
Received September 30, 2019, accepted October 28, 2019, date of publication November 8, 2019,
date of current version November 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952434

Resource-Aware Task Scheduling and Placement
in Multi-FPGA System
ZICHANG SUN, HAITAO ZHANG , AND ZEHAN ZHANG
Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Haitao Zhang (zht@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61532012, in part by the
NSFC-Guangdong Joint Fund under Grant U1501254, and in part by the 111 Project under Grant B18008.

ABSTRACT With the development of high performance computing, Field Programmable Gate
Arrays (FPGAs) are widely used for task acceleration. Partial reconfigurable technology provides the
possibility of multi-task concurrent computation on FPGAs. However, it is still difficult to achieve high
performance multi-task acceleration in multi-FPGA systems due to the resource contention in limited
hardware resources and reconfiguration overhead. In this paper, we propose a two-stage task scheduling
approach in multi-FPGA systems to optimize task execution efficiency. At the first scheduling stage,
we select an appropriate computing unit for each task considering the subtask similarity and resource
requirement similarity to reduce the possibility of reconfiguration and resource contention. At the second
scheduling stage, we coordinate the subtask scheduling and placement to make full use of the hardware
resources of FPGAs and improve the acceleration performance. Experiments show that our two-stage
scheduling approach significantly reduces the tasks makespan and improves the utilization of resources
compared with other traditional methods.

INDEX TERMS Multi-FPGA, task scheduling, task placement, partial reconfiguration.

I. INTRODUCTION
In recent years, with the increasing demand for computing
power in data centers, FPGA, Graphics Processing
Units (GPUs) and Application Specific Integrated Cir-
cuits (ASICs) have been widely used as accelerating devices
to improve the execution efficiency of applications. Among
them, FPGA-based accelerators are gradually becoming the
core acceleration devices for computation-intensive tasks
due to their high performance, low power consumption and
reconfigurability [1], [2]. Several cloud service providers,
such as Amazon, have deployed FPGA-based accelerators
in their commercial environments to support the high perfor-
mance computing of computation-intensive applications [3].
In the heterogeneous system with multiple FPGA-based
acceleration devices, the CPU is mainly used as a controller
for task management, and the complex computing tasks can
be executed on the FPGAs. However, how to perform the
efficient scheduling of computing tasks in such amulti-FPGA
system brings new challenges.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Ni .

Efficient scheduling of tasks in multi-FPGA sys-
tem is different from that in other multi-processor or
multi-core systems.We need to consider the following impor-
tant factors. Firstly, the FPGA supports a technique called
Partial Dynamic Reconfiguration (PDR) [4], which allows
the FPGA to reconfigure some logic blocks at runtime with-
out affecting the rest of the logic blocks [5]. This technol-
ogy can dynamically replace the internal logic functions of
the FPGA, which greatly increases system flexibility and
resource utilization. At the same time, however, we need
to explicitly consider the reconfiguration overhead caused
by PDR because it can easily affect the performance gains
from hardware acceleration. Secondly, different tasks require
different hardware resources. In multi-FPGA system, in order
to improve the resource utilization of the system as much as
possible, it is necessary to reasonably allocate the available
hardware resources and balance the utilization rate of fine-
grained hardware resources in the FPGA. Finally, the tasks
assigned to the FPGAmust be placed in accordance with spe-
cific spatial allocation principles, and different task execution
orders produce different size fragments of the reconfiguration
region. Effectively reducing resource fragmentation is also

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 163851

https://orcid.org/0000-0002-9131-3517
https://orcid.org/0000-0002-4593-1656


Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

an important factor to be considered when designing task
placement. Overall, the efficient online task scheduling and
placement approach is needed to provide an appropriate
solution for optimizing the task execution efficiency in multi-
FPGA systems.

In this paper, we focus on the efficient task scheduling and
placement in multi-FPGA system. The main contributions
of this paper are as follows. First, we define a multi-
task scheduling problem with fine-grained subtask divi-
sion, scheduling and placement in the multi-FPGA system
that supports PDR. Then, we propose a two-stage schedul-
ing approach to minimize the makespan of multiple tasks
by reducing reconfiguration overhead, resource contention
and resource fragmentation. At the first scheduling stage,
in order to reduce reconfiguration overhead and resource con-
tention, we select an appropriate FPGA compute unit for each
task based on the combination of the similarity of subtask
types and the similarity of subtask multi-resource require-
ments. At the second scheduling stage, through the heuristic
optimization method and effective three-dimensional spa-
tial position planning, we give the reasonable scheduling
order and the configuration location for each fine-grained
subtask to reduce reconfigurable overhead and resource
fragmentation. Finally, we analyze the impacts of two
similarity weight factors on the scheduling results through
experiments. The extensive experimental results show that
our two-stage scheduling approach can achieve the higher
hardware resource utilization and reduce the makespan of
tasks compared with other popular methods.

The remainder of the paper is organized as follows.
Section II describes the background of reconfigurable FPGA
and reviews the related work. Section III defines the task
scheduling and placement problem to be solved for the
multi-FPGA system. Section IV presents the task scheduling
and placement approach. Section V gives the experimental
analysis. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK
In this section, we firstly briefly introduce the PDR technol-
ogy of FPGAs and the challenges in the research process.
Then, we intruduce the communication between reconfig-
urable modules. Finally, we introduce the work related to task
scheduling in multi-FPGA system.

A. PARTIAL DYNAMIC RECONFIGURATION
TECHNIQUE IN FPGA
The FPGA can be viewed as a resource pool with pro-
grammable functions. CLB (Configurable Logic Block) is the
logical operation unit, BRAM (Block RAM) is the storage
unit, and DSP (Digital Signal Processing) is the calcula-
tion unit. These units can be organized in different ways to
achieve deep customization. PDR-supported FPGAs allow
for dynamic reconfiguration of a portion of a device, while
other components that are not affected by the reconfiguration
process are still operational [6]. PDR can dynamically switch
logic functions by changing part of the configured hardware

module at runtime, which greatly improves the flexibility and
resource utilization of the hardware system. The reconfigura-
tion process is performed by means of a dedicated compo-
nent, such as the Internal Configuration Access Port (ICAP)
available on Xilinx devices, that is exploited to load the
partial bitstream for the reconfigurable region to the FPGA
configuration memory [7].

In an FPGA-based reconfigurable system, the tasks can
be synthesized and divided into sets of subtasks. Different
tasks containing multiple independent sets of subtasks can
execute concurrently on reconfigurable resources. Before
these tasks are executed, they need to be placed on the
idle resources of the FPGA. After these tasks are executed,
the reconfigurable resources occupied by these tasks need
to be reconstructed, so that the next task set can continue
to execute. The divided subtasks are usually abstracted into
the small logical functional modules, and the entire reconfig-
urable resources are abstracted into one large logical func-
tional region. The logical functional modules can be placed
in parallel to execute on large logical functional region. Gen-
erally, the rectangular region is used to model the reconfig-
urable hardware resources on the FPGA, so the problem of
placing tasks is transformed into the problem of finding an
appropriate placement position for each subtask on the given
two-dimensional reconfigurable rectangular region. At the
same time, we must also consider the extra time overhead
incurred during the reconfiguration process. When using
FPGA for task acceleration, reconfiguration time is propor-
tional to the size of the reconfigurable region, and the size
of the reconfigurable region directly affects the amount of
resources in this region. Therefore, effectively allocating idle
resources and reducing reconstruction time are the focus in
our work.

B. COMMUNICATION BETWEEN RECONFIGURATION
MODULES
PDR technology of FPGA is to allow reconfigurable regions
to be reconfigured without affecting the work of the rest
of the configuration process. In PDR technology, the sys-
tem is usually divided into fixed module and reconfigurable
module. The communication between reconfigurable mod-
ule and other modules (including reconfigurable module
and fixed module, reconfigurable module and reconfigurable
module) is realized by bus macro. Each module realizes in
its own area. If two modules A and B want to communi-
cate, they need bus macro, which straddles the boundary
of the two modules, so that each module can be connected
in its own area. So each module can be implemented in
the specified area and communicate with the adjacent mod-
ules. In different series of FPGA devices, there are different
ways to implement bus macro structure, such as Three-State
Buffers (TBUF) Based and Slice based. In addition, Xilinx
Company provided ready-made bus macro files for the devel-
opers of dynamic reconfigurable system and we use it in our
system.

