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ABSTRACT Indoor magnetic-based positioning has attracted tremendous interests in recent years due to
its pervasiveness and independence from extra infrastructure. Existing methods for indoor magnetic-based
positioning are either point-based fingerprint matching or sequence-based fingerprint matching using the raw
magnetic field strength. However, the magnetometers in smartphones are vulnerable to a few factors such as
user’s postures and walking speed, which causes the magnetic field strength corresponding to a location often
shift in time or exhibit local distortions, thus greatly limits the positioning performance of existing methods
rely on raw magnetic field strength. To this end, we observe the differences among magnetic field strength
sequences are mainly attributed to small local segments, and design a new sequence-based fingerprint based
on the differences among small local segments of raw MFS sequence to represent raw MFS sequence
for indoor positioning. To demonstrate the utility of our proposed sequence-based fingerprint, we have
performed a comprehensive experimental evaluation on two datasets, the results show that the proposed

approach can significantly improve positioning performance compare with baseline methods.

INDEX TERMS Indoor positioning, magnetic field, sequence-based fingerprint, smartphone.

I. INTRODUCTION
Recent years have witnessed an increasing attention on indoor
positioning in view of its importance to indoor location-
based services, such as indoor advertising [1], patient activ-
ity monitoring [2] and indoor location recommendation
[3]-[5]. Although a few indoor positioning methods have
been proposed (e.g., UWB [6], RFID [7], Bluetooth [8],
WiFi [9] and infrared-based techniques [10]), they have
some inherent limitations: Ultrasound is vulnerable to indoor
reflection and scattering, RFID and Bluetooth-based posi-
tioning require extra infrastructure and have small coverage
range, Infrared-based positioning cannot cross walls or other
obstacles, WiFi-based positioning is unstable due to hetero-
geneous devices and dynamic environment status.
Magnetic-based positioning becomes more and more pop-
ular in recent years since it is omnipresent and incurs almost
no additional energy consumption. Researchers have found
that the magnetic field strength (MFS) in indoor environ-
ments is sufficiently stable, i.e., the variation of MFS at
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a location over time is negligible. Moreover, the values of
MES at different positions are different and consequently
magnetic-based positioning is possible by pattern match-
ing of the MFS records. In addition, the MFS is robust
to indoor multipath phenomena and without LOS operat-
ing conditions. A few magnetic-based positioning methods
[11]-[21] have been proposed in the literatures due to these
special properties (for a review sees Section 2). However,
existing magnetic-based positioning methods suffer from two
challenges. First, existing point-based fingerprint matching
using the 3-D MFS vector makes no sense due to the fol-
lowing two factors: 1) the MFS at a given indoor loca-
tion is a 3-D vector in space that varying similarly with
near location; 2) different orientation or postures of mobile
phone lead to different MFS readings at the same location.
Second, existing sequence-based fingerprint matching is far
from satisfactory since the MFS values measured by mobile
devices are vulnerable to external magnetic perturbations
(e.g., the MFS may be distorted by metal or noise sources
deriving from the surrounding environment), which often
result in a magnetic distortion known as soft and hard iron
effects.
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FIGURE 1. Three MFS sequences of the same space trajectory and the discriminative segment is highlighted with red color for each

sequence.

Even though a number of studies have been proposed
to address the challenges of magnetic-based positioning
recently [22]-[30], these approaches also have a number of
limitations. For example, the studies in [22]-[24] tackled the
two challenges by incorporating particle filters along with
inertial sensors. Unfortunately, they cannot obtain reliable
positioning results because dead reckoning relies on inertial
sensors will suffer from serious cumulative error, and contin-
ually collecting data from multi-sensor is energy-consuming.
Another literatures [25]-[28] addressed the challenges with
hybrid positioning by jointly utilizing magnetic field and
other information (e.g., WiFi, channel state information and
visual images). However, WiFi radio signal strength (RSS)
easily fluctuates due to the multipath effect such as the
diffraction, scattering and reflection in indoor environments.
Although channel state information is fine-grained value
from the physical layer compares with WiFi RSS, but it
requires customized equipment. Hybrid positioning using
visual images and magnetic field is time consuming and
energy-consuming. Still other researchers solved the chal-
lenges of localization systems with magnetic field by recog-
nizing the magnetic sequence pattern, but most attempts such
as dynamic time warping (DTW) [29] and bag of words [30]
cannot effectively capture the pattern in raw MFS sequence.
The reason is even along the same path, the magnetic intensity
on the path fluctuates with a slight change in location due to
a few factors, such as user’s walking speed and the device’s
height.

Although magnetic sequence pattern might be shifted
in time and exhibit local distortions/noise, we observe the
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pattern might be present on short local segments of raw MFS
sequence rather than on its global structure. For instance,
three MFS sequences for the same space trajectory are
shown in Figure 1, we observed that although the three
sequences are distorted in temporal and spatial, the dis-
criminative patterns in short segments are obvious and sta-
ble for each MFS sequence. On this basis, we propose
an indoor magnetic-based positioning system by learning
sequence-based fingerprint from local raw MFS sequences
in this paper. Specifically, we firstly learn sequence-based
fingerprint with high discriminative power using training
data. Then, we transform the raw MFS sequences of test
dataset into the learnt fingerprint representation and estimate
the unknown location of a test sample by training a classifi-
cation model. To summarize, the main contributions of this
paper are as following:

o We focus on indoor magnetic-based positioning and
propose a novel sequence-based fingerprint based on the
differences among small local segments of raw MFS
sequence, which can efficiently handle the local distor-
tions and shift of raw MFS sequence.

« Different from taking raw MFS sequence as features
directly, we firstly learn sequence-based fingerprint with
high discriminative power using training data, to esti-
mate the unknown location of a test sample by training
a classification model.

o« We conducted extensive experiments on two real-
world datasets, and the experimental results on
the task of indoor localization show that our pro-
posed approach significantly outperforms existing
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state-of-the-art approaches in terms of both mean posi-
tioning error and cumulative error distribution.

