as the Gauss-Seidel method, Successive
Overrelaxation (SOR), GMRES, and Multigrid methods can
be applied to the problem. Though these iterative methods
cannot produce exact solutions to the problems, their errors
can be controlled and the error bound can be strictly defined
unlike other approximation algorithms such as sampling-
based methods. On the top of applying those general equa-
tion solvers, diverse techniques are devised for the specific
problem of computing PPR.

One of the most recent studies in this category utilizes the
GMRES [10]. They utilize the GMRES for solving the equa-
tion (4), and applied a preconditioning method to accelerate
the convergence of iterative algorithm. General concept of
preconditioning is solving MAX = M b to solve AX = b.
The matrix M is called the preconditioner, and a well-chosen
preconditioner reduces the number of iterations. It is known
that the matrices that are close to A~! can be good precondi-
tioners. To construct a good preconditioner, they apply core-
tree decomposition. They use an inversion of the tree-like part
of the original graph as a preconditioner. The following table
shows the result of the performance evaluation.

Overall, their method performs better than the power iter-
ation and naive GMRES. They report that their algorithm
reduces the iteration count to achieve the same accuracy by
1/5 comparing to power iteration and 1/3 to naive GMRES.
However, their algorithm still requires several minutes to
process each query on large graphs with millions of nodes.

Additionally, there are several studies seeking to accelerate
the iterative method by tuning the power iteration. The extrap-
olation method is an example of the approach [30]. They
accelerate the power iteration by subtracting nonprincipal
eigenvectors periodically. They report that the extrapolation
method can reduce the number of iterations of the power
iteration by 1/2. It is an effective methods to solve the prob-
lem, but it is developed mainly for PageRank problem and its
scalability for PPR computation is not guaranteed.

B. OPTIMIZED DIRECT EQUATION SOLVING

The direct equation solving method that solves linear
equations by computing the inversions is not generally
recommended due to its high complexity. However, when
approximated answers are acceptable, revised versions of
the method that produce approximated solutions can be an
alternative method to solve PPR problems.

One of pioneering studies in this category introduces the
low rank approximation to reduce the inversion complex-
ity [1]. They use singular value decomposition (SVD) for
the low rank approximation. By using the Low rank approx-
imation and Sherman-Morrison lemma [79], it computes
PPR using a smaller inversion matrix. It can be achieved
as follows. When P = USV and A = (S—' — ¢VU) ™", then
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- cP)*] = -cU A V) holds according to the Sherman-
Morrison lemma. Since the dimension of § is far smaller
than P, (I — cUAV) can be computed more efficiently than
(I — cP)~!. This method provides a good approximation for
PPR problem; however, its error bound is hard to control.
They reported that their algorithm performs better than direct
inversion and the power iteration. However, they use a rela-
tively small graph (with 315K nodes) in the experiment.

There is also a study that optimizes direct equation solving
without introducing the approximation [9]. They reorder the
dimensions of the overall equations before the inversion to
preserve the sparsity of the original matrix.

Generally, matrix inversion can be computed via LU
decomposition, and the result is computed as U ~'L~!. With
the proper reordering, the sparsity of the original matrix is
also preserved with respect to U~! and L™!, and the sparse
matrices can be stored and processed more efficiently than
dense matrices.

Though it can efficiently process queries (one matrix-
vector multiplication per each query), it requires massive
precomputation time since it performs LU decomposition that
requires over O(N?) time. Considering that the size of the
datasets used in their experiments are relatively small (under
300K nodes), it is hard to say whether it can work with very
large graphs with over 10M nodes.

BEAR (Block Elimination Approach for Random Walk
with Restart on Large Graphs) is one of important recent
advancement [27]. It basically follows the studies of the
optimized direct equation solving category according to our
taxonomy. BEAR reduced the dimension of the matrix that
is to be inverted by the block elimination using the Schur
complement method [28]. When using the Schur complement
method, we need to invert only some submatrices and the
Schur complement matrix, which is smaller than the whole
matrix.

For an effective application of the Schur complement
method, the adjacency matrix should have a large and easy-
to-invert submatrix such as a block diagonal matrix. The
BEAR utilizes reordering and clustering to easily invert a
system matrix, similar to in Fujiwara et al. [9]. BEAR decom-
posed the graph into hubs and spokes. Within each connected
component containing spokes, BEAR reorders the nodes in
ascending order of the degrees within the component. As a
result, BEAR can get an adjacency matrix whose upper-
left area is a large and sparse block diagonal matrix that is
easily inverted, while the lower-right area is a small but dense
matrix.