163852 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

C. RELATED WORK
In multi-FPGA systems, task scheduling needs to be care-
fully designed by considering several complex factors com-
prehensively. Many previous researches focus on the task
planning on a single FPGA. A small amount of other lit-
eratures specialize in task scheduling in multi-FPGA sys-
tems. In addition, there are also many researchers working
on task scheduling in multi-processor or multi-core systems.
Next, we review the related work from the above three
aspects.

In order to minimize the resource fragmentation in FPGA,
the authors in [8] proposed a heuristic task placement method
based on 3D-Adjacency and Look-Ahead algorithm, which
placed the task next to the boundary of the free area as
much as possible. However, it does not take into account
the simultaneous arrival of multiple tasks. Roman et al. [9]
divided the reconfigurable resources into equal-width slots,
which reduced the scale of the problem. However, this
method ignores the size difference of the tasks, and the
resource utilization ratio is quite low. Aiming at reducing
chip area fragmentation, two resource allocation algorithms
are developed in [10]. But these algorithms do not fully
consider the resource type difference and order of the tasks.
The approaches presented in [1], [11] focus on optimiz-
ing the utilization of available reconfigurable resources for
task scheduling issues in parallel reconfigurable architec-
tures. Reference [12] proposed a novel MER-based heuristic
method based on 3D-Adjacency heuristic algorithm, which
reduced regional fragmentation, improved utilization rate,
and solved the problem that more than one tasks may arrive
at the same time. These algorithms are basically aimed at task
placement or resource allocation issues on a single FPGA
device without considering the task scheduling in multi-
FPGA system.

In addition to studying the task placement on a single
FPGA, some researchers have also studied the task schedul-
ing in multi-FPGA systems. In [13], [14], the authors consid-
ered the mapping of tasks on a multi-FPGA system and the
scheduling at execution time, which provided the references
for our work. In [14], the authors further proposed a Mixed-
Integer Linear Programming (MILP)-based algorithm. Even
though this approach could potentially be used to search for
the optimal solution to the problem, the execution time of
the algorithm increases exponentially with the number of
tasks. Therefore, it is impractical for large problem instances.
In [6], the authors proposed a fast deterministic scheduling
heuristic algorithm to reduce the overhead incurred by partial
dynamic reconfiguration. However, the author did not fully
consider module reuse, so the reconfiguration overhead of
tasks that can be executed by the same hardware is still the
bottleneck of the algorithm. In [15], the authors proposed
an energy-efficient scheduling algorithm based on ant colony
optimization to solve the scheduling problem. And based on
it, an improved algorithm is proposed to handle tasks with
precedence and interdependencies. However, these two algo-
rithms are designed to reduce the overall energy consumption,

resulting in lower task parallelism. The authors of [16] pro-
posed a benefit-based scheduling metric to evaluate the task
assignment. However, they did not fully consider the resource
contention between different tasks.

Task scheduling on multi-processor or multi-core systems
has received widespread attention. The authors of [17], [18]
tried to minimize job completion time by balancing the task
queues of different types of heterogeneous resources. But in
their models, each task can be executed only on its matching
type of processors. The method proposed in [19] is based
on constrained programming to allocate and schedule tasks
in heterogeneous multi-core systems. Some previous works
proposed heuristic scheduling methods centered on the crit-
ical path of the task graph to reduce the total execution
time [20]–[22]. They proposed some dynamic scheduling
approaches that reduce the total execution time by detecting
the longest path or critical path of the dynamic task depen-
dency graph. The authors of [23], [24] proposed the biology-
inspired algorithms to solve Steiner tree problem in networks,
which also provide an efficient solution for the resource com-
position optimization in parallel computing systems. Authors
of the [25] designed a transformation strategy that reduces
the problem of scheduling multi-type resources to single
resource-type scheduling, thereby significantly reducing the
algorithms running times without compromising the approx-
imation ratios. Since these algorithms mainly consider the
characteristics of general heterogeneous computing systems
and do not take advantage of the unique advantages of
FPGAs, they are not completely applicable to multi-FPGA
systems. In addition, some other effective task programming
algorithms have been proposed in literatures [26], [27], which
stimulate the design principle of our task allocation approach.

In summary, task scheduling in various computing systems
has been studied extensively, but there are still many problems
needed to be solved for efficient scheduling in reconfigurable
multi-FPGA systems. Therefore, this paper tries to deal with
above unresolved issues, and the principle is to make full use
of the FPGA computing power while reducing the overhead
in multi-FPGA system.

III. PROBLEM DESCRIPTION
In this section, we first introduce the model of our multi-
FPGA computing system and then give a detailed description
of task scheduling and placement problem.

A. SYSTEM MODEL
Our multi-FPGA system contains several FPGA computing
units which are responsible for accelerating the processing of
computing-intensive tasks, and each of them has a reconfig-
urable region that contains various hardware resources such
as CLBs, BRAMs, and DSPs. In the reconfigurable region of
FPGA, resources are arranged in columns, and BRAMs and
DSPs usually are less than CLBs as Figure 1.

The reconfigurable region can be partially reconfigurable
at runtime to provide parallel acceleration for different
tasks. The system accepts tasks submitted by users and then

VOLUME 7, 2019 163853



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

FIGURE 1. Scheduling model in multi-FPGA system.

performs the task scheduling and parallel computing process.
Note that the tasks submitted by users can be divided into
several subtasks in our system. In addition, our system also
periodically collects the configuration state of reconfigura-
tion region and then makes reasonable scheduling decisions
based on the obtained information. There are two important
schedulers in our system: the Task-Level Scheduler (TLS)
and the Subtask-Level Scheduler (SLS). Moreover, the sys-
tem has a subtask Bitstream Repertory (BSR) which stores
the bitstream files for each subtask. And these files have been
compiled by HLS Tool in advance [28]–[30]. The scheduling
model in our system is shown in Figure 1.

As shown in Figure 1, the tasks submitted by users are
stored in the task queue, and TLS analyses the subtasks
structure of each task and the information of each FPGA to
select an appropriate FPGA for the task. Then the system
assigns these subtasks to the corresponding Waiting Queue
(WQFPGA) and Ready Queue (RQFPGA) according to depen-
dencies among the subtasks which have been predefined for
each type of task. Note that we implement these two corre-
sponding queues for each FPGA in our system, which are
used to store the dependent subtasks and the independent sub-
tasks, respectively. Then the SLS determines the appropriate
scheduling orders and placement locations for those subtasks
in each RQFPGA, and sends these subtasks into the Executing
Queue (EQFPGA) according to the scheduling orders. Once
the parent subtask STij in the RQFPGA is completed, the child
subtask STik in the WQFPGA can be put into the RQFPGA.
Finally, the system sends the bitstream files loaded from the
BSR and the subtasks in each EQFPGA to the FPGAs. And
then the subtasks are configured and executed on the FPGAs.

We assume the system has a set of m FPGAs denoted by
F = {F1,. . . , Fm}. Each FPGA Fi ∈ F has a reconfiguration
region that can be regarded as a 2D rectangle with width
of Fw and height of Fh. It can be divided into a number of
contiguous free logic areas which can be allocated to different
tasks and reconfigured for execution of tasks. We define
the configuration state of each FPGA at time t as Fi(t) =
{TCi1(t),. . . , TCi,ni (t)}, where ni is the number of subtasks
that has been configured on Fi, and TCij(t), j ∈ {1, . . . , ni}
represents the j-th subtask currently configured to the i-th
FPGA. In addition, TCij(t) can be characterized as a vector

TCij(t) = (TC id
ij (t), TC

clb
ij (t), TCbram

ij (t), TCdsp
ij (t), TCx

ij(t),
TCy

ij(t), TC
w
ij (t), TC

h
ij(t), TC

trem
ij (t)). Here TC id

ij (·) represents
the type of the subtask TCij, and TCclb

ij (·), TCbram
ij (·) and

TCdsp
ij (·) respectively represent the number of CLBs, BRAMs

and DSPs needed. TCx
ij(·) and TC

y
ij(·) are the horizontal and

vertical coordinates of the top-left corner of the occupied
logical area. TCw

ij (·) and TC
h
ij(·) represent thewidth and height

of the occupied logical resource area, respectively. In addi-
tion, TC trem

ij (·) is the remaining execution time of the subtask
TCij(·). We record the moment at which the subtask starts
to be configured and calculate the remaining execution time
at the current moment t according to the execution time and
configuration time of the task.