The remainder of the paper is organized as follows:
Section II surveys related work on indoor positioning with
magnetic field. Section III describes the proposed indoor
magnetic-based positioning model in detail. Section IV
reports and discusses the experimental results. Finally,
we present our conclusion and future work in Section V.

Il. RELATED WORK

A few magnetic-based positioning techniques [11]-[21] have
been proposed due to the stability and uniqueness of the
magnetic field. The work in [11] proposed an energy-
efficient indoor positioning method based on MFS sequence
with an improved Dynamic Time Warping algorithm.
Gozick et al. [12] proposed a magnetic map construction
method by building the space magnetic distribution using
an magnetism calculation technique. However, the proposed
positioning system is impractical since it utilizes the mag-
netic anomalies around pillars that may be rare in some
indoor environments. MalLoc [13] utilized magnetic magni-
tude difference as fingerprint to search real-time sampling
data in magnetic maps. Their results reveal magnetometer’s
sensitivity is different for different devices. Meng et al. [14]
constructed magnetic map for online positioning using local
weight regression. The study [15] proposed a positioning
method based on low-frequency magnetic that exploited the
principle of inductive coupling between tuned wire loop
antennas. Chung et al. [16] proposed a positioning method
with an array of magnetometers by measuring the magnetic
readings of all directions at a position. The improved work
[17] utilized all three coordinates of magnetic field to build
localization fingerprint instead of the commonly used mag-
nitude, which can avoid the measurements for all directions
by coordinate transformation, but it is error-prone since the
orientation estimation usually contains errors. In [18], many
magnetic field fingerprint features (such as kurtosis, mean
and slope) are tested and can achieve room-level accuracy.
The work [19] studied the magnetic field intensity and direc-
tion distribution features for constructing magnetic maps
of indoor space. To improve the positioning accuracy, this
study [20] using two kinds of automatic calibration methods,
i.e., opportunistic magnetic trajectory matching and indoor
landmark identification. The study [21] performed indoor
magnetic-based localization by using deep learning to recog-
nize magnetic sequence patterns. However, these attempts are
proven only in an one-dimensional space, because magnetic
intensity fluctuates severely with even a slight change of
locations.

Unfortunately, the studies [31]-[33] demonstrated that the
3-D magnetic fingerprints may not be unique in a large indoor
space. In addition, different orientations of mobile devices
lead to different readings since the metal construction of
magnetometer could influence the magnetic field. In addition,
sensor noise is unavoidable primarily due to hasty movements
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of a smartphone user and the inherent bias of different smart-
phone sensors. These factors make positioning systems with
raw magnetic field strength may achieve poor positioning
performance.

Recently, researchers proposed various new techniques to
address the challenge of indoor positioning based on raw
magnetic field strength. For example, the studies in [22]—[24]
utilized particle filter to tackle these challenges and improve
positioning accuracy. The basic principle is to model user’s
state such as position and heading direction as particles and
represent the posterior distribution of a user’s state. More
exactly, the work [23] designed a technique for map matching
where the pedestrian movement is matched to a map of
the magnetic landscape based on particle filter. Howerver,
existing motion estimation methods are error-prone when
applying to smartphone tracking, motion estimation usually
incurs much more noise than robots thus greatly limit the
positioning accuracy. To minimize errors in motion estima-
tion and improve the robustness of the basic particle filter,
the study [24] proposed reliability-augmented particle filter
for magnetic-based positioning based on dynamic step length
estimation and heuristic particle resampling. However, all
particles may lost tracking of the user and is unrecoverable in
highly noisy environments. To solve this, the work [22] pro-
posed a hybrid positioning by fusing geomagnetic and visual
sensing, used a context-aware particle filtering framework to
track the user with the goal of maximizing the positioning
accuracy.

Other studies [25]-[28] address the challenge of indoor
positioning with raw magnetic field by integrating informa-
tion from other sources. The works [25], [26] incorporated
WiFi signals to achieve much improved positioning accuracy
for indoor environments. But the WiFi RSS strength easily
varies due to the multipath effect (e.g., diffraction, scattering
and reflection in indoor environments. To compensate for
the multipath defect of WiFi RSS, the study [27] utilized
channel state information to reduce the localization error of
magnetic fingerprint positioning. A few studies [28] fused
geomagnetic and visual sensing to improve the positioning
accuracy. However, indoor positioning by fusing magnetic
field and other information obviously incurs high training
cost and may need extra infrastructure.

Our proposed approach differs from the above-mentioned
work in the following two aspects: 1) the proposed approach
performs indoor positioning based on magnetic field solely,
which is scalable and pervasively available. 2) the proposed
approach learns a set of sequence-based fingerprints with
high discriminative power from labeled magnetic sequences,
which can boost indoor localization accuracy. In addition,
the proposed approach is energy-efficient since the learnt
sequence-based fingerprint is usually much smaller than the
raw magnetic sequence.

IIl. THE PROPOSED INDOOR POSITIONING MODEL
In this section, we first present the problem statement of
indoor positioning with MFS sequence data. Then detail the

163233



IEEE Access

Y. Chen et al.: Learning SBFP for Magnetic Indoor Positioning System

MFS sequence at each location
<loc, § ={oy, ..., 0, ...,01 }>

\——{ Collect Magnetic Data }—v

Calibrate Raw MFS
Sequence

Learning sequence-
based fingerprint

Mobile Phone or
Smart Watch

Feature

transformation
1

In offline phase

New collect MFS sequence
2,8 = (B3 o) By OT>

1
Feature matghing
! 1
' |
I

In online phase

1
v 1
Calibrate collected Feature transformation Classification model Location
MFS Sequence (SVM, KNN, etc) estimation
FIGURE 2. The framework of the proposed indoor magnetic-based positioning method.
TABLE 1. Notations used in the paper.
SYMBOL DESCRIPTION
N,M,K The number of D;,,D;, and C
Dy, Train dataset that contains a few MFS sequences labeled with space trajectories
Dy, Test dataset that contains a few MFS sequences
C The set of space trajectories in indoor environment
(u,1,R) MFS sample collected by user u at time ¢

S A MFS sequence that contains a set of MFS samples
Sﬁ A MFS subsequence of S that contains / continuous MFS samples and starts at position p

D
subDist (S, )

The minimum distance between MFS subsequence Sﬁ, and MFS sequence S

A; A MFS sequence need to find the corresponding space tarjectory

proposed approach, a fingerprint-based positioning method
by learning sequence-based fingerprint based on the differ-
ences among small local segments of raw MFS sequence.