In the rest of the preprocessing step, BEAR precomputes
several matrices including the Schur complement. To solve
the equation using the block elimination method, it requires
inverting the Schur complement matrix and block diagonal
submatrix. BEAR inverts these matrices using LU decom-
position. In the query phase, the BEAR quickly computes
PPR scores for a given query node using the matrices that
are computed in the preprocessing step. The BEAR takes less
time and memory space than other preprocessing methods.
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FIGURE 2. Example of bookmark coloring algorithm.

Their experiments show that their algorithm runs 300 times
faster than the simple iterative method.

C. BOOKMARK COLORING ALGORITHM

Bookmark Coloring algorithm (BCA) [6] is also an iterative
algorithm similar to the power iteration. However, BCA asyn-
chronously updates PPR vectors while the power iteration
does it in a synchronous manner. BCA utilize equation (8)
in section 2.D. With the interpretation, PPR can be computed
in a cumulative way. The basic BCA for computing PPR(v;)
can be interpreted using a recursive function BC (j, w, c).

1. Setp < ¢V, whenj =i, and p < O otherwise.
2. If stopping criterion is met, return p.
3. For all mx € Out(nj), do p <« p + BC(k,(1 —

cyw/deg(ny), c).

4. Return p.

Fig. 2. illustrates how the basic bookmark coloring algorithm
works. It can be represented as a recursive construction of
PPR vector by repetitively applying the decomposition theo-
rem.

However, the above algorithm requires a large storage
space to store the intermediate PPR vectors. The basic version
of the algorithm can be implemented with the following
alternative algorithm.

1. Initialize p < 0 and Q = {(b, 1)}
2. While Q is not empty.
A. Pop a queue Q element (i, w)
B.pi=pit+a-w
C. If w< € then continue
D. Foralllinksi — je L
i. If pair (j,s) € Qthens = s + (1 — ) - w/deg(i).
ii. Else add a new pair (j, (1 — «)) - w/deg(i)) to Q
3. Return p.
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Though the above algorithm is defined as a recursive
function, BCA can also be implemented using a queue
data structure [6]. This scheme provides a more efficient
implementation utilizing sparsity than matrix-based algo-
rithms such as the power iteration. This version of BCA
is also called ForwardPush algorithm [83]. It is possible
to compute PPR (V;)[j] for the given target node j and
every source node i by reversing the weight propagation
direction from the above algorithm. The reversed one is called
ReversePush algorithm [83]. Several recent studies combines
the Push scheme and Monte-Carlo sampling to improve
query processing time. These algorithms are discussed in
section 4.E and 4.F.

BCA gradually completes the summation that is defined
in equation (8) using repeated asynchronous updates. It can
also be viewed as an asynchronous version of the power
iteration, and its convergence rate is also identical to the
power iteration. That means that BCA requires large numbers
of iterations since the basic algorithm cannot benefit from
advanced algorithms such as the GMRES in terms of the
number of iterations.

If some PPR(vy)s are known, BCA can be computed in
a more efficient way utilizing the decomposition theorem.
We stop the recursive calls and directly construct the return
value using known vectors. HubRank [5] is a revised version
of BCA with a smart hub selection algorithm and approxi-
mation. It provides better performance in terms of the query
processing time; however, it still requires a long precomputa-
tion time. In an empirical evaluation, it takes over 20 hours
to compute PPR vectors for the selected hubs to achieve
reasonable query response time.

D. DYNAMIC PROGRAMMING
The dynamic programming method for PPR utilizes the
decomposition theorem [23]. The most basic algorithm
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Repeat this
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FIGURE 3. Dynamic programming algorithm for the example graph.

repeatedly updates the process using the decomposition the-
orem until PPR vectors converge.
1) Set PPRY (3}) « c7j for all n;.
2) Update PPRTD (37) «
1—-c¢

—
Vo PPR
Y 0ur ()| Zn,-eom»

for all n;.
3) Repeat step 2 until it converges.
Fig. 3. illustrates how the dynamic programming algorithm
updates PPR vectors. Like the bookmark coloring algo-
rithm, dynamic programming also updates vectors by repeti-
tively applying the decomposition theorem. However, unlike
the bookmark coloring algorithm, dynamic programming
updates every PPR (7,)) simultaneously.

This algorithm can be applied to the Fully Personalized
PageRank problem since it simultaneously produces the
PPR (77 )s from every node; however, it requires a large space
to store the intermediate results. To reduce the space require-
ment, two methods are applied: rounding and sketching [12].