B. WORKLOAD MODEL
We define each task as Ti = (IDi,Gi), where IDi is the
number of task type and Gi represents the workflow graph of
the task. In addition, we define Gi = (Vi,Ei), where Vi and
Ei respectively represent the vertex set and the edge set of Ti.
The vertex set Vi is defined as Vi = {STi1,. . . , STi,mi} where
mi is the number of the subtasks in Ti, and each directional
edge Ekji ∈ Ei represents the dependency from the parent
subtask STij to the child subtask STik . Each subtask STij ∈ Vi
can be characterized by STij = (ST idij , ST

clb
ij , ST bramij , ST dspij ,

STwij , ST
h
ij , ST

texe
ij , ST bitsij ) where ST idij represents the number

of subtask type, and ST clbij , ST bramij and ST dspij respectively
represent the number of CLBs, BRAMs and DSPs needed.
STwij and ST

h
ij represent thewidth and height of the rectangular

logical resources area needed to be configured for the subtask
STij. ST texeij and ST bitsij respectively represent the execution
time of the subtask and the size of the corresponding bit-
stream. These characteristics of a subtask except ST idij can be
obtained by analyzing the reports compiled by Vivado High-
level synthesis (HLS). We define the subtask configuration
time ST tconij by

ST tconij =
ST bitsij

Recfreq
, (1)

where Recfreq represents the time required to configure the
bitstream files of unit size on an FPGA. In our system,
multiple tasks can be submitted simultaneously and each task
is defined as the above form.In addition, the same subtasks are
also allowed in these tasks submitted.

Each subtask to be executed on an FPGA must first be
configured with the corresponding logical resources, and this
process can lead to a certain amount of reconfiguration over-
head. However, if it is executed on the reconfiguration region
that has already been configured for the same type of subtask,
there is no reconfiguration overhead [13]. In addition, for
different types of subtasks, if they have similar resource
requirements, it is best not to execute them on an FPGA at
the same time due to the resource contention which can cause
the unbalanced utilization of multidimensional resources. For
example, the remaining resource numbers of CLBs, DSPs and
BRAMs on an FPGA are 100, 200 and 300 respectively, and

163854 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

there are two independent subtasks ST·1 and ST·2. ST·1 needs
50 CLBs, 20 DSPs, 20 BRAMs and ST·2 needs 50 CLBs,
10 DSPs, 10 BRAMs, respectively. If we assign these two
subtasks to the same FPGA, the CLB will be highly utilized,
but DSP and BRAM will be largely idle. Therefore, in the
multi-FPGA system, we need to first select an appropriate
FPGA for each task Ti to reduce the reconfiguration overhead
and improve resource utilization.

On the other hand, the inappropriate subtask scheduling
sequence may result in the same type of subtasks having to
be reconfigured and degrade the performance of system. And
the inappropriate placement of subtasks can result in more
resource fragments in the reconfiguration region of FPGA
and reduce the utilization of resources. Therefore, we need
to determine the appropriate scheduling order for the set
of subtasks and select the appropriate placement location
for each subtask to be configured on FPGA to reduce the
reconfiguration overhead and resource fragmentation.

Objective. In this paper, we define a task set as
T = {Ti|i = 1,.., N} which is submitted by users. Our objec-
tive is to minimize the makespan of the task set T by design-
ing the efficient task scheduling and placement approach in
the multi-FPGA system considering the task reconfiguration
overhead and hardware resource contraints of FPGAs.

IV. THE PROPOSED TASK SCHEDULING AND
PLACEMENT APPROACH ON MULTI-FPGAS
A. DESIGN OVERVIEW
In order to minimize the makespan of task set T , we propose
a two-stage task scheduling approach in the multi-FPGA
system.

1) FIRST SCHEDULING STAGE
At this stage, we regard the whole task as a scheduling
unit and choose an appropriate FPGA computing unit for
it. We first acquire the subtasks for each FPGA computing
unit, including those subtasks in RQFPGA,WQFPGA and those
have been configured to the FPGA. Then we estimate the
subtask similarity between the task and all subtasks assigned
to each FPGA using Jaccard coefficients, which is defined
as the ratio between the size of the intersection of two sets
and the size of the union. The larger the Jaccard coefficient
value is, the higher the sample similarity degree will be. The
purpose is to allocate the same type of subtasks to the same
FPGA as much as possible to reduce unnecessary reconfig-
urable operations. Then we calculate the resource require-
ments similarity between the task and the subtasks assigned
to each FPGA which can measure the possibility of resource
contention between them. The goal is to assign the subtasks
with different resource requirements to the same FPGA as
much as possible to improve the multidimensional resource
utilization. Finally, we combine two similarities with two
weighting factors to select an appropriate FPGA considering
reconfiguration overhead and resource contention compre-
hensively. After selecting the FPGA, the subtasks included

in the task are assigned to the WQFPGA and RQFPGA of the
corresponding FPGA according to the dependencies among
them.

2) SECOND SCHEDULING STAGE
At this stage, we focus on subtasks scheduling and placement
in the RQFPGA of a single FPGA. The subtasks in the RQFPGA
are independent, and they can execute on the FPGA com-
pletely in parallel. However, due to the resource constraints
and reconfigurable consumption, the reasonable scheduling
order and placement locations are important to minimize the
makespan of subtasks. We find the optimal scheduling order
based on a combinatorial optimization method combining
Genetic Algorithm and Ant Colony Optimization Algorithm,
which performs the continuous iteration process to find the
appropriate combination in the solution space. The solution
space is a set of permutations and combinations of all sub-
tasks in RQFPGA and the object of each iteration process is to
select amore suitable scheduling solution. In order to evaluate
the fitness of each scheduling order in the iteration process,
we calculate the makespan of subtasks according to each
scheduling order found in the current iteration process. This
makespan is also influenced by the placement of subtasks in
the reconfigurable region of the FPGA. So in order to reduce
makespan, we obtain the candidate locations in the recon-
figurable region for each subtask, and find the location with
the smallest resource fragmentation to place it by calculating
3D-contact value. Ultimately, after the iterative optimization
process, we can determine the placement location for each
subtask and the scheduling order of subtasks.

B. TASK-LEVEL SCHEDULING ON MULTI-FPGA
In this subsection, we focus on the task-level scheduling, and
the objective is to select an appropriate FPGA computing unit
for each task.

As the system andworkloadmodel described in Section III,
every task Ti has a set of subtasks Vi and there is a set of m
FPGA computing units in the system. For each FPGA Fk ,
we can obtain two subtask sets in theWQFPGAk and RQFPGAk
at time t , defined as Swk (t) = {STki|i = 1, . . . , x} and Srk (t) =
{STki|i = 1, . . . , y}. In addition, the configured subtasks set
Fk (t) with p subtasks in the Fk can also be obtained as men-
tioned in Section III. We define Sk is a combination of Srk (t),
Swk (t) andFk (t), that is Sk = {STki|i = 1, . . . , x+y+p}which
represents the set of all subtasks assigned to the FPGA Fk at
time t . Every subtask STki in the Sk has these features ST idki ,
ST clbki , ST bramki , ST dspki , STwki , ST

h
ki, ST

texe
ki and ST bitski defined in

Section III.
In this stage, we need to find an appropriate FPGA for

each task and formalize it as a task-to-FPGA mapping M .
M (i) = k , k ∈ {1, . . . ,m} represents that the task Ti is
assigned to the FPGA Fk . In order to find the reasonable
mappingM (i), we define our objective functionϕ considering
two aspects of issues: one is to reduce the task reconfigura-
tion, and the other is to reduce the contention of hardware