A. PROBLEM STATEMENT

For ease of the following presentation, we define the key data
structures and notations used in the proposed method. Table 1
lists the relevant notations used in this paper.

Definition 1 (MFS Sample): A MFS sample is a triple
o(u, t, R) that means the collected magnetic field strength
by user u at time ¢. R is a 3-D vector and denoted by
(r*, ¥, r?). Actually, the magnetometer measures the value of
the magnetic field strength at a position in space relative to the
orientation of the smart phone. This magnetic field strength is
a vector of three coordinates, each one representing the value
of the magnetic field along one direction of the phone’s frame
(x,y,2).

Definition 2 (MFS Sequence): We define a MFS
sequence as a set of MFS samples and denoted by S =
{o1,...,0i,...,0r}, 0; represents the collected MFS sample
attime t;, | < i < T.Typically, The MFS sequence is utilized
to predict a short indoor trajectory and has about 50 discrete
MFS samples [34].

Definition 3 (MFS subsequence): A MFS subsequence SII7
is a set of continuous MFS samples from MFS sequence S,
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which starts at position p and the number of MFS samples
is /.

Definition 4 (SubSequence Distance): SubSequence Dis-
tance subDist(S., S) represents the minimum distance
between Sll7 and all the subsequences of § with length /, denote
by:

subDist(S), S) = min{dist(S},. S}). ... dist(S}. S} _;, )}
ey

where dist(Sifl Iy Sll,) is the Euclidean distance between
Séi 141 and S[l,, [ and L are the length of subsequence Sll7 and
sequence S respectly.

Definition 5 (Train Dataset): A train dataset Dy, is a col-
lection of N MFS sequences {S(1), S(2), ..., S(N)} labeled
by K space trajectories C = {ci1,...,¢j, ..., ckx}. Thus, Dy
is a set of pairs of MFS sequence and the corresponding space
trajectory: Dy = {(S(i),cx): 1 <i <N,1 <k <K}.

Based on the above definitions, we formulate the problem
statement of indoor magnetic-based positioning as: Given: 1)
Train dataset Dy, = {(S(i),cx) : 1 <i < N,1 <k <K}
generated by manual annotation; 2) A few MFS sequence
D, = {A1,...,Ai, ..., Ay} collected by users who need
for positioning; Objective: find the space trajectory in C that
corresponding to A;(1 < i < M) by MFS sequence matching.

Basically, one can find the space trajectory corresponding
to A; by matching MFS sequences with a similarity measure,
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such as Euclidean distance and dynamic time warping. How-
ever, the raw MFS sequence of the same space trajectory
collected by users may be distortions in time and exhibit
local noise, similarity measure relies on raw MFS sequences
cannot find the correct space trajectory. To tackle this chal-
lenge, we firstly extract sequence-based fingerprint with high
classification accuracy from the raw MFS sequences, then
matching MFS sequences by training a classification model
based on the learnt sequence-based fingerprint.

B. THE PROPOSED APPROACH

As shown in Figure 2, the proposed model performs indoor
positioning by two phases: 1) offline learning sequence-based
fingerprint via labelled MFS sequences and building localiza-
tion map of indoor space; 2) Online estimating the unknown
position with a classification model. In online localization
phase, the test MFS sequences are first transformed with
the learnt sequence-based fingerprints, then are fed into a
classification model for location estimation. Note that the raw
MEFS Sequence needs to be calibrated since many factors can
influence the MFS strength during data collecting.

1) CALIBRATING RAW MFS SEQUENCE

A few factors can influence the MFS records during collect-
ing, such as mobile phone pose, metallic materials and noise
in magnetometer measurement, thus the MFS sequences are
pretreated to remove the added noise for improving the posi-
tioning accuracy. Existing studies [23], [24] demonstrated the
MES records should change smoothly in a small continu-
ous area. Therefore, the MFS records fluctuate significantly
within a small area can be utilized to identify noise data.
On the basis, we eliminate noise data by two stages: 1) Iden-
tify all noise data in raw MFS sequence by a sliding window-
based technique; 2) Replace noisy data with predicted values
of the autoregressive model.

Step 1: Identify Noise Data in Raw MFS Sequence. We
utilize the fluctuation degree of MFS records in a small
sliding window to identify noise data. Formally, given a
MES sequence S = {01, ..., 0;, ...}, we define Var(s;, rd, 7)
to represent the d-dimension fluctuation degree of MFS
sequence in sliding window (¢; — 7/2,t + t/2), as shown
in Equation 2.

ti+1/2 _
Yo =ry )

j=ti—t/2

1
T—1

Var(t;, rd, T) =

where rjd is the average MFS values from d-direction in time
window (t; — ©/2, 1 + t/2), r{ is the MFS value from d-
direction at time ;.

If the MFS fluctuation degree in time window (t; —t /2, t;+
7/2) is significantly higher than average, we can infer it is a
noise data at time #;. Formally, we use variation coefficient «
to quantify the fluctuate degree, as shown in Equation 3.

IS x Var (i, r?, 1)
Zj‘ill Var(tj, r?, 7)

3
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Algorithm 1 Learning Sequence-Based Fingerprint of Train-

ing Dataset

Require: 1) D;; = {S(1),5(2),...,S(N)}; 2) the mini-
mum and maximum length of sequence-based finger-
print: minL and maxL; 3) the number of learnt sequence-
based fingerprints: k.

