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ABSTRACT Wind energy is a kind of sustainable energy with strong uncertainty. With a large amount
of wind power injected into the power grid, it will inevitably affect the security, stability and economic
operation of the power grid. High-precision wind power spot prediction and fluctuation interval information
can provide more adequate decision-making support for grid scheduling and optimization. Hence, this
paper proposes a K-Means-long short-term memory (K-Means-LSTM) network model for wind power spot
prediction, and a nonparametric kernel density estimation (KDE) model with bandwidth optimization for
wind power probabilistic interval prediction. The long short-term memory (LSTM) network has a strong
memory function, which can establish the correlation between the data before and after, so as to improve the
prediction accuracy. TheK-Means clusteringmethod forms different clusters of wind power impact factors to
generate a new LSTM sub-prediction model. The optimization of the bandwidth in the nonparametric KDE
is implemented by the mean integrated squared error criterion. In addition, a part of the dataset is deliberately
demarcated from the wind power historical dataset to generate reasonable wind power prediction errors. The
simulation results show that the proposed K-Means-LSTM network model has higher prediction accuracy
than the back propagation (BP) neural networks, Elman neural networks, support vector regression (SVR)
and LSTM network models. Compared with the KDE model with random bandwidth and the Gaussian
distribution model, the bandwidth optimization model proposed in this paper has more narrow prediction
intervals with higher interval coverage rates.

INDEX TERMS Wind power prediction, Kernel density estimation, long short-term memory, K-means
clustering, probabilistic interval prediction.

I. INTRODUCTION
In recent years, with the increasing attention of countries
around the world to the development of renewable energy,
the research and development of wind energy is increasing
day by day [1]. Wind energy is a clean energy source from
nature. However, it has strong uncertainties [2]. At present,
the research related to wind energy can bemainly divided into
wind speed prediction [3], wind power prediction [4], wind
power ramp event prediction [5], [6], and the optimal config-
uration of wind energy [7], [8], etc. Along with the massive
grid connection of wind power, it has a huge impact on the
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safe and stable operation of the power grid [9]. Therefore,
to realize the highly accurate prediction of wind power will
provide more beneficial information for the optimal dispatch
of the power grid.

At present, the research directions of wind power pre-
diction can be divided into spot prediction and probabilis-
tic interval prediction [10]. There are many spot prediction
methods for wind speed and wind power of wind farms.
In reference [11], a prediction method combining wavelet
transform (VT) method and support vector machine (SVM)
was proposed. Wang et al. [12] proposed the maximum cor-
rentropy criteria (MCC) algorithm instead of the traditional
minimum square error (SE) algorithm to improve the back
propagation (BP) neural network and to realize wind power
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prediction. Huang et al. [13] proposed an enhanced harmony
search (EHS) algorithm to implement the selection of support
vector regression (SVR) model parameters. Chen et al. [14]
made correlation research on wind speed prediction, which
was based on extreme learning machine (ELM), Elman Neu-
ral Network and LSTM Network. Recently, A large number
of new methods based on LSTM for renewable energy and
load forecasting are proposed. Han et al. [15] proposed a
prediction model based on variational mode decomposition
and LSTM. Yu et al. [16] proposed an enhanced forget-gate
LSTM Model. Han et al. [17] proposed a model based on
Copula function and LSTM, which can effectively extract
wind power impact factors and achieve better prediction
results. However, the research objects of the above literatures
are based on wind power historical data, and the wind power
output series at the next moment is obtained by constructing
supervised learning. Therefore, the actual predicted objects
are only the wind power values at the next moment, and
there is a significant delay of single unit time. In addition,
due to the strong randomness of wind energy, wind power
prediction without the combination of numerical weather
prediction (NWP) data generally lacks practicality. Thus, this
paper will conduct an in-depth study from the perspective of
the NWP data and the LSTM network model to achieve wind
power spot prediction.

The wind power spot prediction still poses a great threat to
the safety and stability of the power grid. Thus, the probabilis-
tic interval prediction of wind power emerges. Probabilistic
interval prediction presents the fluctuation range of wind
power prediction error and provides more beneficial auxil-
iary information for grid scheduling and energy optimization
[18], [19]. In general, the probabilistic interval prediction of
wind power can be obtained by parametric and nonparametric
methods [20]. The parametric method usually assumes that
the sample data obeys a certain type of distribution, such as
Beta distribution, Gaussian distribution, etc. Yuan et al. [21]
assumed that the prediction error obeyed the Beta distribu-
tion, and used the particle swarm optimization (PSO) algo-
rithm to optimize the parameters in the Beta distribution
to find the minimum probability interval. Zhang et al. [22]
proposed a mixed Gaussian distribution model to fit the wind
power prediction error. Besides, the learning model repre-
sented by sparse Bayesian learning (SBL) belongs to the
parametric methods [23], which usually requires an accurate
prior knowledge of the relevant parameters. The SBL model
is complex with many parameter settings, which also has
a strong dependence on the sample data. The parametric
method is often constrained by the hypothetical prediction
error model. If the assumption is unreasonable, it will lead
to unsatisfactory interval prediction results.