VOLUME 7, 2019 163855



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

requirements between subtasks. The objective function is
defined as

ϕ = λSK (M )+ µ
1

R(M )
, (2)

where SK (M ) represents the subtask similarity between the
task Ti and the subtasks set Sk , and R(M ) represents the
resource requirement similarity between them. λ and µ

respectively are the weights of SK (M ) and R(M ). SK (M ) is
for subtasks with the same subtask type between the subtask
set of tasks to be assigned and those in subtask sets assigned
to each FPGA, while R(M ) is for subtasks with different
subtask type in those two kind sets. There is a certain relative
relationship between SK (M ) and R(M ). In order to consider
two similarities and assign tasks better, we set weight factors
for each similarity λ and µ and we set λ + µ = 1. The
larger the SK (M ), the more subtasks of the same type, which
means that it is more likely to reduce the unnecessary recon-
figuration operations. The smaller the R(M ) is, there is less
possibility of resource contention between Ti and Sk , which
is more conducive to improve the utilization of multidimen-
sional resources. Our objective is to find a mappingM (i) that
maximizes the objective function ϕ.
To obtain the maximal SK (M ) to reduce the unnecessary

task reconfiguration operations, we use Jaccard coefficients
to estimate subtask similarity under the mapping M (i). The
subtask similarity SK (M (i)) between the subtasks set Vi and
Sk is defined as

SK (M (i)) =
Num(Vi ∩ Sk )
Num(Vi ∪ Sk )

. (3)

In addition, in order to obtain the minimal R(M ), we first
show the resource requirement similarity between two sub-
tasks. If two different type of subtasks are assigned to the
same FPGA and their resource requirements are similar, there
may be the resource contention between them. Tomeasure the
similarity of resource requirements between any two different
type subtasks, we first extract the resource requirement vector
as R·j = (ST clb

·j , ST
bram
·j , ST dsp

·j ) for the j-th subtask in a set.
Then we use following cosine value of the resource require-
ment feature vectors to measure the similarity of resource
requirements between any two subtasks.

cos(θ )xy =

∑n
i=1 R·x · R·y√∑n

i=1 R
2
·x ·

√∑n
i=1 R

2
·y

, (4)

where R·x and R·y are the resource requirement vectors for
two different types of subtasks ST·x and ST·y. θ is the angle
between the two vectors and cos(θ ) ∈ [0, 1].
For obtaining the minimal R(M ) of the sets Vi and Sk ,

we need to first remove the subtasks of the same type between
them and then obtain two subsetsV ′i and S

′
k . Any two subtasks

STix and STkymeet STix ∈V ′i , STky ∈ S
′
k and ST

id
ix 6= ST

id
ky . And

we define R(M (i)) as

R(M (i)) =

p∑
x=1

q∑
y=1

cos(θ )xy

p ∗ q
(5)

FIGURE 2. (a) Scheduling sequence A. (b) Scheduling sequence B.

where p represents the number of subtasks in V ′i and q repre-
sents the number of subtasks in S ′k .

The detailed task-level scheduling method is showed in
Algorithm 1.

Algorithm 1 Task-Level Scheduling Method

Input: A subtask set Vi of task Ti to be assigned;
A set of subtasks that have been assigned to all FPGAs
at the current moment Stot = {S1,. . . , Sm} in which each
element Sk , k ∈ {1, 2, ...m} denotes the set of subtasks
assigned to k-th FPGA Fk ;
Output: The result k of mapping M (i) with the

maximized ϕ for task Ti;
1 for each subtask set Sk in Stot do
2 Compute subtask similarity S(M (i)) of Vi and Sk

using Eq3;
3 Remove subtasks of the same subtask type ST id··

between Vi and Sk to obtain two subsets V ′i and S
′
k ;

4 Calculate the resource requirement similarity
R(M (i)) using Eq5;

5 Calculate the objective ϕ using Eq2;

6 Return k that maximizes ϕ under mapping M (i) = k;

C. SUBTASK-LEVEL SCHEDULING AND PLACEMENT
ON SINGLE FPGA
As section III-B describes, each subtask must be config-
ured with the corresponding logical resources before it is
executed which leads us to consider how to place subtasks
reasonably under a limited reconfigurable region. In addi-
tion, for the subtasks in the queue RQFPGA, their scheduling
order also affects the makespan of the entire set. As shown
in Figure 2, for these four subtasks, the scheduling sequence
A is T1→T2→T3→T4 and the scheduling sequence B is
T1→T4→T2→T3. As we can see that different schedul-
ing order results in different makespan due to the limited
resources. To solve this problem, we propose the Subtask-
Level Scheduling and Placement (SLSP) method combining
Genetic Ant Colony Optimization (GACO) algorithm with
MER-3D-Placement algorithm [12].

The basic idea of SLSPmethod. For the subtask set Srk (t)
with y independent subtasks in theRQFPGAk at time t , we need
to determine the appropriate scheduling order and placement
location for each subtask STki, i ∈ {1, . . . , y}.
SLSP method is divided into two main parts. Firstly,

we combine Genetic Algorithm (GA) [31], [32] with
bi-directional convergent Ant Colony Optimization

163856 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

(ACO) [33], [34] algorithm to make subtasks scheduling
order decision which can overcome the shortcomings of GA
and ACO algorithms. It can be better than GA in accuracy
and ACO in time efficiency. Secondly, we use the MER-3D-
Placement method to obtain the optimal placement location
for each subtask. It takes into account the time of each
subtask occupying resources, which makes it can reduce
the resource fragmentation more than the traditional two-
dimensional placement algorithm. In the whole subtasks
scheduling and placement process, we first make full use of
the randomness and fast global convergence of GA to gen-
erate a pheromone distribution of subtask scheduling order
problem. This distribution is used as the initial pheromone
distribution of the bidirectional convergence ACO. On this
basis, we make full use of its positive feedback and high
accuracy to find the optimal solution of scheduling order.
In addition, during the whole GA and ACO process, we need
to evaluate each scheduling order according to the fitness
in makespan of subtasks and find a placement loation for
each subtask in the reconfigurable region. Therefore, we use
MER-3D-placement method to find the optimal location for
each subtask according to each scheduling order and then
calculate the makespan of the all subtasks to determine the
fitness of the scheduling order.

Next we introduce the placement algorithm for a single
subtask, and then introduce the overall subtask scheduling
and placement method in detail.

1) MER-3D-PLACEMENT METHOD BASED ON
MULTI-RESOURCES REQUIREMENTS
It is a common layout strategy to regard the reconfiguration
region as a rectangle and consider the remaining resources as
MERs. However, there is still much room for improvement
in how to allocate MERs reasonably. However, most of the
previous algorithms only consider the resource occupation
from two-dimensional area and rarely consider the occupied
time. Moreover, the previous algorithms usually only con-
sider the CLB resources neglecting other hardware resources,
such as BRAM and DSP, which affect the performance of
task execution. In our MER-3D-Placement method, we not
only consider the three-dimensional space, but also consider
different hardware resources to calculate the 3D connection
value, and then select the location that produces the smallest
fragmentation for allocation. In this way, we can make full
use of resources and give full play to the characteristics of
different hardware resources (CLB,DSP,BRAM). Next is our
detailed description of the algorithm.

In order to better describe our algorithm, we first give a
new representation of MER in our method: MER = (MERx ,
MERy, MERw, MERh, MERr ), where MERx , MERy, MERw,
MERh respectively represents the horizontal and vertical posi-
tion of the top-left corner, the width and height of MER.
In addition,MERr indicates whether the resources in this rect-
angle contain DSP and BRAM. As described in section III,
the resources of DSP and BRAM are column-based in recon-
figuration region and the columns are fixed.

FIGURE 3. Candidate positions of MER-3D-Placement.

Section III shows that each FPGA has a reconfigurable
region, which can be formalized as a 2D rectangle to con-
figure different logical functions. At the time t , we can get
the configured subtasks set Fk (t) of the k-th FPGA. And
any configured subtask has these attributes TCki = (TC id

ki ,
TCclb

ki , TC
bram
ki , TCdsp

ki , TCx
ki, TC

y
ki, TC

w
ki , TC

h
ki, TC

trem
ki ) defined

in Section III-A. When a subtask STj,new of a task Tj is to
be executed, we need to check whether the reconfiguration
region has been configured for the same type of subtask with
ST idj,new. If it has been configured, the subtask only needs to
wait untill other subtasks with the same type are completed.
Otherwise, we need to find the appropriate location for it.