Ensure: The learnt top-k sequence-based fingerprints: Uy =

{ul, uz, ..., Mk}

1. Uy =0,

2: for each MFS sequence S(i) € Dy do

3: © = @,

4:  for 1= minL to maxL do

5: Generate all subsequences with length [ of S;: S(i)";
6: for each subsequence sq € S(i)! do

7: Dist(sq) = subDist(sq,S(1));

8: score = evaluateCandidate(S(i),sq);
o: Add < S, sq, score > to ¢;
10: end for
11:  end for
12: end for

13: Sort ¢ by score and remove self-similar subsequences;
14: return Select top-k subsequences in ¢ and add to Uy;

For example, set time window size T = 5 and variation
coefficient as &« = 3, the three direction’s fluctuation degree
from MFS sequence in Figure 3a is calculated as shown
in Figure 3b. As shown in Figure 3c, we infer the segments in
the red dotted box may contain noise data.

Step 2: Replace Noise Data with Predicted Values of
Autoregressive Model. We infer a sliding window may con-
tain noise data using a threshold-based technique in Step 1,
then detect the exact location of the noise data based on an
autoregressive model. The principle is the difference between
the forecasted value and the actual value can be calculated
as the noise score, which represents a deviation between the
expected normal behaviour and actual behaviour. Formally,
given a MFS sequence that may contain noise data in sliding
window {x1, x2, ..., x;}, the MFS value in the sliding win-
dow is forecasted by Equation 4.

o= ap(t—i) @)
i=1

The autoregressive model aims to find a;, i.e., the autore-
gressive coefficients, to minimize the squared error between
x; and X;. The autoregressive coefficients can be estimated by
maximum likelihood estimation. Once we have a forecasted
value from autoregressive model for an incoming actual
value, the noise data are replaced by the forecasted value.

2) LEARNING SEQUENCE-BASED FINGERPRINT FROM
LABELED MFS SEQUENCE

In this study, the indoor positioning problem is formulated
as predicting the space trajectory of user-generated MFS
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FIGURE 3. An example of identifying noise data in raw MFS sequence.

sequences based on a few labeled samples. However, the raw
MFES sequence might be shifted in time and the difference
might be present on short local segments rather than on global
structure, as shown in Figure 1. Furthermore, we observe
most MFS sequences have the same global structure but differ
only in the highlighted segments. On the basis, we perform
MES sequence matching by learning sequence-based finger-
print of raw MFS sequence with high discriminative power.
Specifically, the sequence-based fingerprint of a raw MFS
sequence is a set of its local subsequences, which is evaluated
from numerous candidate subsequences based on shapelet
discovery [35].

Formally, the sequence-based fingerprints are a set of u €
U patterns and each having length 1 € H, and denoted as
U € RV*H We consider all possible subsequences of a kind
of MFS training series as potential candidate sequence-based
fingerprints. The minimum distances between sequence-
based fingerprint U, ; and all the subsequences of a MFS
sequence S were used as a feature for ranking the infor-
mation gain accuracy of that candidate on the target MFS
sequence, the minimum distance of a set of sequence-based
fingerprints to MFS sequences can be perceived as a kind of
data transformation, namely the shapelet-transformation rep-
resentation (more details about the shapelet-transformation
representation can be found in [36] and [37]), denoted as
subDist(S, U, ) as shown in Definition 4. The challenge of
this representation is to find the sequence-based fingerprints
U, for which the resulting representation helps achieve the
highest classification accuracy.
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We learn top-k sequence-based fingerprints of training
dataset Dy, by the following four steps, as shown in Algo-
rithm 1 (see Figure 4):

(a) Candidate Fingerprints Extraction: Iterating over all
the subsequences of the train dataset Dy, and considers
each subsequence as a candidate sequence-based fin-
gerprint, as shown in Line 2~6 of Algorithm 1;
Candidate Fingerprints Scoring: For each candidate
fingerprint, the raw training set is transformed by cal-
culating the minimal Euclidean distance between a
training sample and the candidate fingerprint. Then,
utilizing the minimal Euclidean distance to the samples
as a classification feature and evaluating the candidate
fingerprint using F-stats measure [36], as shown in Line
7~9 of Algorithm 1;

Sequence-based Fingerprints Discovery: Sorting the
candidate fingerprints based on F-stats score and select-
ing the top-k candidates with the highest classification
accuracy as the utilimate sequence-based fingerprints,
as shown in Line 13~14 of Algorithm 1.

(b)

©

3) INDOOR MAGNETIC-BASED POSITIONING BASED ON
THE LEARNT SEQUENCE-BASED FINGERPRINT

As shown in Figure 5, the collected MFS sequence S
{o1,...,0i,...,0r} are firstly calibrated when user sends
localization request. Then, we transform both the raw train
datasets and test MFS sequence into a new feature repre-
sentation by calculating the minimum distance to the learnt
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FIGURE 5. An example of online localization process.

top-k sequence-based fingerprints, and perform dimension
reduction using Principal Component Analysis. Finally, our
method estimates the positioning of user’s current location
by training a classification model (e.g., KNN, Random Forest
and SVM) using the transformed feature representation.

IV. EXPERIMENT EVALUATION

In this section, we report on the results of a series of experi-
ments conducted to evaluate the performance of the proposed
indoor magnetic-based positioning model. We first describe
the settings of experiments including data sets, comparative
methods and evaluation metric. Then, we report and discuss
the experimental results.