On the contrary, the nonparametric method is more precise
than the parametric method, since the nonparametric method
does not need to make the assumptions of the wind power
error distribution. As a result, the conditional constraints
of the nonparametric method are limited. It is suitable for
many applications, and its versatility is stronger than the

parametric method. Nonparametric methods mainly include
quantile regression and kernel density estimation (KDE)
methods. Haque et al. [24] proposed the firefly algorithm
to optimize the combined prediction algorithm, using the
quantile regression method to achieve probability predic-
tion. In Reference [25], an online quantile regression method
based on Reproducing Kernel Hilbert Space was proposed,
which enabled online learning and online calibration. The
KDE method can provide the probability density function
(PDF) of wind power prediction error. In recent years, it has
attracted much attention in the area of wind power probability
prediction. Taylor and Jeon [26] used the conditional KDE
method to achieve wind power density prediction, which
showed that the KDE method had great application advan-
tages. He and Li [27] obtained the PDF of wind power on
the prediction period by using the prediction results based
on different prediction conditions as the input of the KDE
model. In reference [28], the KDEmethodwas used to predict
the wind power based on the data of a wind farm in France.
It was concluded that the nonparametric KDE had better
performance in sensitivity and reliability than the quantile
regression method. Therefore, this paper will apply the KDE
method to study the probabilistic interval prediction of wind
power.

Different spot prediction methods have different prediction
advantages. Combined forecasting methods can take advan-
tage of each sub-model and have attracted much attention in
recent years [29], [30]. In the current researches of proba-
bilistic interval predictionmethods, the wind power error data
comes from the deviation between the predicted values and
the real values within the prediction method adopted by the
wind farms. However, there is a problem worthy of further
study, which is the rationality of the error data. The wind
power spot prediction methods applied in many literatures
are often inconsistent with the theoretical research methods
in practical applications. Such error data cannot represent
the error dataset generated by the actual prediction method.
In view of the above problems, this paper takes the measured
data of wind farms as the micro-scale NWP data, mainly
focusing on the following contributions:

a) The abnormal data of wind power historical data has
a great influence on wind power prediction. This paper pro-
poses an anomaly data processing method combining density
clustering of applications with noise (DBSCAN) and 3σ
technology to achieve efficient denoising.

b) A spot prediction method based on long short-term
memory (LSTM) networks for wind power is proposed.
Combined with the K-Means clustering method due to
its fast and accurate performance in prediction [31], wind
power impact factors clustering is implemented to generate
K-Means-LSTM combined prediction model. Meanwhile,
the inclusion of the NWP data of the current time eliminates
the step delays in the prediction series.

c) The wind power historical dataset is divided into
training, verification, error generation, and test dataset, where
the error dataset is generated to ensure the rationality for the
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nonparametric KDE method with bandwidth optimization,
so as to obtain the rational wind power probabilistic interval
prediction. Compared with the nonparametric KDE method
with random bandwidth and the parametric method with the
assumed error obeying the Gaussian distribution, the validity
of the nonparametric KDE method with bandwidth optimiza-
tion has been verified.

The remains of this paper are organized as follows.
Section II initially introduces preliminary data processing
by using DBSCAN and 3σ technology. The dataset division
technique is also provided. Next, Section III delivers the pro-
posed spot prediction method based on the K-Means-LSTM
network. Afterward, Section IV proposes the nonparamet-
ric KDE-based probabilistic interval prediction method. The
prediction evaluation indices are presented, respectively.
Section V provides numerical case studies, and finally,
Section VI concludes the whole paper.

II. DATA PROCESSING
A. RAW DATASET PROCESSING
In the actual operation of the wind farm, some wind power
abnormal data will be generated due to wind turbine load
shedding and outage, equipment failure, communication
interference, and human malfunction, which are represented
by not a number (NAN) and missing data. Abnormal data
processing is usually performed by methods such as culling,
replacement, and interpolation. The method of substitu-
tion (or interpolation) is further divided into replacement
(or interpolation) of adjacent data of the same type,
mean value replacement (or interpolation), and replacement
(or interpolation) based on maximum likelihood estimation.

Since the number of the abnormal data samples is tiny
compared to the sample capacity, the impact caused by
the distribution and application of the dataset is negligible.
Hence, this paper uses the culling method as abnormal data
processing.

B. IMPACT FACTORS ANALYSIS
Pearson correlation coefficient analysis can explore the
degree of correlation between various impact factors and
wind power, so as to select the appropriate impact factors
for the model as input data. The application formula for the
Pearson correlation coefficient rjk is:

rjk =

n∑
i=1

(
xij − x̄j

)
(xik − x̄k)√

n∑
i=1

(
xij − x̄j

)2√ n∑
i=1
(xik − x̄k)2

(1)

where, xij and xik represent the i-th value of the class j and
class k data, respectively; x̄j and x̄k represent the mean of the
class j and class k data, respectively.