To get the appropriate location L = (x, y) for STj,new
on the k-th FPGA, we extract the location feature LFk =
(TCx

ki, TC
y
ki, TC

w
ki , TC

h
ki, TC

trem
ki ) for each configured subtask

TCki, and then use it to compute all the maximum empty
rectangles MERs = {MERj|j = 1, ...z} in the current state.
Next we traverse all MERs to calculate the 3D-contact value
of each candidate position in each MER. As Figure 3 shows,
there is only one MER due to the resources occupy of the
tasks ST1 and ST2. To configure STj,new, we traverse the
candidate locations of the MER to calculate 3D-contact value
which include top-left corner (TL), top-right corner (TR),
bottom-left corner (BL), bottom-right (BR) corner shown in
subfigure (a), (b), (c), (d) of figure 3, respectively. Because
of the different adjacent edges, different candidate positions
have different 3D-contact values. Futher, if STj,new needs
the BRAM or DSP, that is ST bramj,new 6= 0 or ST dspj,new 6= 0,
we will take into account the two intersections consisting of
the column of the specific resource (BRAM or DSP) and
the edges of MER. In order to make full use of various
resources, we give the priority to two specific intersections
in all MERs containing this resource. Finally we select the
candidate location with maximized 3D-contact value for new
subtask. The 3D-contact value C is defined as

C =
n∑

p=0

Lp × LTp (6)

VOLUME 7, 2019 163857



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

where n denotes the number of edges connected to any
configured subtask and the edges of reconfiguration region
after the new subtask is placed in a candidate location. Lp
represents the length of the overlap of the p-th contacted edge.
In addition, LTp is a period of time for the p-th contacted edge
called edge lifetime [8]. In other words, if the edge belongs to
STj,new and a configured subtask TCki, the LPp is the shortest
remaining time for the two subtasks to execute. In this case,
LTp is defined by

LTp = min{ST texej,new,TC
trem
ki − ST

tcon
j,new}, (7)

where ST texej,new is the execution time and ST tconj,new is its config-
uration time defined in section III-B. TC trem

ki is the remaining
execution time of TCki. In addition, if the p-th contacted edge
belongs to the reconfiguration region, then LTp = ST texej,new.
Our MER-3D-Placement method based on different hard-

ware resource requirements is showed in Algorithm 2.

Algorithm 2 MER-3D-Placement Method Based on
Multi-Resources
Input: A new subtask to be configured STj,new;
The configuration state Fk (t) of a FPGA Fk at time t;
The column value of BRAM and DSP in FPGA Colbram,
Coldsp;
Output: Location L(x, y) where STj,new is configured;

1 Obtain the available MER set MERs according to Fk (t),
Colbram, Coldsp of the FPGA Fk ;

2 Filter subset MERs′ that satisfies resource requirement
of the STj,new;

3 Initialize an array Cs to record 3D-contact values for
each candidate location;

4 if No available MER in MERs′ then
5 Return null;
6 for each MER in MERs′ do
7 if STj,new needs BRAM or DSP then
8 for each MER has the specific resource do
9 Calculate the 3D-contact value C of all

candidate intersections using Eq6;

10 else
11 for each MER in MERs′ do
12 Calculate the 3D-contact value C of the all

candidate locations using Eq6;

13

14 Return the corresponding location L(x, y) with
maximum C in Cs;

2) SUBTASK-LEVEL SCHEDULING AND PLACEMENT
METHOD
For optimizing the makespan MP of the subtask set
Skr with y subtasks, we combine GACO algorithm with
MER-3D-Placement algorithm.

In GACO, we can continuously get different scheduling
orders. In order to evaluate the optimized order π , we first
define the fitness of the order as the makespan of all subtasks

in the scheduling order π , which is formalized as Fit(π ) =
MPπ . To obtain the fitness Fit , we need to combine the
MER-3D-Placement algorithm to get the placement location
of each subtask. For a scheduling order π = {π1,. . . , πy},
π i ∈ {1, . . . , y} and the detailed calculation of its fitness is
shown in Algorithm 3.

Algorithm 3 Fitness of a Scheduling Order

Input: A scheduling order π ;
The State Vector Fk (t) of a FPGA Fk at the time t;
The subtask set Srk in the ready queue;
Output: The fitness Fit(π );
Every placement location Li for each subtask STki;

1 Initialize temp status of FPGA Ftemp = Fk (t), Fit(π ) =
0;

2 Sort Srk according to the scheduling order π ;
3 for each subtask STki of Srk do
4 Get placement location Li of STki according to

Algorithm 2;
5 if Li = null then
6 Get the remianing time TC trem

temp,ear of the subtask
TCtemp,ear that will be earliest completed in
Ftemp;

7 Fit(π ) + = TC trem
temp,ear ;

8 for each subtask TCtemp,i in Ftemp do
9 TC trem

temp,i = TC trem
temp,i - TC

trem
temp,ear ;

10 if TC trem
temp,i = 0 then

11 Remove TCtemp,i in Ftemp;
12

13 else
14 Create an element TCtemp,con and initialize it

with the attributes of STki and add it to Ftemp;
15 if STi is the last element then
16 Get the remaining time TC trem

temp,last of the last
subtask TCtemp,last to be accomplished in
Ftemp;

17 Fit(π ) + = TC trem
temp,last ;

18

19

20 Return Fit(π ) and every subtask’s location Li;

In GA stage, an initial population containing popsize chro-
mosomes is firstly initialized, in which each chromosome
represents a scheduling order π . Then, the fitness Fit(π ) of
each chromosome in the population is calculated by Algo-
rithm 3 and the chromosomes are crossed, mutated, and
duplicated by a certain selection probabilityP(π ) to form new
N chromosomes. Through continuous evolutionary iteration,
we can find the appropriate optimization results. The selec-
tion probability P(πk ) is defined as

P(π ) =
Fit(π )∑popsize

k=1 Fit(π )
(8)

When GA merges with ACO, in order to avoid that the

163858 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

fixed number of GA iterations will affect the efficiency of
the algorithm in the traditional algorithm, we use dynamic
fusion to ensure the correct conversion time of GA and ACO.
We set up the maximum and minimum genetic iterations as
Genmin, Genmax , and give the minimum evolutionary rate
Evomin. When the evolutionary rate Evodie is less than the
Evomin, we transform GA to ACO.
In the stage of ACO, according to the law of ants foraging,

the optimal scheduling sequence is found through the swarm
intelligence of M ants. Each ant schedules every subtask
in Srk (·) of FPGA Fk and releases a certain pheromone γij
between the subtask STki and the subtask STkj. In our algo-
rithm, we first initialize pheromone γij = γijG , where γijG
denotes the proportion of the sequence of STki to STkj in a
set of optimal solutions of GA. After an ant Am schedules
all subtasks, in order to accelerate convergence of ACO,
the pheromone concentration γij is updated as follow:

.γij(t + n) = (1− δ)γij(t)+1γij(t + n),

1γij(t + n) =


Q
Fitπ

, if π = πbest ;

−Q′

Fitπ
, if π = πworst ;

0, others,

(9)

where1γij(t+n) is a reward-penalty function which rewards
the best order πbest and punishes the worst order πworse in
n-period. Q is the pheromone constant for reward and Q′ is
the pheromone constant for punishment. δ is the pheromone
volatilization coefficient. When more and more ants pass
through the same order, more and more pheromones is found.
After endless efforts, they choose the appropriate optimal
scheduling order. The probability ρij(t) of an ant Am choosing
the next subtask at time t is defined as

.ρkij(t) =


[γij(t)]α[ηij(t)]β∑
s∈S [γis(t)]α[ηis(t)]β

, j ∈ Nextm;

0, otherwise,
(10)

ηij(t) =
1

Fitt (πm)
(11)

where α is pheromone heuristic factor and it reflects the
strength of random factors in ant colony search. β is expec-
tation heuristic factor which reflects the strength of the priori
and deterministic factors of ant colony. And Nextm is the next
subtask sets that ant Am can choose. Fitt (πm) is the fitness of
the order chosen by ant Am at the time t .
The details of SLSP algorithm are shown in Algorithm 4,

which can get the optimized result for the subtask-level
scheduling and placement.