A. EXPERIMENTAL SETTINGS

1) DATA SETS

Two real world datasets are used for experimental evaluation
in this study : 1) a large-scale public benchmark dataset,
namely UlJlIndoorLoc-Mag [34], is used to compare the
proposed method with some state-of-the-art methods; 2) one
collected dataset in our experiment, is used to verify the effec-
tiveness of the proposed method in different test situations
(such as different collecting heights, devices and collecting
times.
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« UJIIndoorLoc-Mag: the dataset is published by uni-
versity Jaume I in the 2015 International Conference
on Indoor Positioning and Indoor Navigation, which
is collected from a 260 m? laboratory with 8 corri-
dors(please refer to [34] for the data collection environ-
ment and test trajectories). For training part, the data is
collected by repeating 5 times from 54 different alterna-
tive paths, thus 270 different continuous MFS sequences
are used to generate training dataset. For testing part,
the data is collected on 11 trajectories that contain 9
complex routes. Each MFS sequence of training and test
dataset is divided in several subsamples with 5 seconds
for each one. More details of the dataset are reported
in Table 2 and Table 3. For point-based fingerprint
matching, the discrete samples are extracted from the
continuous training MFS sequences, while the samples
from the 11 test paths are used as test dataset. Each sam-
ple for point-based fingerprint matching consists of 5
features: the Latitude and longitude where the sample
was taken [lat, lon] and the MFS values from three
directions in this location (r*, r”, r%). In total, the train-
ing dataset includes 8943 discrete samples and the test
dataset includes 4380 discrete samples.

o Our dataset: Our data collection environment includes
three corridors and two classrooms. Three volunteers
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TABLE 2. The number of samples for each test trajectory.

1 2 3 4 5 6 7 8 9 10 11

Continuous MFS sequences 35 21 44 41 23 9 8 16 11 10 13

Discrete samples 540 356 876 859 362 224 211 246 196 223 287
TABLE 3. Statistics of indoor positioning datasets. bag of words methodology allowing user speed invari-
— ance, then utilized classification model such as KNN and

#space trajectories  #length of samples  #samples . .
SVM to estimate the location of test sample.
Training Dataset 54 50 540 o Sequence-based K-nearest Neighbors Algorithm
Test Dataset 17 50 231

who are mainly students and different smartphones
including Xiaomi 5S, Huawei Mate 10 and Vivo Y87,
are used to collect dataset. For recording all the traces
and the ground truth, we customize an ink stamper on
each volunteerAAZs shoes by following prior work [13],
thus can leave a stamp on the floor surface when a
volunteer walking. We repeat the data collection 3 times
at different dates. For each time, the training data is
collected from 20 different trajectories with three dif-
ferent heights (0.2m, 1m, 1.8m) by each volunteer, thus
180 different continuous MFS sequences are collected
each time. For testing data, the data is collected on 10 tra-
jectories with the same three heights (0.2m, 1m, 1.8m)
by each volunteer, thus 90 different MFS sequences
are collected each time. Therefore, for sequence-based
fingerprint matching, we collect 540 MFS sequences
for generating training dataset and 270 MFS sequences
for generating test dataset. The discrete samples are
extracted from the continuous MFS sequences for evalu-
ating point-based fingerprint matching. Each sample for
point-based fingerprint matching consists of 5 features:
the geometric coordinates where the sample was taken
[locX, locY] and the MFS values from three directions
in this location (r*, rY, r%).

2) COMPARATIVE METHODS

We compare the proposed indoor magnetic-based position-
ing model with the following state-of-the-art competitors,
where the first method is well-known existing methods for
indoor magnetic-based positioning using point-based finger-
print matching, the next three methods are start-of-art meth-
ods for indoor magnetic-based positioning using sequence-
based fingerprint matching.

« Point-based K-nearest Neighbors Algorithm (PKNN)
the method [34] estimates the location of each test
sample with k-nearest neighbors algorithm. Specifically,
the location of the most similar sample in the training set
is the one assigned to the test sample, and Euclidean’s
distance is used as similarity metrics between two
samples.

« Sequence-based Bag of Words (SBOW): Inspired in
the bag of words representation, this method [30] firstly
constructed positioning fingerprint using a simplified
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(SKNN): this method [34] proposed a MFS sequence-
based fingerprint matching with KNN, in which the
Euclidean’s distance is used to measure the distance
between two MFS sequence data.

« Sequence-based Dynamic Time Warping (SDTW):
this method [29] utilized a dynamic time-warping-based
approach to measure the similarity between two MFS
sequences generated by walking short distances, then
1-NN is used to estimate the location of test sample.

3) EVALUATION METRIC
For UlJllndoorLoc-Mag dataset, this distance dist(i, j)
between ground truth location (lat;, lon;) and the pre-
dicted location (lat;, lon;) is calculated by the haversine for-
mula [34].

For positioning model using point-based fingerprint
matching, the mean positioning error is calculated by Equa-
tion 5:

1
D

PErr =

&)

> dist(i. D)
€Dy,
where Dy, is the test dataset and |Dy.| is the num of dis-
crete samples in Dy, dist(i, 2) denotes the distance between
the ground truth location and the corresponding predicted
location.

For positioning model using sequence-based fingerprint
matching, the mean positioning error is calculated by Equa-
tion 6:

M
1 . $
SErr — o El SDidst(S;, Sj)
im

(6)

where |M| is the num of test MFS sequences, SDidst(S;, S})
denotes the positioning error between MFS sequence S; and
its predicted MFS sequence S;, which is calculated by Equa-
tion 7:

NI
. R ijl dist(j, )
SDidst(Sj, §j)) = —————— @)
1S;1
For our dataset, the positioning error of point-based fin-
gerprint matching is calculated as the Euclidean distance
between ground truths and estimated locations in trajecto-
ries. For positioning model using sequence-based fingerprint
matching, the mean localization error is calculated as the

mean of all the positioning errors along a test MFS sample.
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TABLE 4. Parameter tuning for removing noisy data of MFS values.