The data in this paper is derived from the measured data
of two wind farms in the northeast of China. In addition
to wind power, it also includes wind speed, wind direction,
temperature, humidity, and pressure. The wind speed data

FIGURE 1. Pearson correlation coefficients between wind power and
impact factors.

FIGURE 2. Wind speed-wind power curve of the wind turbine.

adopts the average value of the measured wind speed. The
wind direction data uses the measured average wind direc-
tion cosine value, and the remaining impact factors are the
measured values at the moment. Fig. 1 shows the heat map of
Pearson correlation coefficient analysis for a set of datasets.
It can be seen from Fig.1 that the correlation between wind
speed and power is the highest, reaching nearly 0.9, followed
by the wind direction and air pressure, which are negatively
correlated with power. The difference between the two is
small, and the correlation coefficient values are−0.1592 and
−0.1570, respectively. The degree of correlation between
humidity and power has not yet reached 0.1, and the degree
of correlation is weak.

C. DATA PROCESSING BASED ON
DBSCAN AND 3σ TECHNOLOGY
Wind speed is the most relevant impact factor, and its rela-
tionship with power needs to be clarified. Fig. 2 shows the
relationship between wind speed and power. Some data devi-
ates significantly from the speed-power curve of the wind
turbine, in the form of various types of abnormal noises and
data groups.

It is apparently not effective to directly use the raw dataset
to ensure the reliability of wind data. Therefore, this paper
adopts a data processing method based on DBSCAN and
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FIGURE 3. Wind speed-wind power curve changes during abnormal data processing. (a) In the process of DBSCAN. (b) Denoising based on DBSCAN.
(c) Abnormal value culling based on 3σ technology.

3σ technology, which can effectively identify and eliminate
noises and abnormal data clusters.

For a set of sample datasets D = (x1, x2, . . . , xi), which
contains only wind speed and power, and where, xi represents
the i-th data and the value range of i is: i = 1, 2, . . . , n.
The neighborhood radius value ε and the neighborhood
density threshold Mt are determined according to the data
type, and appropriate distance metrics are selected, such as
Euclidean distance, Manhattan, Chebyshev, etc. The main
steps of the specific DBSCAN processing include: estab-
lishment of an initialization state, finding all core objects,
detection of core objects, generation of cluster sample sets,
judgment on whether the generated clusters are completed,
and finding all ε neighborhood subsample sets.
Although the effect of clustering to remove abnormal

data is significant, some abnormal data cannot be effectively
eliminated. Thus, this paper introduces 3σ technology to
remove such data. The principle of the method is to determine
whether the power value is stable within the range of ±3σ
of the average power p̄ for a set of wind power {pn}, which
means the range is [p̄− 3σ, p̄+ 3σ ], where, σ is the standard
deviation of the power sequence and p̄t is calculated bymulti-
step sliding calculation.

p̄t = αpt + (1− α) p̄t−1 (2)

where, p̄t is the mean of power in step t , the starting power
point p0 is the p̄0 value, and α is the sliding weight parameter,
which needs to be provided in advance. The calculated power
averages of the respective steps are respectively determined
according to (3).

p̄t−1 − kσ < pt < p̄t−1 + kσ (3)

where, k is the allowable deviation coefficient, which can be
taken as 1, 2 and 3. Fig. 3 shows the effect of DBSCAN and
3σ techniques to remove abnormal data.

D. DIVISION OF DATASETS
The division of the dataset is an important part, and it is
the preliminary step to realize the training of wind power
data. In this section, themeasuredmeteorological data around
the wind turbine is adopted to represent the NWP data,

FIGURE 4. Division of wind power historical datasets.

and together with the wind power data constitutes the wind
power historical dataset. After the abnormal data process-
ing, the wind power historical dataset generally needs to be
divided into three sub-datasets, such as the training dataset,
the verification dataset, and the test dataset.

In the general probabilistic interval prediction study,
the wind power error dataset takes the differences between
the actual values and the theoretical power prediction val-
ues. However, the theoretical prediction method may not
be the same as the spot prediction method used in actual
research. In addition, the spot power values obtained by
different prediction methods are different, which will result
in the data distribution of the wind power prediction error
also being different due to different predictionmethods. Thus,
the wind power prediction error dataset based on theoretical
prediction values is not suitable for general research.

In order to obtain the reasonable wind power prediction
error dataset, the wind power dataset is divided into the
following parts according to the ratio of 7:1:2 according to
the steps shown in Fig. 4: the training dataset, the validation
dataset and the spare dataset. Among them, the spare dataset
contains the error generation dataset and the test dataset. The
number of samples in the test dataset is m. Compared with
the general division of dataset, a part of the error generation
dataset is obtained, which can obtain the related predicted
power error distribution based on different prediction algo-
rithms, and prepare for the follow-up data work for the wind
power probabilistic interval prediction.

165282 VOLUME 7, 2019



B. Zhou et al.: Wind Power Prediction Based on LSTM Networks and Nonparametric KDE

FIGURE 5. Internal unit structure of the LSTM network.