V. EXPERIMENTAL RESULTS
A. EXPERIMENT SETUP
We have built our multi-FPGA computing system as
described in Section III, including BSR, TLS, SLS and so
on. The system is configured with a server with an Intel(R)
Xeon(R) CPU E5-2620 v3 working at a frequency

Algorithm 4 SLSP Algorithm Based on GACO and
MER-3D-Placement
Input: A subtask set Srk to be scheduled and configured

on FPGA Fk ;
The state vector Fk (t) of Fk at time t;
Output: The scheduling order π and every subtask’s

location L(x, y) in Srk ;
1 Initialize parameters Genmin, Genmax , Evodie, Evomin,
popsize, M , α, β, Q, Q′, δ;

2 Randomly generate an initial population of popsize
chromosomes;

3 while Iteration number i in [Genmin,Genmax] and Evodie
> Evomin do

4 Calculate each Fit(π ) of chromosome according to
Algorithm 3;

5 Calculate the probability ρπ according to Eq8;
6 while chromosomes are not fully traversed do
7 Selection,crossover and mutation;

8 Replace old population by a new population;

9 Initialize the pheromones between any two subtasks STki
STkj using γij = γijG ;

10 Randomly place M ants on different M subtasks STk·;
11 while No optimal solution is found do
12 for each ant Am do
13 for each schedule order πm do
14 Select the next subtask based on Eq10, Eq11;

15 Evaluate fitness Fit(πm) using Algorithm3;
16 Update pheromone γij using Eq9;

17 Return the best scheduling order π and the location
Lj(x, y) for each subtask STkj.

of 2.40GHZ and five Xilinx Kintex UltraScale KCU1500
FPGA boards. FPGA is connected with server through
PCIE. In this way, we can easily change the number of
FPGAs in the system. Each board has 4 DDR4 mem-
ory with total 16GB. Moreover, the FPGA has a
specific chip, XCKU115-2FLVB2104E, which includes
1,326,720 FlipFlops (FFs), 663,360 Look-Up Tables (LUTs),
5,520 DSP Slices and 2159 Block RAMs with 32Kb
each. In Xilinx’s UltraScale series, a CLB can be grouped
by 8 six-input LUTs and 16 FFs. Therefore, there are about
82920 CLBs in the chip. And in our experiments, the ratio
of rows and columns of the reconfiguration region is about
3:2 and every FPGA has about 337 rows and 224 columns
hardware resources (CLBs, BRAMs, DSPs) in its reconfigu-
ration region. The reconfigurable region can be reconfigured
at runtimewhilemaintaining all other components functional.
Once the task is configured, the system records the relevant
information.

In addition, we use several real benchmarks to evaluate our
task scheduling and placement algorithm. These benchmarks
are a mix of different applications from Microelectronic
Center of North Carolina [35] benchmark suite and Media-

VOLUME 7, 2019 163859



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

TABLE 1. Tasks implemented information.

Bench [36]. In addition, we implement several different tasks
using Vivado Design Suite provided by Xilinx. Table 1 lists
these tasks used in our experiments and the workloads are
different combinations of randomly generated tasks with dif-
ferent numbers. In our implementation process, each task is
divided into 3 to 30 subtasks modules which require different
resources (CLBs, BRAMs or DSPs) in advance according
to the processing flow of each task. And the same subtask
modules may exist in different tasks. For example, there are
same modules in edge detection and target detection, such
as binarization, corrosion filtering, median filtering and so
on. It means that the subtasks of the same type may exist
in different tasks. And we store the binary compiled files of
these subtasks in BSR of our system.

For comparing the quality of our proposed two-stage
scheduling algorithm with other task scheduling algorithm,
we have implemented several multi-node scheduling algo-
rithms and single-node scheduling algorithms in the system.
Multi-node sheduling methods include Least loaded (LL)
method and Round Robin (RR) method which are widely
used in multi-node scheduling. And single-node placement
methods include MER-2D adjacent placement (MER-2D)
method, MER First Fit (MER-FF) method and MER-3D-
Contact (MER-3D). We schedule these subtasks by the
order of subtask arrival. MER-2D method considers the
resource occupancy compactness of subtasks placement in
two-dimensional resource plane. MER-FF method is to find
the first suitable MER for the coming subtask according to
its resource requirements and then chooses the location for
it. MER-3D is simlilar to our placement method without
scheduling strategy.

B. PARAMETER ANALYSIS
1) SIMILARITY WEIGHT FACTORS ANALYSIS
In task-level scheduling, two important similarity weight
factors λ and µ affect the performance of task schedul-
ing. In order to accurately measure the performance of our
approach, we first determine them using the different combi-
nations of different tasks in Table 1 with different input data.
We design three kind of sets of task: highly similar task sets
(HSS), moderately similar task sets (MSS) and low similar
task sets (LSS) according to the repeatability of the same

FIGURE 4. Makespan of the task sets with different task similarity weight.

hardware subtasks. Each set has 100 tasks with 300 subtasks.
There are only 10 types of subtasks in a set of HSS. Thus,
subtasks in the set are highly repetitive. In LSS, there are
120 different types of subtasks, so the repetition of subtasks
in the set is very low. And MSS is a compromise between the
HSS and LSS with 50 type of subtask. In addition, each set
is executed 20 times in our experiment, and the makespan of
a set is the average complete time. During the experiment,
we continuously submit these 100 tasks of each set to the
system with the task arrival rate 10/s. The execution results of
three kind of sets under different similarity weight factors are
shown in the Figure 4. As shown in the figure, the completion
time of the same task set varies under different weighting
factors λ and the makespan of three different sets is signif-
icantly reduced when λ in the range of [0.4, 0.8]. Among
them, HSS, MSS, LSS can obtain the minimum completion
time when λ = 0.7. Since subtask similarity weight λ and
resource requirement similarity weight µ satisfy λ + µ = 1
as mentioned in Section IV, the system can achieve better
performance of task scheduling under two similarity weight
factors λ = 0.7 and µ = 0.3, which means that subtask
similarity has a greater impact on tasks makespan by reducing
task reconfiguration time than resource requirement similar-
ity in our experiments. We use these most appropriate weight
factors in the later experiments.

2) CONVERGENCE OF GACO ALGORITHM
In our two-stage scheduling algorithm, GACO algorithm is an
important part and the convergence of GACO is an important
factor for the performance of our approach. In order to verify
the convergence of GACO, we randomly assign 300 sub-
tasks to a subtask ready queue for subtask-stage scheduling
simulation and we set GACO parameters as Genmin = 40,
Genmax = 80, Evomin = 4%, popsize = 30, M = 40,
α = 0.2, β = 0.8, Q = 5, Q′ = 4, δ = 0.017, which
makes a faster convergence of GACO through our extensive
experiments. Then, in the experiment, we compare GACO
algorithm with GA algorithm and ACO algorithm. We run
each algorithm 15 times and the measured subtask makespan
is the average time of 15 executions. The makespan in this
process is the time interval from the start of subtask schedul-
ing to the completion of all subtasks. As shown in Figure 5,
with the increase of iterations, the total subtask makespan

163860 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

FIGURE 5. Convergence of GACO.

FIGURE 6. Average area utilization of subtask sets on a single FPGA.

of each algorithm converges gradually. When the number
of iterations reaches 950, the makespan of GACO curve
gradually stabilizes. However, the makespan of GA and ACO
algorithms tends to be stable at 1200 and 1500 iterations,
respectively. In addition, we can find that the final makespan
of GACO is less than that of GA and ACO which means that
GACO converges faster than GA and ACO, and the solution
obtained is better.

C. PERFORMANCE ANALYSIS
1) EVALUATION OF SLSP METHOD
We verify SLSP method from average area utilization and
subtask makespan for the subtask-level scheduling in a sin-
gle FPGA. We define the average area utilization (AAU) as
shown in Eq12.

n∑
i=1

ST texei × STwi × ST
h
i

makespan× Fw × Fh
, (12)

where n represents the number of all the subtasks and
makespan is the complete time of the subtask set on the
FPGA.

In this experiment, we set the number of FPGAs to 1 and
there is no task-stage scheduling. In our experiments, we ran-
domly generate three sets with 300 tasks described in table
1 and the tasks arrive at 10/s. Each of set allows that the same
type of task can occur multiple times. Figure 6 and Figure 7
represent the result of our SLSP method compared with other
methods implemented in our system.

