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ABSTRACT Our main objective in the paper is to develop a novel deep learning-based algorithm for
automatic segmentation of prostate zones and to evaluate the performance of the algorithm on an additional
independent testing dataset in comparison with inter-reader agreement between two experts. With IRB
approval and HIPAA compliance, we designed a novel convolutional neural network (CNN) for automatic
segmentation of the prostatic transition zone (TZ) and peripheral zone (PZ) on T2-weighted (T2w) 3 Tesla
(3T)MRI. The total study cohort included 359MRI scans of patients in subcohorts; 313 scans from a deiden-
tified publicly available dataset (SPIE-AAPM-NCI PROSTATEX challenge) and 46 scans from a large U.S.
tertiary referral center (external testing dataset (ETD)). The TZ and PZ contours were manually annotated
by research fellows, supervised by expert genitourinary (GU) radiologists. The model was developed using
250 patients and tested internally using the remaining 63 patients from the PROSTATEX (internal testing
dataset (ITD)) and tested again (n=46) externally using the ETD. The Dice Similarity Coefficient (DSC)
was used to evaluate the segmentation performance. DSCs for PZ and TZ were 0.74±0.08 and 0.86±0.07 in
the ITD respectively. In the ETD, DSCs for PZ and TZ were 0.74±0.07 and 0.79±0.12, respectively. The
inter-reader consistency (Expert 2 vs. Expert 1) were 0.71±0.13 (PZ) and 0.75±0.14 (TZ). This novel DL
algorithm enabled automatic segmentation of PZ and TZ with high accuracy on both ITD and ETD without
a performance difference for PZ and less than 10% TZ difference. In the ETD, the proposed method can
be comparable to experts in the segmentation of prostate zones. Part of our source code and datasets with
annotations is available at https://github.com/ykl-ucla/prostate_zonal_seg

INDEX TERMS Prostate zones, automatic segmentation, deep learning, T2-weighted MRI.

I. INTRODUCTION
Prostate cancer (PCa) is the most common solid noncuta-
neous cancer in American men [1]. Multiparametric MRI
(mpMRI), including T2, diffusion weighted imaging (DWI)
and T1 dynamic contrast enhanced imaging (DCE) has
shown promising results for the detection and staging for
clinically significant PCa (csPCa) [2], [3]. Previous studies
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have reported that PCa in transition and peripheral zones
exhibit different morphological and functional characteris-
tics on mpMRI. The Prostate Imaging Reporting and Data
System version 2.1 (PI-RADSv2.1), an expert guideline for
performance and interpretation of mpMRI for PCa detec-
tion, [4], [5], T2 and DWI images are used for primary
interpretation of lesions in the PZ and TZ respectively for
assigning a PI-RADS score to lesions detected onmpMRI. [6]
A robust method for reproducible, automatic segmentation of
prostate zones (ASPZ) may enable the consistent assignment
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of mpMRI lesion location since manual segmentation of
prostate zones is a dependent time-consuming process,
dependent on reader experience and expertise. A robust ASPZ
may also help relieve clinician’s cognitive workload [7].

Atlas based methods were previously proposed to segment
the prostate zones [8]. Deep learning (DL) based methods,
such as U-Net [9] and its variants [6], [10]–[13], have recently
been developed to perform prostate AS. U-Net, an architec-
ture based on fully convolutional networks (CNN), contains
encoder and decoder sub-networks, where the encoder mod-
ule is used to capture the higher semantic information, and
the decoder module recovers spatial information. U-Net can
classify pixels of the two zones and effectively localize and
segment TZ and PZ. However, semantic information captured
by U-Net may not be sufficient to describe the heterogeneous
anatomic structures of the prostate and indiscernible borders
between TZ and PZ, resulting in inconsistent and sub-optimal
ASPZ performance.

In this study, we propose a new DL based method for
automatic segmentation of prostate zones by developing a
fully CNN with a novel feature pyramid attention mecha-
nism. In particular, the proposed CNN consisted of three
sub-networks, comprised of an improved deep residual net-
work (based on the ResNet50) [14], a pyramid feature net-
work with attention [15], and a decoder. We incorporated
the ResNet50 to cope with heterogeneous prostate anatomy
with high level semantic features and the pyramid network
with attention is designed to capture information at multiple
scales. The proposed DL model was evaluated using both
internal testing and external testing datasets on axial mpMRI
slices. In addition, we compared the proposed method with
inter-reader consistency using two independent expert based
manual segmentations.