III. WIND POWER SPOT PREDICTION
A. LONG SHORT-TERM MEMORY
The LSTM network is a special recurrent neural net-
work (RNN) with three thresholds, namely the input gate,
the output gate and the forgetting gate. The unit structure of
the LSTM network is shown in Fig. 5.

The forgetting gate determines the increase or decrease of
the data flow by setting the threshold, which means reser-
vation and forgetting. Since the hidden layer of the RNN
has only one state, there are serious problems with gradient
disappearance and gradient explosion. On the basis of RNN,
LSTM adds the structure of the cell state, which can realize
the long-term preservation of the state and highlights the
strong memory function of the LSTM network. In the case
of massive wind power data mining, the network can greatly
improve the accuracy of wind power prediction.

In the forward propagation process of the LSTM network,
the output value of the forgetting gate ft can determine
the trade-off of the unit state information, and the related
functional relationship is obtained as (4).

ft = σ
(
wf ht−1 + uf xt + bf

)
(4)

Two variables it and c̃t are produced by the input gate,
which are related to the previous moment. The expressions
are as shown as (5) and (6).

it = σ (wiht−1 + uixt + bi) (5)

c̃t = tanh (wcht−1 + ucxt + bc) (6)

Cell state ct is the transmission center of the cell state
before and after LSTM, which has the following functional
relationship:

ct = ct−1 � ft + it � c̃t (7)

The output ht of the output gate comes from two parts. One
part is the output of the previous moment and the input of the
current moment, and the other part is the information of the
current cell state, and the specific expression form is achieved

as (8) and (9).

ot = σ (w0ht−1 + u0xt + b0) (8)

ht = ot � tanh (ct) (9)

where, u and w are the weight values; b is the bias values; σ
is the activation function and the sigmoid function is applied
in this paper; � is the Hadamard product.

B. K-MEANS CLUSTERING PREDICTION MODEL
Section II.B has illustrated that wind speed is the key factor
affecting wind power among the five factors, and the daily
wind speed section is widely distributed. In order to fully
exploit the data information, based on the wind speed seg-
ment, this paper uses the K-Means clustering algorithm to
divide the wind power and the impact factor dataset into
K subclasses. Before the clustering, because of the great
differences in numerical grades of each type of data, the
effective training of the latemodel is a huge challenge. Hence,
the data is normalized before the K-Means clustering, and the
normalization used in this paper is shown as (10).

z′ =
z− zmin

zmax − zmin
(10)

where, zmax and zmin represent the maximum and minimum
values of certain types of data, respectively. z and z′ repre-
sent the values before and after normalization of the data,
respectively.

The flow chart of the K-Means clustering algorithm is
shown in Fig. 6, which can be divided into the following four
parts:

a) Given a set of input datasets D, determine the number of
clusters K and the appropriate distance metrics.

b) Randomly extract K samples from the dataset as the
initial cluster center, denoted as m1 = {m11,m12, . . . ,m1k}.
Then, the distances of each sample in the dataset D tom1n are
calculated and classified into the category with the shortest
distance to form a cluster set C1 = {C11,C12, · · · ,C1k}.
c) Calculate a new cluster centerm2 = {m21,m22, · · · ,m2k}

for each cluster C1n in the set C1, and calculate the distance
from each sample in the dataset D tom2n as described in Step
b to generate a new cluster C2 = {C21,C22, . . . ,C2k}.
d) Repeat Step c until the cluster center does not change

anymore, namely mi = mi+1, indicating that the clustering
has been completed and then output the clustering result.

The K-Means clustering method is simple in principle,
easy to implement, and has obvious clustering effects. Even
if the application object is massive data, it performs very fast
and is an efficient clustering method.

C. SPOT PREDICTION PROCESS
The wind power spot prediction framework proposed in this
paper is illustrated in Fig. 7, which can be divided into the
following five parts: abnormal data processing, dataset divi-
sion and acquisition, K-Means clustering based on the impact
factors, LSTM network modeling, and testing experiments.
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FIGURE 6. K-Means clustering process of impact factors and
wind power.

a) Abnormal data processing. For a set of wind power
historical data, DBSCAN and 3σ technology are used to deal
with the abnormal values.

b) Division and acquisition of data sets. In order to meet the
needs of experimental methods, the training dataset, the vali-
dation dataset, and the test dataset are extracted according to
the data division method in section II.D.

c) K-Means clustering based on the impact factors. Firstly,
the normalization method is applied to eliminate the numeri-
cal differences of the dataset. And then, K-Means clustering
of the impact factors is realized to form K clustering cate-
gories.

d) LSTM network modeling. The LSTM network model is
established based on each clustering category. The normal-
ized impact factor and the wind power are used as the input
and the output of the predictionmodel, respectively. In LSTM
network training, the Adam algorithm [32] is used to optimize
the loss function, and the Dropout technology [33] is used to
prevent model over-fitting.