FIGURE 7. Makespan of subtask sets on a single FPGA.

Figure 6 shows the average area utilization of the recon-
figuration region caused by different scheduling methods.
As we can see, compared with other methods, our method can
obtain the largest area resource utilization. Figure 7 analyses
the makespan of the whole set, which is the total time from
the start of scheduling to the completion of all tasks, includ-
ing scheduling time, configuration time, and execution time.
As shown in Figure 7, SLSP method obtains the minimum
makespan for all three different task sets compared with other
methods. This is because SLSPmethod not only considers the
placement of a single task to reduce resource fragmentation,
but also considers the impact of different scheduling orders
on reconfiguration and resource occupancy in multi-task sce-
narios by using GACO algorithm. It is worth mentioning that
although MRE-3D algorithm is very similar to our algorithm
in placement, SLSP algorithm shows better performance by
considering both scheduling order and placement location.

2) EVALUATION OF OUR TWO-STAGE SCHEDULING
APPROACH ON MULTI-FPGA
In order to verify the performance of our two-stage schedul-
ing, we compare it with the hybrid methods which are com-
posed of the commonmulti-node scheduling methods and the
single-FPGA placement methods mentioned above. In order
to better reflect different multi-FPGA scenarios, we set the
number of FPGAs in the system to 3-5. We randomly submit
400 tasks continously and obtain the performance of the
system under different scheduling methods, including the
makespan of task sets, resource area utilization and different
hardware resources utilization of an FPGA. Note that the
makespan of a task set is the time from the start of the first
task received by the system to the completion of task set
processing.

In our experiments, we obtain the resource area utilization
on FPGAs at different time under different scheduling meth-
ods. Figure 8 illustrates resource utilization rate at different
times on the first FPGA when the number of FPGA is 3.
As Figure 8 shows, the resource utilization rate generated by
each method is constantly fluctuating. But we can observe
that the resource utilization rate of our approach is relatively
stable and it basically maintains at about 79% which is sig-
nificantly higher than the other four methods. This shows that
our approach can keep the reconfigurable resources highly
utilized for a long time through appropriate task scheduling,

VOLUME 7, 2019 163861



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

FIGURE 8. Resource utilization rate of the task sets.

TABLE 2. Average utilization rate of different resources with three FPGAs.

subtask scheduling and placement, whichmakesmultitasking
more parallel to some extent. In practice, the utilization of
reconfigurable resources in each of our FPGAs is similar to
that shown in Figure 8.

In addition, in order to explore the utilization of different
hardware resources, we calculate the average utilization rate
for each type of resources r ∈ R = {CLB,BRAM ,DSP} on
the each FPGA as follow:

n∑
i=1

ST texeki × ST
r
ki

makespan× Fr
, (13)

where ST rki is the amount of the resource r required by
subtask STki and Fr is the amount of the resource r in the
reconfigurable region. Table 2 shows the average utilization
rate of different resources in each FPGA when the system is
configured with three FPGAs. As shown in Table 2, when
the system is configured with three FPGAs, LL+MER-FF,
LL+MER-2D, RR+MER-FF, RR+MER-2D have great dif-
ferences in resource utilization rates of each resource on each
FPGA. However, using our scheduling method, the different
resource utilization rates on each FPGA are very close, that
is, the resources are used equally. This shows that consider-
ing similarity of resource requirements among tasks in task-
level scheduling is meaningful, which enables tasks to be
scheduled to the appropriate computing unit with the least
possibility of resource contention so as to make full use of
multi-resources through reasonable task scheduling.

Finally, we analyze the impact of different scheduling
methods on the makespan of the whole task set under the

FIGURE 9. Makespan of the task sets.

same number of FPGA. Figure 9 shows the makespan of
all tasks with different scheduling and placement methods
on our multi-FPGA system. We can observe that when
the system is configured with three, four and five FPGAs
respectively, our two-stage scheduling method can always
get the minimized makespan which is obviously superior to
LL+MER2D, RR+MER2D, LL+MERFF andRR+MERFF
with the same task set, which proves that our method can
reduce the makespan of multi-task under multi-FPGA.

VI. CONCLUSION
In this paper, we propose a two-stage task scheduling
approach in partially reconfigurable multi-FPGA systems.
At the first scheduling stage, we use the subtask similarity
and resource requirement similarity to measure the suitability
between a task and each FPGA, which guides the task to
be allocated to an appropriate FPGA computing unit and
reduces the possibility of reconfiguration and resource con-
tention. At the second scheduling stage, we propose the SLSP
algorithm to select an appropriate scheduling order and loca-
tion for each subtask, which effectively reduces unnecessary
reconfiguration and resource fragmentation. Finally, through
extensive experiments, we show that our two-stage schedul-
ing approach is superior to other methods, which reduces the
makespan of multi-tasks and improves resource utilization by
reducing reconfiguration overhead, resource contention and
resource fragmentation.

REFERENCES
[1] C.-C. Kao, ‘‘Performance-oriented partitioning for task scheduling of

parallel reconfigurable architectures,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 858–867, Mar. 2015.

[2] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, ‘‘Enabling flexible network FPGA clusters in a heterogeneous
cloud data center,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays (FPGA), 2017, pp. 237–246.

[3] X. Liu, W. Liu, H. Ma, and H. Fu, ‘‘Large-scale vehicle re-identification
in urban surveillance videos,’’ in Proc. IEEE Int. Conf. Multimedia
Expo (ICME), Jul. 2016, pp. 1–6.

[4] M. D. Santambrogio and D. Sciuto, ‘‘Design methodology for partial
dynamic reconfiguration: A new degree of freedom in the HW/SW code-
sign,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process. Symp. (IPDPS),
Apr. 2008, pp. 1–8.

[5] J. Strunk, T. Volkmer, K. Stephan, W. Rehm, and H. Schick, ‘‘Impact of
run-time reconfiguration on design and speed—A case study based on a
grid of run-time reconfigurable modules inside a FPGA,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. (IPDPS), May 2009, pp. 1–8.

[6] A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, and M. D. Santambro-
gio, ‘‘Resource-efficient scheduling for partially-reconfigurable FPGA-
based systems,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Work-
shops (IPDPSW), May 2016, pp. 189–197.

163862 VOLUME 7, 2019



Z. Sun et al.: Resource-Aware Task Scheduling and Placement in Multi-FPGA System

[7] L. Gong and O. Diessel, ‘‘Functionally verifying state saving and restora-
tion in dynamically reconfigurable systems,’’ in Proc. ACM/SIGDA Int.
Symp. Field Program. Gate Arrays (FPGA), 2012, pp. 241–244.

[8] J. Tabero, J. Septien, H. Mecha, and D. Mozos, ‘‘Task placement heuristics
based on 3D-adjacency and look-ahead in reconfigurable systems,’’ in
Proc. Asia South Pacific Conf. Design Autom. (ASPDAC), Jan. 2006,
pp. 396–400.

[9] S. Roman, H. Mecha, D. Mozos, and J. Septien, ‘‘Partition based dynamic
2D HW multitasking management,’’ in Proc. 9th EUROMICRO Conf.
Digit. Syst. Design (DSD), Sep. 2006, pp. 61–70.

[10] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez, ‘‘Empty
resource compaction algorithms for real-time hardware tasks placement
on partially reconfigurable FPGAs subject to fault ocurrence,’’ in Proc.
Int. Conf. Reconfigurable Comput. FPGAs (ReConFig), Nov./Dec. 2011,
pp. 27–34.

[11] J. A. Clemente, J. Resano, and D. Mozos, ‘‘An approach to manage recon-
figurations and reduce area cost in hard real-time reconfigurable systems,’’
ACM Trans. Embedded Comput. Syst., vol. 13, no. 4, 2014, Art. no. 90.

[12] G.Wang, S. Liu, J. Nie, F. Wang, and T. Arslan, ‘‘An online task placement
algorithm based on maximum empty rectangles in dynamic partial recon-
figurable systems,’’ in Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS),
Jul. 2017, pp. 180–185.

[13] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. D. Santambrogio, and
D. Sciuto, ‘‘PaRA-Sched: A reconfiguration-aware scheduler for reconfig-
urable architectures,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), May 2014, pp. 243–250.