II. MATERIALS AND METHODS
A. MRI DATASETS
With approval from the institutional review board (IRB),
this study was carried out in compliance with the United
States Health Insurance Portability and Accountability Act
(HIPAA) of 1996. The MRI datasets were collected from
two centers: 1) The Cancer Imaging Archive (TCIA)
for SPIE-AAPM-NCI PROSTATEX (PROSTATEX) chal-
lenge [16] for development and internal testing of the model
(n=250 and 63) and 2) a U.S. tertiary academic medical cen-
ter with a highly curated mpMRI dataset with whole mount
histopathology (WMHP) correlation for external testing of
themodel (n=46; age 45 to 73 years andweight 68 to 113 kg).
Axial T2 turbo spin-echo (TSE) slices (Table 1) were used for
segmentation. For the PROSTATEX data, both TZ and PZ
were segmented in OsiriX (Pixmeo SARL, Bernex, Switzer-
land) by two MRI research fellows, where the contours were
later cross-checked by both genitourinary (GU) radiologists
(10-15 years of post-fellowship experience interpreting over
1,000 prostate mpMRI) and clinical research fellows. For
the single institutional data, the pre-operative mpMRI scans
performed between October 2017 and December 2018 on

TABLE 1. Detailed T2w TSE protocols used for two MRI datasets.

one of the three 3T MRI scanners (Skyra (n=38) on,
Prisma (n=1), and Vida (n=7); (Siemens Healthineers,
Erlangen, Germany)). Two clinical GU research fellows,
supervised by expert GU radiologists, independently con-
toured TZ and PZ in a blinded fashion.

B. PROPOSED DEEP LEARNING MODEL FOR AUTOMATIC
PROSTATE SEGMENTATION
The structure of the proposed fully convolutional network is
shown in Figure 1. The network consists of three separate
sub-networks, including the improvedResNet50 for encoding
of rich semantic information from original images, a feature
pyramid attention network to help capture the information at
multiple scales, and the naïve decoder network to recover the
spatial information. The three sub-networks are connected to
be an end-to-end prostate zonal segmentation pipeline.

ResNet50 utilizes skip connections to avoid vanishing gra-
dients problems so that more convolutional layers can be
added to the network. We improved the ResNet50 by remov-
ing the initial max pooling layer and using the regular block
instead of the bottleneck block at stride 1 as the first block in
the 4th layer, as shown in Fig. 1a. The dilated bottleneck block
was employed as the second block in the 4th layer to remain
the size of the receptive field. This canminimize any potential
loss to the spatial information and alleviate the burden of the
decoder.

Feature pyramid attention was added after modified
ResNet50 for better sensing fine details at different scales
(Fig. 1b). The 3×3, 5×5, 7×7 convolutions in the pyramid
structure were used to extract features from different scales.
The features from different scales were integrated progres-
sively for more precise incorporation of adjacent scales of
context features and thenweremultiplied by the features from
the improved ResNet50 after a 1 × 1 convolution operation
for the global prior attention. The output features will be then
added with features from both the global pooling branch and
the modified ResNet50.

The decoder network consisted of two convolutions and
two upsampling layers to recover the image dimensions to
the original size (Fig. 1c). The final output was fed into a
multi-class soft-max classifier for simultaneous segmentation
of TZ and PZ.
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FIGURE 1. An overall structure of the proposed algorithm, where the input is a 2D slice of T2w MRI, and output is a
mask showing the result of PZ and TZ segmentation (white – TZ and gray – PZ). The algorithm consists of three
sub-networks - improved ResNet50 (a), feature pyramid attention (b), and decoder (c).

We used cross entropy (CE) as the loss function for the
proposed algorithm. For each given pixel, the cross entropy
was defined as,

CE =
1
3

∑3

i=0
−yi log (pi)− (1− yi) log (1− pi) (1)

where yi ∈ {0, 1} is the ground-truth binary indicator,
corresponding to the 3-channel predicted probability vector
pi ∈ [0, 1]. All the training and evaluation were performed
on a desktop computer with a 64-Linux system with Titan Xp
GPU with 12 GB GDDR5 RAM based on PyTorch. Learning
rate was initially set to 2.5e-3, with momentum 0.9 and
weight decay 0.0001. The model was trained for 100 epochs
with batch size 48 and stochastic gradient descent. Since
prostate areas are always in the middle, a central region
(93mm × 93mm) was automatically cropped from original
images before segmentation. Data augmentation methods
were applied to increase the training data size, including
flipped horizontally, rotated randomly between [−5◦, 5◦] and
elastic transformations.