FIGURE 7. Prediction process of K-Means-LSTM combined forecasting
model.

e) Test experiments. Normalize the impact factors in the
test dataset as the input of the trained prediction model to
realize the prediction of the related spot power, and combine
the prediction error evaluation criteria to evaluate the pros and
cons of the model. The errors are summarized as the error
datasets for probabilistic interval prediction.

D. PREDICTION ERROR EVALUATION CRITERIA
In order to more quantitatively quantify the prediction error
size numerically, several popular error evaluation criteria
are used, namely Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), andMean Absolute Percentage Error
(MAPE). The first two are dimensioned in kilowatts (kW),
the latter being dimensionless, expressed as a numerical per-
centage. The specific error calculation formulas are expressed
as follows:

MAE =
1
n

n∑
i=1

∣∣ŷt − yt ∣∣ (11)

RMSE =

√√√√1
n

n∑
i=1

(
ŷt − yt

)2 (12)

MAPE =
1
n

n∑
i=1

∣∣∣∣ ŷt − ytyt

∣∣∣∣× 100% (13)

where, n represents the number of test samples; ŷt and yt
represent the predicted power and real power at time t,
respectively.

IV. PROBABILISTIC INTERVAL PREDICTION
The distribution of spot power is easily affected by objective
conditions such as geographic information and the mete-
orological factors of wind farms. However, the distribu-
tion of power prediction errors is relatively less affected
by these objective conditions. Unlike parametric methods,
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the nonparametric KDE [34] does not need to make certain
assumptions about the distribution of the dataset. It depends
on the kernel function and the bandwidth to achieve the fitting
of the probability density, which is not only universal but also
makes the fitted PDF closer to the real information.

KDE is a typical nonparametric method. It does not need
to make assumptions about the PDF of the data in advance
as prior information. It relies on the characteristics of data to
obtain its distribution. Comparedwith the parametric method,
it has more accurate expression ability and wider application
occasions. Therefore, this method is applied to establish the
probability distributionmodel of wind power prediction error.

A. NONPARAMETRIC KERNEL DENSITY ESTIMATION
For a group of wind power prediction error data p =
{p1, p2, · · · pn}, n is the number of power error samples.
Based on the principle of the nonparametric KDE, the PDF
of wind power prediction error is estimated as (14).

f̂ (p, h) =
1
nh

n∑
i=1

K
(
p− pi
h

)
(14)

where, f̂ (p, h) is the KDE of the prediction errors; h is the
bandwidth, which determines the interval division of the error
data distribution; pi is the i-th prediction error sample point;
function K (p, h) denotes the kernel function used, and the
power and the bandwidth are independent variables of the
function.

The key factors affecting the nonparametric KDE are the
selection of the kernel function and the selection of the
bandwidth h. The selectivity of kernels is abundant. The com-
monly used kernels include uniform kernels, gamma kernels,
Epanechnikov kernels, etc. Compared with the bandwidth,
the selection of the kernel function has a less significant
impact on the KDE. Gaussian kernel is suitable for many
application scenarios for its smooth characteristics, which
is usually considered to be the first choice. In this paper,
the Gaussian kernel is applied, and it can be expressed as (15).

K (p) =
1
√
2π

exp
(
−p2

2

)
(15)

Substitute (15) into (14), the nonparametric KDE is thus
obtained as (16).

f̂ (p, h) =
1

√
2πnh

n∑
i=1

exp

(
−
1
2

(
p− pi
h

)2
)

(16)

B. BANDWIDTH OPTIMIZATION MODEL
In the nonparametric KDE, the PDF of the power error is
strictly affected by the bandwidth. If the bandwidth is too
small, the local fluctuation will be severe, and it will be
affected by some special sample points, which affects the
distribution of the estimated model. If the bandwidth is too
large, the PDF will be too smooth to reasonably fit the distri-
bution. As a brief summary, the appropriate selection of the
bandwidth has a crucial impact on the nonparametric KDE.

At present, the bandwidth h is mainly based on the
mean squared error (MSE) criterion, the integrated squared
error (ISE) criterion, and the mean integrated squared
error (MISE) criterion. However, the first two are susceptible
to some points and sample properties, and MISE is more
global than the other two. Therefore, in order to prevent
the extreme phenomenon caused by the inappropriate selec-
tion of the bandwidth h, the MISE criterion can be used to
measure the suitability of the bandwidth when selecting the
bandwidth.

MISE (h) = E
∫ (

f̂h (x)− f (x)
)2
dx

=

∫ (
Ef̂ (x)− f (x)

)2
dx +

∫
var f̂ (x) dx (17)

The estimation of the kernel density can be composed of
deviations and variances. After Taylor expands, MISE can be
obtained as (18).

MISE (h)=
1
nh
R(K )+

1
4
h4l2(K )R(f ′′)+ o

(
h4+

1
nh

)
(18)

where, R (g) and l (K ) satisfy the following relationship:{
R (g) =

∫
g2 (u) du

l (K ) =
∫
x2K (x) dx

(19)

After discarding the infinitesimal quantity of (19),
the bandwidth optimization equation based on asymptotic
integral mean square error (AMISE) can be obtained as (20).