o 4 5 6 7 8 9 10 11 12
5 3938 | 3.889 | 3911 | 3.855 | 3.941 | 3.883 | 3.832 | 3.833 | 3.921
6 3.896 | 3.853 | 3.888 | 3.931 | 3.855 | 3.909 | 3.856 | 3.879 | 3.847
7 3951 | 3915 | 3.886 | 3.89 | 3.806 | 3.928 | 3.885 | 3.78 | 3.851
8 3.949 | 3.871 | 3.833 | 3.899 | 3.906 | 3916 | 3.925 | 3.903 | 3.903
9 3.870 | 3.956 | 3.938 | 3.876 | 3.878 | 3.922 | 3919 | 3.875 | 3.859
10 3.821 | 3.899 | 3.956 | 3.905 3.9 3.889 | 3.931 | 3.961 | 3.929
11 3.887 | 3.852 | 3915 | 3.903 | 3.847 | 3903 | 3.927 | 3.903 | 3.878
12 3.873 | 3903 | 3.857 | 3.959 | 3.928 3.93 3.896 | 3.908 | 3.949
13 3.895 | 3905 | 3.903 | 3.927 | 3.938 | 3.906 | 3.825 | 3.898 | 3.901
14 3934 | 3.895 | 3.884 | 3.882 | 3912 | 3.906 | 3.85 3.881 | 3.858
15 3.962 | 3.907 3.85 3936 | 3918 | 3.908 | 3.881 | 3.827 | 3.894
16 3.864 | 3.838 | 3.809 | 3.866 | 3.868 | 3.888 | 3.876 | 3.832 | 3.829
17 3.897 | 3908 | 3.879 | 3.871 | 3.833 | 3.906 | 3.978 | 3.822 | 3.935

B. EXPERIMENTAL RESULTS

We conduct three experiments on UlJlIndoorLoc-Mag:
1) perform parameter tuning for calibrating the raw MFS
sequence by a sliding window-based technique; 2) compare
the positioning performance of four classification models
(KNN, SVM, Random Forest and Naive Bayes) with the
raw MFS sequence and the learnt sequence-based fingerprint
(as introduced in Section 3.3.2); 3) compare the position-
ing performance of the proposed positioning model with
four state-of-the-art competitors. With the collected dataset,
we further evaluate the performance of the proposed method
in different situations.

1) EXPERIMENTAL RESULTS OF UJINDOORLOC-MAG
DATASET

a: IMPACT OF MODEL PARAMETERS

Based on the learnt sequence-based fingerprint, 1-NN is used
to estimate the location of test MFS sequence. We present the
results of mean positioning error in Table 4 by varying the
sliding window size t from 4 to 12 and the variation coeffi-
cient « from 5 to 17. For each parameter setting, we repeat the
process S times and report the average positioning error of the
5 experiments. From Table 4, we observe the positioning error
is between 3.8 m to 4 m, which suggests the proposed method
is not sensitive to different parameter setting. We further
observe the best positioning performance is 3.78 m when
setting the sliding size as 11 and the variation coefficient as 7.

b: INDOOR MAGNETIC-BASED POSITIONING WITH THE
LEARNT SEQUENCE-BASED FINGERPRINT

In this part, we compare the performance of models utilizing
the raw MFS sequence and the learnt sequence-based fin-
gerprint for indoor positioning. We evaluate the positioning
effectiveness by comparing the mean positioning error and
the cumulative distribution function (CDF) of four position-
ing models (KNN, Random Forest, SVM and Naive Bayes)
with the raw MFS sequence and the sequence-based finger-
print (SBFP), as shown in Table 5 and Figure 6. For each
case, we report the average performance by repeating the
experiments 5 times.
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TABLE 5. Mean positioning error comparison with raw MFS sequence
(RAW) and the learnt sequence-based fingerprint (SBFP).

KNN Random Forest SVM Naive Bayes
RAW 671 m 6.73 m 6.76 m 6.15m
SBFP 378 m 4.07 m 4.84m 598 m

From Table 5, we can observe: 1) All the four positioning
models using the learnt sequence-based fingerprint always
outperforms using the raw MFS sequence. For example,
the mean positioning error of KNN using sequence-based
fingerprint (KNN+4SBFP) is reduced by more than 43%
compares with using the raw MFS sequence (KNN+RAW),
i.e., dropped from 6.71 meters to 3.78 meters. The results
suggest that, the learnt sequence-based fingerprint can better
represent the inherent pattern of raw MFS sequences thus
is beneficial for improving the performance of positioning,
while the raw MFS sequences are vulnerable to a few fac-
tors such as user’s postures and walk speed thus achieves
much worse performance; 2) For positioning models with raw
MEFS sequence, Naive Bayes achieves the best performance
about 6.15 meters, but the performance improvements with
sequence-based fingerprint (only 0.17 meters) are minimal
than the other three models. For positioning models with
sequence-based fingerprint, KNN achieves the best perfor-
mance about 3.78 meters.

Figure 6 shows the cumulative distribution function (CDF)
of positioning error by the four positioning methods with
raw MFS sequence and the learnt sequence-based fingerprint,
respectively. In this figure, we can see that all the position-
ing models with the proposed sequence-based fingerprint
outperforms using raw MFS sequence. More exactly, KNN
with the proposed sequence-based fingerprint (KNN+-SBFP)
achieved the best positioning performance and the second
is Random Forest with sequence-based fingerprint (Random
Forest+SBFP), while the worst performance is achieved
by SVM with the raw MFS sequence (SVM+RAW). For
instance, the probability of error distance under 5 meters is
58.7% by KNN+SBFP, 21.6% by KNN+RAW, 48.9% by
Random Forest+SBFP and 20% by SVM+RAW. In Fig-
ure 6d, the CDF curves of Naive Bayes with raw MFS

163239



IEEE Access

Y. Chen et al.: Learning SBFP for Magnetic Indoor Positioning System

(@) KNN

KNN+SIFP
KNN+RAW

081
06
L
a
(&)
0.4r
0.2r
0 | | | |
0 3 6 9 12
Positioning Error (m)
; (c) SVM
SVM+SIFP
SVM+RAW
0.8
0.6
[
a
o
0.4
0.2
0 | ; ; |
0 3 6 9 12 15

Positioning Error (m)

(b) Random Forest

Random Forest +SIFP
Random Forest + RAW

CDF

0 3 6 9 12
Positioning Error (m)

(d) Naive Bayes

1 T
Naive Bayes + SIFP
Naive Bayes + RAW
081
0.6
[T
[a)]
o
04 r
0.2
0
0 3 6 9 12 15

Positioning Error (m)

FIGURE 6. The cumulative error distribution with the raw MFS sequence and the sequence-based fingerprint.