The rounding technique optimizes its space requirement by
rounding all values down to a multiple of the prescribed error
value €. With the rounding technique, the basic version of
dynamic programming changes to the following one.

1. Set PPRY (7,)) « ¢V forall n;.
2. Leteg < €-(1—c¢)
3. Update PPR*TV (V) <

l—c = (k) =
— PPRY (v
Out )] 20w (i)

c ® (37

J

Yi(cvi +

for all n;.
4. Repeat steps 2 and 3 until k = 2log;_, €.
The function ¥ represents the rounding down to e.
This algorithm guarantees PPR (7,)) [/1 — 2¢/c <PPR (7,))
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il < PPR(V;)[j] for all is and js. In the second one,
sketching is a hash based approach that utilizes the randomize
data structure with low dimensions. It dramatically reduces
the space requirement; however, it takes far longer and does
not guarantee the error bound. In the empirical evaluation,
the dynamic programming algorithm with rounding solves
the fully Personalized PageRank problem on a graph with
80M nodes in 2.25 days, and it takes 6 days with rounding
and sketching. In summary, these optimization techniques
achieve impressive spatial performance gain; however, it is
hard to say that they are efficient enough to process large
graphs in terms of the time.

E. MONTE-CARLO SAMPLING-BASED METHODS
Monte-Carlo sampling is one traditional method to solve
problems with high complexity. It avoids the complexity by
deriving the solutions using samples that are produced with a
large number of trials. This method can be easily applied to
the Personalized PageRank problem. In this case, the sample
database is a collection of random walk traces, that is, a set
of node sequences (which are called “fingerprints’).

There are two Monte-Carlo methods for the Personalized
PageRank problem: the MC end-point and the MC complete
path [22]. The MC end-point method uses the summation
form (equation (8)). If we know P¥5 with enough depth ,

We can compute PPR (5) using simple algebraic opera-
tions, and PX5 can be approximated by counting the end points
of the sample traces with length k from the starting node that
is specified within 5. While the MC end-point uses only the
end point of each trace, the MC complete path method uses
every node within traces.

Monte-Carlo scheme is mainly utilized in the fully Person-
alized PageRank problem since it does not requires a square
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TABLE 2. Summary of PPR computation approaches.

Precomputation Time %‘::::y Answering Auxiliary Data Size Precision
Iterative Equation Solving None High None Guaranteed error bound
Direct Equation Solving Very High Low Large Exact
Bookmark Coloring None High None Guaranteed error bound
Dynamic Programming Very High Low Large Guaranteed error bound
Monte-Carlo Sampling High Low Large Probabilistic error bound

space to store all computed PPR vectors. One of most impor-
tant algorithms in this category is doubling [4]. It populates
long traces by concatenating short traces, and the procedure
is defined using MapReduce framework. In the empirical
evaluation, the doubling algorithm performs approximately
8 times faster than rounding (section 4.E). In spite of its
impressive enhancement, it does not strictly guarantee the
error bound because of the substantial limitation of sampling
method, and it is hard to say that it obviously outperforms
other advanced approaches considering that rounding is a
relatively underperforming algorithm that has an identical
convergence rate to the power iteration.

One of recent studies, FAST-PPR, also adopts the
Monte-Carlo scheme. It solves point-to-point Personalized
PageRank problem that computes PPR (7,)) [/] when the
graph and two nodes (source and sink) are given [11]. It uti-
lizes two sided random walk samples (from the source and
sink) at the same time. It can be viewed as the combination of
Monte-Carlo sampling and ReversePush that is discussed in
section 4.C. As a result, it achieves impressive performance.
However, it is unclear how to utilize the point-to-point PPR in
the applications since the entries of PPR vectors are relative
values. Another recently proposed method, PowerWalk [87]
is also a sampling-based algorithm. To produce accurate
answers, it process queries in iterative manners based on the
sampled information.

F. OTHER METHODS

There are several studies that cannot be categorized into
the above categories. The study on finding the top-k near-
est nodes based on PPR is one of the most important
examples [8]. In this study, they propose a unified algo-
rithm to solve the top-k problem for several random walk-
based node similarity (i.e., proximity) measures including
the SimRank [24], Discounted Hitting Time, and PPR. First,
they define the unified form generalizing those proximity
measures between two nodes n; and n; as follows:

S (n,-, nj) = d}i_r{loo Sq (n1, n2)
d
where Sy (n;, nj) = aZAkPk (ni,m) +b (11

k=1
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Here, a and b are real-valued constants (¢ > 0), and
A€ (0,1). For PPRa=c, A =1—c, P (ni,nj) = P*V; [jl,
and b = 0. From the above formulation, we can compute the
upper bound of § (ni, nj) as follows:

S (ni, ) € [Sa (ni,nj)  Sa (niv nj) + X1
a- )\'d+l

where Xj = —1 > (12)

Using the above upper bound information, we can prune
out unpromising nodes in the early stages of the algorithm.
This algorithm is impressive in terms of time and space.
It runs fast and requires no auxiliary data structure. The
biPPR [80], HubPPR [81], and FORA [82] solve the same
problem. Like the previous algorithm, they also estimate
bound information to reduce computation cost. These algo-
rithms are based on the combination of the push scheme and
Monte-Carlo sampling like FAST-PPR [11]. The biPPR and
HubPPR adopt ReversePush while FORA adopts Forward-
Push.

There are some optimization techniques such as turning the
nodes with high out-degree into sinks to reduce computation
time with low approximation error [25] and introducing novel
approximation schemes such as anti-differentiating approxi-
mation algorithms [26].

G. RECENT ADVANCES

The efficient computation of PPR is still one of major on-
going issues of massive graph processing, and many remark-
able studies have been published recently.

BePI [58] is a study that combines the preprocessing
method and the iterative method based on the BEAR.
BePI addresses the challenges that are faced by previous
approaches by combining the best of both the preprocess-
ing and iterative methods. BePI uses a block elimination
approach, which is a preprocessing method, to achieve a fast
query time. BePI incorporates an iterative method within the
block elimination to decrease the memory requirements by
avoiding expensive matrix inversions. BePI takes the advan-
tages of both the preprocessing methods and iterative meth-
ods. Consequently, BePI achieves a better scalability and a
faster query time than other methods.
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TABLE 3. Summary of PPR computation algorithms.

Category Publication info Feature Auxiliary Data Precision
ICDM 2006 [1] Low rank approximation Approx1mat§d Inexact
inverse matrix
VLDB 2011 [9] Matrix inversion after reordering EZ:Smeosed fverse Exact
Direct SIGIR 2013 [49] Updatmg P 1"ecompu.ted PPR vectors in Not required Exact
X . direct equation solving scheme
Equation Solving D E
SIGMOD 2015 [27] Matrix inversion after block elimination cecomposed mverse Exact

matrix

SIGMOD 2017 [58]

Matrix inversion after block elimination,
and fine tuning the result with iterative
methods

Decomposed inverse
matrix

Inexact result with
guaranteed error
bound

Iterative
Equation Solving

Accelerated power iteration via

Inexact result with

WWW 2003 [30] - Not required guaranteed error
extrapolation.
bound
KDD 2010 [25] Turning the nodes with high out-degree Not required Inexact

into sinks to reduce computation cost.

VLDB 2014 [10]

Iterative method with preconditioning by

Result of core-tree

Inexact result with
guaranteed error

core-tree decomposition decomposition bound
KDD 2016 [83] A varla'nt of power iteration for Not required Inexact

dynamic graphs

A variant of power iteration for Inexact result with
WWW 2018 [84] P Not required guaranteed error

dynamic graphs

bound

Internet Math. 2006
[6]

Basic bookmark coloring algorithm
(BCA)

Not required

Inexact result with
guaranteed error
bound

Bookmark Coloring VLDB Journal 2011, Revised BCA using precomputed PPR 5;:322?:3::;; Inexact
Algorithm WWW 2007 [5] vectors of selected nodes
query nodes
. Inexact result with
KDD 2015 [85] Updatlpg precomputed PPR vectors by Not required guaranteed error
BCA-like procedure
bound
Precomputed PPR Inexact result with
WWW 2003 [23] Basic dynamic programming for PPR vectors of selected guaranteed error
Dynamic query nodes bound
Programming All PPR vectors

Dynamic programming with rounding &

WWW 2006 [12] need to be stored Inexact
sketch . .
while processing
Internet Math. 2005 Basic Monte-Carlo sampling for PPR Sampled random Inexact
[22] walk traces
. . . Sampled random
Monte-Carlo SIGMOD 2011 [4] Monte-Carlo sampling with doubling walk traces Inexact
Sampling KDD 2014 [11] Combining Monte-Carlo sampling and Not required Inexact
ReversePush
CIKM 2016 [87] Sampllng-bas§d method with iterative Sampled random Inexact
query processing walk traces
VLDB 2011 [8] Top—k query processing by error bound Not required Exact top-k list
estimation
ICML 2014 [26] Anti-differentiating approximation Not required Exact
Tours and
EE?B Journal 20151 g o duling with hub info reachability Tnexact
information
Top-k query processing by error bound
Other WSDM 2016 [80] estimation, and combination of Monte- Sampled random Inexact top-k list