A (h) =
1
nh
R (K )+

1
4
h4l2 (K )R

(
f ′′
)

(20)

According to (20), the partial derivative is obtained. When
∂A (h) /∂h = 0, A (h) converges and there is an optimal
bandwidth hAMISE .

hAMISE =
(

R (K )
nl2(K )R (f ′′)

) 1
5

(21)

In (21), there exists an unknown function term R(f ′′), con-
taining the second-order partial derivative of KDE. For this
reason, Silverman [35] pointed out that when f came from a
normal population with mean µ = 0 and variance σ , R(f ′′)
could be obtained as (22).

R(f ′′) =
3

8
√
π
σ−5 (22)

C. INTERVAL PREDICTION PROCESS
The probabilistic interval prediction of wind power based
on the nonparametric KDE can be divided into three steps:
a) acquiring wind power error datasets; b) using the nonpara-
metric KDEmethod to obtain the quantile at the confidence of
(1-α); c) obtaining the wind power interval prediction values
at different times, which is based on the spot prediction.

The interval prediction process of wind power is shown
in Fig. 8. In order to obtain a reasonable dataset of wind
power prediction errors, based on the spot prediction process
shown in Fig. 7, the error generation dataset is replaced by
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FIGURE 8. Wind power interval prediction process based on the power
error dataset.

the test dataset to generate a set of wind power prediction
error dataset. In addition, KDE with the optimal bandwidth is
obtained by combining the bandwidth optimization described
in Section IV.B. Given the confidence level of (1-α), the upper
and lower quantile spot Fα/2 and F(1−α/2) are obtained.
Finally, the wind power interval τ = [Uα,Lα] at the confi-
dence level of (1-α) is obtained. The expressions of the upper
and lower bounds are shown as (23).{

Uα
= Ppre + Fα

Lα = Ppre + F(1−α/2)
(23)

where, Uα and Lα are the upper and lower boundaries
of the predicted power interval at the confidence level of
(1-α), respectively, and Ppre is the spot prediction value of
wind power.

D. PREDICTION EFFECT EVALUATION
The interval coverage rate and the sensibility index are
the popular performance evaluation index [36], which are
currently used to measure the prediction effect of the
nonparametric KDE method.

The interval coverage rate Rcover can be used to measure
the proportion of the real power falling within the prediction
interval, and be defined as (24).

Rcover =
1
N

N∑
i=1

ξi, ξi =

{
0 Preali /∈

[
Lαi ,U

α
i

]
1 Preali ∈

[
Lαi ,U

α
i

] (24)

where, Preali is the real power from the i-th predicted sample;
Uα
i and Lαi are the upper and lower boundaries of the pre-

dicted interval of the i-th predicted sample at the confidence
level of (1-α), respectively; ξi is an intermediate variable used
to determine whether the real spot power falls within the

range of the predicted interval; and N is the number of the
prediction samples.

The sensibility index is used to measure the average width
of the prediction intervals. The larger the interval coverage
rate, the smaller the average width, which is the best perfor-
mance of the prediction model. The sensitivity index ζαmean is
defined as (25).

ζαmean =
1
N

N∑
i=1

(
Uα
i − L

α
i
)

(25)

V. CASE STUDY AND DISCUSSION
The wind power historical data used in this paper is derived
from two wind turbines, which are respectively from two
wind farms in the northeast of China. For convenience, they
are respectively recorded as wind farms A and B. The rated
capacity of a wind turbine is 1.5MW, and the time span of the
dataset is From Dec. 2017 to Dec. 2018, a total of 12 months
of the dataset. The sampling time-frequency of each piece of
data is 10 minutes.

A. PREDICTION EFFECT OF DATA PROCESSING
Nowadays, SVR, BP, and Elman neural networks are widely
applied in wind power spot prediction. SVR is a prediction
algorithm based on the idea of structural risk minimization,
which has strong robustness. BP neural network is a classic
neural network. Although it is easy to fall into local optimum
during network training, the learning rate is fast and widely
used in many research areas. The structure of the Elman
neural network is similar to that of the BP neural network.
However, the output of the hidden layer is connected to
its input layer, which increases the steps of data delay and
storage, and plays a certain role in the global optimization
of the network. In this paper, wind power prediction models
are established for these kinds of prediction algorithms and
compared with the proposed methods.

In order to explore the effectiveness of DBSCAN and
3σ technology processing, this paper respectively takes
1000 samples of the same time period as the test dataset,
which is from before and after the abnormal data process-
ing. The prediction results of the four models are provided
in Table 1. After the abnormal data processing, the MAE and
the RMSE are greatly reduced, and the MAPE is reduced
by nearly 12%-16%. It shows that the prediction effects
of the four prediction models have been greatly improved.
In addition, compared with different prediction errors, LSTM
has smaller prediction errors than Elman, BP, and SVR.
Here, the experiment illustrates the importance of abnormal
data processing and also verifies that the DBSCAN and 3σ
technology processing methods proposed in this paper are
effective and feasible.