[14] E. A. Deiana, M. Rabozzi, R. Cattaneo, and M. D. Santambrogio,
‘‘A multiobjective reconfiguration-aware scheduler for FPGA-based het-
erogeneous architectures,’’ in Proc. Int. Conf. ReConFigurable Comput.
FPGAs (ReConFig), Dec. 2015, pp. 1–6.

[15] C. Jing, Y. Zhu, and M. Li, ‘‘Energy-efficient scheduling on multi-FPGA
reconfigurable systems,’’ Microprocessors Microsyst., vol. 37, nos. 6–7,
pp. 590–600, 2013.

[16] G. Dai, Y. Shan, F. Chen, Y. Wang, K. Wang, and H. Yang, ‘‘Online
scheduling for FPGA computation in the cloud,’’ in Proc. Int. Conf. Field-
Program. Technol. (FPT), Dec. 2014, pp. 330–333.

[17] Y. He, J. Liu, and H. Sun, ‘‘Scheduling functionally heterogeneous systems
with utilization balancing,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), May 2011, pp. 1187–1198.

[18] M. E. Belviranli, L. N. Bhuyan, and R. Gupta, ‘‘A dynamic self-scheduling
scheme for heterogeneous multiprocessor architectures,’’ ACM Trans.
Archit. Code Optim., vol. 9, no. 4, 2013, Art. no. 57.

[19] T. Bridi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
‘‘A constraint programming scheduler for heterogeneous high-
performance computing machines,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 2781–2794, Oct. 2016.

[20] K. Chronaki, A. Rico, M. Casas, M. Moretó, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero, ‘‘Task scheduling techniques for asymmetric
multi-core systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 2074–2087, Jul. 2017.

[21] M. Hakem and F. Butelle, ‘‘Dynamic critical path scheduling parallel pro-
grams onto multiprocessors,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), Apr. 2005, p. 7.

[22] M. I. Daoud and N. Kharma, ‘‘Efficient compile-time task scheduling for
heterogeneous distributed computing systems,’’ in Proc. Int. Conf. Parallel
Distrib. Syst. (ICPADS), Jul. 2006, p. 9.

[23] Y. Song, L. Liu, H. Ma, and A. V. Vasilakos, ‘‘A biology-based algorithm
to minimal exposure problem of wireless sensor networks,’’ IEEE Trans.
Netw. Service Manag., vol. 11, no. 3, pp. 417–430, Sep. 2014.

[24] L. Liu, Y. Song, H. Zhang, H. Ma, and A. V. Vasilakos, ‘‘Physarum
optimization: A biology-inspired algorithm for the Steiner tree problem in
networks,’’ IEEE Trans. Comput., vol. 64, no. 3, pp. 818–831, Mar. 2015.

[25] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, and P. Raghavan, ‘‘Schedul-
ing parallel tasks under multiple resources: List scheduling vs. pack
scheduling,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2018, pp. 194–203.

[26] L. Liu, X. Zhang, and H. Ma, ‘‘Optimal node selection for target local-
ization in wireless camera sensor networks,’’ IEEE Trans. Veh. Technol.,
vol. 59, no. 7, pp. 3562–3576, Sep. 2010.

[27] D. Zhao, X.-Y. Li, and H. Ma, ‘‘How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint,’’ in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Apr./May 2014, pp. 1213–1221.

[28] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, ‘‘FPGAs
in the cloud: Booting virtualized hardware accelerators with openstack,’’
in Proc. IEEE Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2014, pp. 109–116.

[29] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, ‘‘Virtualized
execution runtime for FPGA accelerators in the cloud,’’ IEEE Access,
vol. 5, pp. 1900–1910, 2017.

[30] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos,
‘‘Run-time management of systems with partially reconfigurable FPGAs,’’
Integration, vol. 57, pp. 34–44, Mar. 2017.

[31] H. Yu, ‘‘A hybrid GA-based scheduling algorithm for heterogeneous
computing environments,’’ in Proc. IEEE Symp. Comput. Intell. Schedul-
ing (SCIS), Apr. 2007, pp. 87–92.

[32] Y. Xu, K. Li, T. T. Khac, andM. Qiu, ‘‘Amultiple priority queueing genetic
algorithm for task scheduling on heterogeneous computing systems,’’ in
Proc. 14th IEEE Int. Conf. High Perform. Comput. Commun. (HPCC),
Jun. 2012, pp. 639–646.

[33] I. Alaya, C. Solnon, and K. Ghedira, ‘‘Ant colony optimization for multi-
objective optimization problems,’’ in Proc. IEEE Int. Conf. Tools Artif.
Intell. (ICTAI), Oct. 2007, pp. 450–457.

[34] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, ‘‘Ant colony
heuristic for mapping and scheduling tasks and communications on hetero-
geneous embedded systems,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 29, no. 6, pp. 911–924, Jun. 2010.

[35] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide: Ver-
sion 3.0. Raleigh, NC, USA: Microelectronics Center of North Carolina,
1991.

[36] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, ‘‘MediaBench: A tool
for evaluating and synthesizingmultimedia and communications systems,’’
in Proc. 30th Annu. Int. Symp. Microarchitecture (MICRO), Dec. 1997,
pp. 330–335.

ZICHANG SUN received the B.S. degree in soft-
ware engineering fromYanshan University, China,
in 2017. She is currently pursuing the M.S. degree
in computer science and technology with the Bei-
jing University of Posts and Telecommunications
(BUPT), China. Since 2017, she has been with
the Beijing Key Laboratory of Intelligent Com-
munication Software and Multimedia, BUPT, and
has conducted research on heterogeneous parallel
computing and task scheduling.

HAITAO ZHANG received the B.S. degree in
mathematics from the Dalian University of Tech-
nology, China, in 2006, the M.S. degree in com-
puter science fromNortheasternUniversity, China,
in 2008, and the Ph.D. degree in computer science
from the Beijing University of Posts and Telecom-
munications, China, in 2012. From 2010 to 2011,
he was a Visiting Scholar with the Department of
Computer Science, Illinois Institute of Technol-
ogy, Chicago. He is currently an Associate Profes-

sor with the School of Computer Science, Beijing University of Posts and
Telecommunications. His research interests include parallel and distributed
computing, cloud computing, big data, and image/video analysis. He is the
Editor-in-Chief of over ten ITU-T standards related to visual surveillance and
cloud computing.

ZEHAN ZHANG received the B.S. degree
in computer science and technology from the
WuhanUniversity of Technology (WHUT), China,
in 2018. He is currently pursuing the M.S. degree
in computer science and technology with the
Beijing University of Posts and Telecommunica-
tions (BUPT), China. Since 2018, he has been with
the Beijing Key Laboratory of Intelligent Com-
munication Software and Multimedia, BUPT, and
has conducted research on heterogeneous parallel
computing and task scheduling.

VOLUME 7, 2019 163863


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	PARTIAL DYNAMIC RECONFIGURATION TECHNIQUE IN FPGA
	COMMUNICATION BETWEEN RECONFIGURATION MODULES
	RELATED WORK

	PROBLEM DESCRIPTION
	SYSTEM MODEL
	WORKLOAD MODEL

	THE PROPOSED TASK SCHEDULING AND PLACEMENT APPROACH ON MULTI-FPGAS
	DESIGN OVERVIEW
	FIRST SCHEDULING STAGE
	SECOND SCHEDULING STAGE

	TASK-LEVEL SCHEDULING ON MULTI-FPGA
	SUBTASK-LEVEL SCHEDULING AND PLACEMENT ON SINGLE FPGA
	MER-3D-PLACEMENT METHOD BASED ON MULTI-RESOURCES REQUIREMENTS
	SUBTASK-LEVEL SCHEDULING AND PLACEMENT METHOD


	EXPERIMENTAL RESULTS
	EXPERIMENT SETUP
	PARAMETER ANALYSIS
	SIMILARITY WEIGHT FACTORS ANALYSIS
	CONVERGENCE OF GACO ALGORITHM

	PERFORMANCE ANALYSIS
	EVALUATION OF SLSP METHOD
	EVALUATION OF OUR TWO-STAGE SCHEDULING APPROACH ON MULTI-FPGA


	CONCLUSION
	REFERENCES
	Biographies
	ZICHANG SUN
	HAITAO ZHANG
	ZEHAN ZHANG