TABLE 6. Mean positioning error compare with benchmark methods.

PKNN SBOW SKNN SDTW  Our method

723m 6.02m 67lm 6.0lm 3.78 m

sequence and the learnt sequence-based fingerprint are very
close, showing the performance improvement with the learnt
sequence-based fingerprint is not significant for Naive Bayes
model.

c: INDOOR POSITIONING PERFORMANCE COMPARISON

To investigate the advantage of learning sequence-based
fingerprint for indoor magnetic-based positioning, we fur-
ther compare the proposed positioning methodology
(KNN+SBFP) with four baseline methods, the results are
shown in Table 6 and Figure 7.

From Table 6, we observe: 1) KNN with the learnt
sequence-based fingerprint achieves the best positioning per-
formance and the mean positioning error is 3.78 meters,
showing again the learnt sequence-based fingerprint can
reveal the pattern of MFS values in a space trajectory;
2) the positioning methods based on MFS sequence (e.g.,
SBOW, SKNN and SDTW) outperform KNN using point-
based fingerprint matching (PKNN). More exactly, the mean
positioning error is 6.02 meters for SBOW, 6.71 meters for
SKNN, 6.01 meters for SDTW and 7.23 meters for PKNN.
The results demonstrate sequence-based fingerprint matching
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FIGURE 7. The cumulative error distribution of different positioning

models.

is better than point-based fingerprint matching for indoor
magnetic-based positioning, and it is sufficient to walk a short
distance in indoor space to be located using the magnetic field
of smartphone.

The cumulative distribution function (CDF) of position-
ing error for the four baseline methods and our method are
shown in Figure 7. Clearly, the proposed method outperforms
other baseline algorithms significantly, showing again the
advantage of learning sequence-based fingerprint from the
raw MFS sequences can allow more accurate indoor posi-
tioning. For instance, the probability of error distance under
4 meters is 62.1% by our method, 32.6% by SBOW, 27.7% by
SDTW, 26.1% by SKNN and 21.8% by PKNN. The results
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TABLE 7. Mean positioning error (m) in the 11 testing trajectories.

rajectory
Method 1 2 3 4 5 6 7 8 9 10 11
PKNN 881 | 7.12 | 7.81 7.81 6.11 7.5 7.72 9.3 333 | 748 | 6.660
SBOW 527 | 582 | 529 | 727 | 499 | 552 5.7 6.52 | 796 | 591 5.99
SKNN 8.64 | 7.35 8.08 | 732 | 528 | 5.07 | 635 | 693 1.28 | 492 | 4.12
SDTW 834 | 747 | 775 | 7.52 4.7 5.66 7.1 6.73 1.34 | 387 | 5.62
Our method 214 | 339 | 2.84 | 329 | 822 5.5 5.3 1.75 | 485 | 5.61 3.74

TABLE 8. The parameters of a test sample extracted from trajectory 5 and
it's candidate.

Cl C2 C3 C4 C5
DTW Similarity 59.89 54.24 58.31 70.71 72.89
SBFP Similarity 21.41 21.55 29.94 32.05 355
Positioning Error  8.62m  146m 793m 1556m 1634 m

TABLE 9. Mean positioning error with different data collection dates.

PKNN SBOW SKNN SDTW  Our method
Datel 327m 276m 3.0lm 2.63m 215m
Date2 32Im 272m 3.07m 2.7m 2.05m
Date3 338m 28Im 3.13m 2.85m 221 m

suggest that, the differences among MFS sequences are
mainly attributed to the learnt sequence-based fingerprint,
which is extracted from small local segments of raw MFS
sequence.

We further report the mean positioning error of each test
trajectory for the proposed method and baseline positioning
models in Table 7. Clearly, the proposed method achieves the
best positioning performance on 7 test trajectories, i.e., test
path 1,2,3,4,7,8,11, SKNN and SDTW achieve the best posi-
tioning performance on two test trajectories, respectively. The
results suggest again the superiority of the proposed scale
invariant fingerprint for indoor magnetic-based positioning.
Our explanation is the learnt scale invariant fingerprint with
high discriminative power from local segments of raw MFS
sequences can capture the inherent pattern in MFS sequences,
thus can boost the positioning performance. On the contrary,
the raw MFS sequences may be locally distorted or scaled due
to a few factors (e.g., mobile phone pose, metallic materials,
ferromagnetic metals and noise in magnetometer measure-
ment) thus greatly limit the positioning performance.

On the other hand, the proposed method does not achieve
the best positioning performance on 4 test trajectories,
i.e., test path 5, 6, 9, 10. The reason is some training MFS
samples that are not ground truth have more segments with
the same characteristics with test samples extracted from the
four trajectories. For example, for a test sample extracted
from trajectory 5 as shown in Figure 8 (1), the proposed
method select 5 candidates (i.e., C1, C2, C3, C4 and C5)
as shown Figure 8(2)-(6) and related values are shown
in Table tab:example. According to SBFP similarity, Candi-
date C1 is selected as the ultimate result and the positioning
error is 8.62 m. But if we use DTW similarity, Candidate C2 is
selected as the ultimate result and the positioning error is only
1.46 m. The results suggest that, the proposed sequence-based
fingerprint from local patterns does not have the best perfor-
mance in some scenarios. We plan to improve sequence-based
fingerprint by jointly considering some global features (e.g.,
DTW similarity and curve distance) in the future.

2) EXPERIMENTAL RESULTS OF OUR DATASET

In order to evaluate the performance of the proposed method
during different situations, we perform two experiments on
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TABLE 10. Mean positioning error with different data collection devices.