In addition, Fig. 9 shows the wind power fluctuations under
4 typical days of 4 seasons in wind farm A, and the predic-
tion errors based on 1000 test data for different seasons are
provided in Table 2. As shown in Fig. 9 and Table 2, the wind
power in spring and autumn is larger than that in summer, and
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TABLE 1. Prediction effect before and after of abnormal data processing within wind farms A and B datasets.

TABLE 2. Prediction error of different seasons based on wind farms A and B datasets.

FIGURE 9. PDF of predicted error within wind farm A.

the prediction error in spring and autumn is a little higher than
that in summer. The wind power in winter is generally the
largest, and the prediction error is also the highest among the
four seasons. However, all the results indicate that abnormal
data processing has a significant influence on the prediction
results, and the prediction error is less affected by seasons.

B. EFFECTS OF SPOT PREDICTION
The combined prediction model of K-Means and LSTM pro-
posed in this paper needs to determine the optimal number
of clusters K. However, the unreasonable selection of the K
value may cause inconspicuous or deteriorated results, and it
is generally possible to find it through multiple value tests.

FIGURE 10. Predicted errors of different K values within wind farms A
and B datasets.

In this paper, 2200 test samples are selected from wind farms
A and B, respectively, in which, 2000 test samples are used
to find the best value of K, and the other 200 test samples
are used for the effectiveness test of the K-Means-LSTM
model. The K value of the cluster number is taken from
2 to 10, and a total of 9 natural numbers are considered. The
results of the three types of error evaluation of the model
are shown in Table 3, and the related fluctuation trend is
shown in Fig. 10. Different K values have a great influence
on the prediction error. Whether it is MAE, MAPE or RMSE,
the prediction effect is not satisfied when the K value is small,
which is because the classification is not refined. When the
K value is large enough, the error within wind farm A shows
an increase, while the error within wind farm B appears to

VOLUME 7, 2019 165287



B. Zhou et al.: Wind Power Prediction Based on LSTM Networks and Nonparametric KDE

TABLE 3. Wind power predicted error of different K-value prediction models based on wind farms A and B datasets.

TABLE 4. Prediction error of each model based on wind farms A and B datasets.

FIGURE 11. Spot prediction results for 200 samples within wind farms A and B datasets. (a) Wind power spot prediction in wind farm A dataset. (b) Wind
power spot prediction in wind farm B dataset. (c) Wind power spot prediction error in wind farm A dataset. (d) Wind power spot prediction error in wind
farm B dataset.

be close to a certain large error value. The key reason is
that the number of samples in the same category set is too
sparse when the classification is too much, and the sample
data with more classification ambiguity is easily generated
at the classification boundary. For wind farm A, there is a
minimum error value when K = 6, and K = 6 is taken as
the optimal cluster number of the related prediction model
within wind farm A. Similarly, K = 5 is the optimal number
of clusters for wind farm B.

In order to evaluate the advantages and disadvantages
of the K-Means-LSTMnetworkmodel, this section compares
the prediction effects of the K-Means-LSTM network model,
the LSTM network model, and the other prediction models
mentioned before.

The prediction results of eachmodel under another 200 test
samples based on wind farms A and B are shown in Table 4.

Fig. 11 shows the real-time prediction values and errors of the
related prediction models.

It can be seen from Table 4 and Fig. 11 that several types of
prediction errors of each model within wind farm B data are
smaller than those of A. The main factor is that the numerical
fluctuation range of wind power within wind farm B is rela-
tively small and gentle. Among them, the prediction error of
SVR is larger, and the prediction effect is second to that of the
LSTM network. The prediction effect of the Elman network
is similar to that of the BP network, which is worse than SVR
and LSTM. However, the prediction results of both types
of networks are easy to fall into local optimum. After the
reasonable search of K value, the optimal K-Means-LSTM
prediction model is obtained. The prediction effect of this
model is the closest to the real power curve. Therefore,
the validity of the combined prediction method proposed
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FIGURE 12. PDF of predicted error within wind farm A.

FIGURE 13. PDF of predicted error within wind farm B.

in this paper is verified. The main advantage of adopting
the LSTM network model is that the network model can link
the data of the previous time and the present time, so that the
fluctuation trend of the data is relatively flat. In this paper,
the Adam optimization algorithm and the dropout technology
are adopted for the LSTM network. The former guarantees
the efficiency and stability of the LSTM network model
training, and the latter can well solve the over-fitting problem
of the LSTM network model, so that the predicted power
fluctuation range is closer to the real power fluctuation.

C. PROBABILISTIC INTERVAL PREDICTION EFFECT
Fig. 12 and Fig. 13 show the effect of three models within
wind farm A and B datasets which are the nonparametric
KDE model with the optimal bandwidth, the random band-
width, and the Gaussian distribution model, respectively.

It can be seen from Fig. 12 and Fig. 13 that the
nonparametric KDE method with the optimal bandwidth has
the best fitting effect and is the closest to the distribution

FIGURE 14. CDF of predicted error within wind farm A.