Carlo sampling and ReversePush

walk traces

VLDB 2016 [81]

Top-k query processing by error bound
estimation, and combination of Monte-
Carlo sampling and ReversePush

Sampled random
walk traces

Inexact top-k list

KDD 2017 [82]

Top-k query processing by error bound
estimation, and combination of Monte-
Carlo sampling and ForwardPush

Sampled random
walk traces

Inexact top-k list

FastPPV (different from the Fast-PPR [11] that was
introduced in section 4.E) is also a remarkable innovation

for this problem [29], [54]. The study presented a sched-
uled approximation strategy to approximate PPR vectors.
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Specifically, they developed a hub based scheduling scheme
and a structured aggregation model. They also explored the
issue of hub selection. Their experiment results show that
their method outperforms HubRank and Monte-Carlo sam-
pling methods.

Multiple methods focusing on dealing with dynamic
graphs have been suggested [49], [83]-[85]. They update
the precomputed PPR vectors when the edges are added
or deleted, and they also can be categorized into major
approaches like other works. IRWR [49] updates PPR vectors
based on direct solving formula, and LayFwdUpdate [83],
and OSP [84] are dynamic variants of iterative methods.
TrackingPPR [85] works on the bookmark coloring scheme.

V. DISCUSSIONS

In the previous section, we review the major studies on the
computation of PPR. Each approach has distinctive character-
istics, and one should choose the most appropriate algorithm
by considering the most suitable characteristics to properly
utilize PPR. Table 2 summarizes the characteristics of the five
approaches that presented in the previous section.

In terms of the precision, direct equation solving is the best
algorithm. If errors are totally unacceptable, direct equation
solving is the only valid solution. Though their precom-
putation costs are high, the advanced techniques based on
approaches such as the BEAR reduce the large amount of pre-
computation time. Iterative equation solving, the Bookmark
Coloring algorithm, and Dynamic Programming cannot pro-
duce exact answers; however, their errors can be controlled
since they guarantee a predefined error bound. With a very
small error bound, the outputs can be viewed as near exact
answers. One should consider using approaches other than
exact algorithms since a large portion of the applications
beside scientific data analysis do not require exact compu-
tations of PPR.

When an application requires short precomputation time,
direct equation solving-based techniques and Monte-Carlo
sampling can be considered as improper solutions. In con-
trast, iterative methods and Bookmark Coloring do not
require precomputation phases. Though iterative methods
require longer query time computations, this can be overcome
by adopting an advanced iterative scheme such as precondi-
tioning and overrelaxation. Some advanced techniques based
on approaches such as HubRank reduce the query time com-
putations by introducing precomputation phases. One should
consider these techniques when the query time computation
is problematic.

The auxiliary data size also should be considered. Direct
equation solving requires space to store the matrix inversion,
and Monte-Carlo sampling must store large numbers of ran-
dom walk traces to achieve high precision while iterative
methods and Bookmark Coloring require no auxiliary data
space. If no additional storage to support PPR computation
is available, the most basic iterative methods and Book-
mark Coloring algorithms should be introduced. However,
there exist several advanced techniques that utilize additional
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space to reduce the computation time. If the situation is not
extremely limited in terms of space, one should consider
those advanced algorithms.

VI. CONCLUSION

We have provided a comprehensive summary of the current
studies on computing PPR in massive graphs by categorizing
them into five major approaches: iterative equation solv-
ing, direct equation solving, bookmark coloring algorithm,
dynamic programming, and Monte-Carlo sampling.

Future research direction can be derived from the recent
successful studies. One of recently proposed algorithm,
BePI combines the direct equation solving and the iterative
equation solving. FAST-PPR, biPPR, hubPPR and FORA
improves the performance by combining Monte-Carlo sam-
pling and BCA-like scheme. Since each approach has been
highly matured through years, it is a proper approach to
combine the multiple schemes and utilize their merits.

Fusing with less highlighted approach such as iterative
method can be a promising option. BePI can be the example,
and the continuing advancements in iterative equation solvers
[86] make the iterative approach an important candidate to
consider.

Sticking to one dominant approach is not the ideal solution.
Comprehending the characteristics of diverse approaches and
effectively utilizing them can greatly contribute to making
significant breakthroughs. We hope that this survey to be a
meaningful source of insights for the future research on PPR
computation.
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