PKNN SBOW SKNN SDTW  Our method
Xiaomi 5S 335m  283m 324m 277m 2.18 m
Huawei Mate 10 328 m  2.79m 336m 2.82m 221 m
Vivo Y87 348m 3.0lm 356m 295m 2.26 m

TABLE 11. Mean positioning error with different data collection heights.

PKNN SBOW SKNN SDTW  Our method
Height1 (0.2m) 4.07m 3.75m 393m 372m 2.34m
Height 2 (1 m) 3.75m 328m  3.49m 331m 2.2m
Height3(1.8 m) 38Im 322m 351m 335m 2.26 m

our dataset. The first experiment aims to verify the experi-
mental results with different heights, dates and device types.
In this experiment, each MFS sequence of training and test
dataset is divided in several subsamples with 5 seconds for
each one. In this case the training set is made of MFS
sequence samples of situation not included in the test set. This
evaluation is also known as situation independent evaluation
and shows the feasibility of a real positioning application
for indoor environment where data of a given situation are
usually not included in the training set of the classifier. For
example, if the test MFS samples are collected by Xiaomi
5S, the training dataset should only include MFS samples
collected by Huawei Mate 10 and Vivo Y87. The second
experiment aims to verify both the mean positioning error
with different length of a MFS subsequence. In the case, each
MES sequence of training and test dataset is divided in several
subsamples from 2 to 10 seconds for each one, correspond-
ingly, the length of MFS sequence vary from 10 to 100.
Table 9,10 and 11 show the mean positioning error of
the proposed positioning method compare with four baseline
methods during different situations. From the three tables,
we observe: 1) the proposed method performs much better
than the other four baseline methods for different situations,
showing again the advantage of indoormagnetic-based posi-
tioning by learning scale invariant fingerprint from MFS
sequence’s local segments. For example, the mean position-
ing error of our proposed method is 2.05 m when generating
test dataset using the MFS sequences collected on date 2,
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FIGURE 8. A test sample extracted from trajectory 5.
TABLE 12. Mean positioning error (m) with different MFS sequence lengths.
FS length
Method 10 20 30 40 50 60 70 80 90 100
SBOW 378 | 325 | 299 | 2.83 | 275 | 279 | 293 | 3.14 | 336 | 3.72
SKNN 403 | 3.69 | 343 | 327 | 3.05 | 3.11 | 323 | 348 | 3.72 | 3.9
SDTW 384 | 33 | 3.08 | 2.84 | 2.72 | 2.67 | 275 | 2.89 | 3.15 | 3.46
Our method 327 | 289 | 239 | 223 | 213 | 2.19 | 2.16 | 234 | 2.58 | 2.79

which improves 31.7% and 32.6% than SDTW and SBOW;
2) the mean positioning error of test dataset collected by
different dates and devices are relatively stable for all posi-
tioning methods, while the mean positioning error of four
baseline methods on test dataset collected with height 0.2m
degrades significantly compares to test dataset collected with
the other two heights. For instance, the mean positioning
error of SBOW is 3.75 m for test dataset collected with
height 0.2m, which drops 14.3% and 16.5% compare with
test dataset collected with height 1m and 1.8m. This is no
surprising since the patterns of the MFS variation are more
altered with low height is due to the presence of ferromagnetic
metals, which is also reported in [24] and [13]. On the other
hand, the proposed method performs relatively stable with
different data collection heights, showing again the advantage
of indoor positioning by learning scale invariant fingerprint
from MFS sequence’s local segments.

Table 12 shows the mean positioning error of sequence-
based indoor positioning methods (SBOW, SKNN, SDTW
and our method) with different MFS sequence lengths. From
this table, we observe that the positioning performance of the
three sequence-based indoor positioning methods (SBOW,
SKNN and our method) increase gradually when the MFS
sequence length increases from 10 to 50 and then drops
when the MFS sequence length is greater than 50, the best
results are 2.75m for SBOW, 3.05m for SKNN and 2.13m
for our method when the MFS sequence length equals to
50. For SDTW, the trend of change is similar but the best
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results is 2.67m when the MFS sequence length equals to
60. Nevertheless, the proposed method shows the best perfor-
mance consistently over MFS sequence lengths as it extracts
scale invariant fingerprint with high discriminative power
from MFS sequence’s local segments. Another observation
is the mean positioning error degrades significantly when the
MES sequence length is shorter. This is no surprising since
there are few MFS values about each MFS sequence, leading
the advantage by sequence-based indoor positioning can be
ignored. However, the mean positioning error also degrades
significantly when the MFS sequence length is relatively
large. After analyzing samples with large positioning errors,
we find most of these samples are extracted from the intersec-
tions between two corridors but not included in the training
set. It can be expected that the positioning performance with
long MFS sequence can be further improved if we add the
samples that extracted from all the intersections between
corridors to training data set.

V. CONCLUSION

This paper proposed an indoor magnetic-based position-
ing model by learning sequence-based fingerprint from raw
magnetic field sequences. The proposed method aims to
overcome the main bottleneck of existing methods, i.e., the
pattern embedded in raw magnetic field sequences might
be locally distorted or scaled, which greatly limits the posi-
tioning performance. Firstly, we calibrate the raw magnetic
field sequences by denosing with a sliding window-based

VOLUME 7, 2019



Y. Chen et al.: Learning SBFP for Magnetic Indoor Positioning System

IEEE Access

scheme. Then, we learn the sequence-based fingerprint with
high discriminative power for each magnetic field sequence
by evaluating the prediction quality of numerous candidate
magnetic fingerprints. Experimental results on a large-scale
benchmark dataset and our collected dataset show that the
proposed method achieves much better performance than
the state-of-the-art baseline methods for indoor magnetic-
based positioning, showing the superiority of our proposed
positioning model and also supporting the assumption that
the learnt sequence-based fingerprint from raw magnetic field
sequences can significantly boost positioning performance.
As future work, we plan to boost WiFi-based fingerprint
positioning by the proposed sequence-based fingerprints,
and enable real-time indoor magnetic-based positioning by
implementing our method using fog computing framework.
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