FIGURE 15. CDF of predicted error within wind farm B.

of the real power error dataset. The related cumulative dis-
tribution function (CDF) is obtained for each PDF fitted
in Fig. 14 and Fig. 15. Based on the definition of the quantile,
the upper and lower quantiles within different confidence
levels are shown in Fig. 14 and Fig. 15.

As can be seen from Fig. 14 and Fig. 15, the CDF obtained
is largely different due to the inconsistency in the PDF.

The quantile points at α/2 = 5%, α/2 = 10%, and α/2
= 15% are respectively taken for each CDF to obtain the
prediction power fluctuation range at the confidence level
of 90%, 80%, and 70%. Combined with the K-Means-LSTM
spot prediction model in Section III, Fig. 16, Fig. 17, and
Fig. 18 show the fluctuation effect of the wind power predic-
tion interval within wind farm A. And the prediction results
of the wind farm B are shown in Fig. 19, Fig. 20, and Fig. 21.

In order to quantitatively describe the application effects
of the PDFs of different wind power predicted error, based
on the wind power fluctuation range, combined with the
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FIGURE 16. Interval prediction within wind farm A of 90% confidence.

FIGURE 17. Interval prediction within wind farm A of 80% confidence.

FIGURE 18. Interval prediction within wind farm A of 70% confidence.

evaluation criteria of Section IV.D, the evaluation results of
the interval prediction at the confidence of 90%, 80%, and
70% are calculated, shown in Table 5.

As can be seen from Table 5, as the confidence level
decreases, the width of the prediction interval decreases while
the interval coverage decreases. The nonparametric KDE
with the random bandwidth model has very high coverage
at the confidence levels of 90%, 80%, and 70%. However,
the ζαmean evaluation index is very large. Compared with the
other two methods, the information provided by this method
does not have high utilization value. Within the wind farm A
dataset, the ζαmean evaluation index in the nonparametric KDE
with the optimal bandwidth model at the different confidence
levels is smaller than that of the Gaussian distribution model,

FIGURE 19. Interval prediction within wind farm B of 90% confidence.

FIGURE 20. Interval prediction within wind farm B of 80% confidence.

FIGURE 21. Interval prediction within wind farm B of 70% confidence.

and Rcover evaluation index is higher than that of the Gaussian
distribution model. Within wind farm B data, ζαmean of the
optimal bandwidth model at the different confidence levels
is significantly smaller than that of the Gaussian distribution
model, which is beneficial to the auxiliary information on
the grid side. Only when Rcover is slightly lower than the
Gaussian distribution model at the confidence level of 70%,
and the occurrence of such incidents is allowed.

It is because the upper and lower boundaries of the
fluctuation intervals obtained by different models are dif-
ferent. Thus, their interval coverage rates also have some
differences. In general, the interval prediction performance
of the optimal bandwidth model is higher than that of the
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TABLE 5. Effect evaluation of interval prediction.

Gaussian distribution model, which can provide a narrower
prediction interval and higher interval coverage at the same
confidence levels. In addition, the information obtained by
the random bandwidth model does not have a reliable and
beneficial auxiliary effect.

VI. CONCLUSION
The method of the wind power prediction within the wind
power historical data in the way of constructing supervised
learning has serious delays, and the delay effect differs by
a single unit time. Moreover, wind power prediction not
combined with NWP is inadequate for the strong randomness
of wind power. In order to avoid the above problems, this
paper introduces the historical datasets of wind power with
meteorological data as the research object, which comes from
twowind farms in theNortheast of China. Themeteorological
data is regarded as NWP data in the micro-scale, and the
wind power prediction is realized by combining LSTM and
K-Means clustering algorithm and the nonparametric KDE
method with bandwidth optimization. The main work of this
paper can be summarized as follows:

a) This paper proposed an abnormal data processing
method based on DBSCAN and 3σ technology for wind
power historical data. The experimental results show that the
method is effective and feasible, and the prediction accuracy
of wind power has been greatly improved after the abnormal
data processing.

b) Based on the varieties between the various factors
of wind power, the K-Means clustering method is used to
generate different clusters, and the wind power prediction
is realized by the combination of each cluster forming an
LSTM network model alone. Compared with BP, Elman
neural network, SVR, and LSTM network prediction models,
the K-Means-LSTM network model has higher accuracy for
wind power spot prediction.

c) In order to obtain the wind power prediction error for
the nonparametric KDE based interval prediction, a certain
proportion of data has been divided from the wind power

historical dataset as the error generation dataset by means of
data set division. This method makes the power error fluctu-
ation characteristics match the prediction preferences of the
model, and thus generates a reasonable wind power predic-
tion error dataset. A nonparametric KDE model with optimal
bandwidth is proposed to realize the probabilistic interval
prediction of wind power. Compared with the KDE model
with the random bandwidth and Gaussian distribution model,
the predicted interval width of the best bandwidth model is
not only smaller, but also has a higher coverage rate, which
can provide more reliable wind power auxiliary information.
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