C. MODEL DEVELOPMENT AND TESTING
A total of 250 patients’ MRI from PROSTATEX were used
for model development. Within the development dataset,
5- fold cross validation was adopted for model hyperparame-
ter tuning. For internal testing (internal testing dataset (ITD))
the remaining 63MRI datasets fromPROSTATEXwere used.
For external testing (external testing dataset (ETD)) 47 MRI
datasets from the large, U.S. tertiary academic medical center
were used.

For evaluation of segmentation, the Dice Similarity
Coefficient (DSC) was used, formulated as:

DSC =
2|X ∩ Y|
|X | + |Y |

(2)

where X is the predicted 3D zonal segmentation and Y is the
ground-truth of 3D zonal contours on the slices.

From superior to inferior, prostate MRI slices were cat-
egorized into three levels, composed of base-end (includes
mostly TZ), middle (includes mostly both TZ and PZ), and
apex-end (includes mostly PZ), as shown in Figure 2. Both
the prostate base-end and apex-end slices were identified
when manual segmentation was performed, typically includ-
ing one or two end slices of the prostate gland with only one
prostate zone. A representative example of different prostate
MRI slices is shown in Figure 3. DSCs were calculated con-
sidering different 3D zonal segmentation results, such as all
slices (includes false positives), prostate slices (excludes false
positives), base-end, middle, and apex-end slices. To assess
the inter-reader consistency, we computed DSCs between two
contours of TZ and PZ performed by two independent experts
in a blinded fashion. The corresponding imaging slices were
used for the inter-reader agreement assessment.

FIGURE 2. Representative examples of slices of prostate MRI. In left side,
base-end slice (Only TZ exists), middle slice (both PZ and TZ exist) and
apex-end slice (only PZ exists) are shown from top to bottom. The regions
are encircled by green (TZ) and orange (PZ) boundaries.
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FIGURE 3. MRI slices from superior to inferior (slice 1 – 20). An example
of non-prostate (slice 1-6, slice 14-20), base-end (slice 7), middle
(slice 8-12) and apex-end (slice 13) slices is shown. Regions encircled
by orange, green boundaries are PZ and TZ, respectively.

D. STATISTICAL ANALYSIS
Mean and standard deviation (SD) were used to summarize
the distribution of DSCs. We performed the following three
comparisons. First, the performance of the proposed method
was compared to the baseline method – U-Net on the ITD
dataset by using Wilcoxon rank-sum test. Second, the per-
formance of the proposed method on the ITD was compared
to the ETD by also using Wilcoxon rank-sum test. Third,
the performance of proposed method was compared with
the inter-reader agreement (Expert 1 vs. Expert 2) by using
the Wilcoxon signed-rank test. P values less than 0.05 were
considered statistically significant.

III. RESULT
A. MODEL TESTING USING INTERNAL TESTING DATASET
(ITD) AND EXTERNAL TESTING DATASET (ETD)
Two representative examples of automatic prostate zonal seg-
mentation on ITD and ETD by our proposed method and
U-Net are shown in Figure 4.

Table 2 includes mean and standard deviation of DSCs for
PZ and TZ. Our proposed method achieved the mean DSC
of 0.74 and 0.86 for PZ and TZ on ITD,meanDSC of 0.74 and
0.79 for PZ and TZ on ETD, which are all significantly larger
than U-Net’s results.

Table 3 shows the performance of prostate zonal seg-
mentation by the proposed model with Max-Pool and with-
out Max-Pool on the ITD. After adding the Max-Pool in
the ResNet50, mean DSCs for PZ and TZ are 0.72 and
0.84, which are smaller than the DSCs of proposed method
(No Max-Pool in the ResNet50). This proves Max-Pool
compromises the segmentation performance of prostate
zones.

FIGURE 4. Representative examples of the automatic segmentation by
the proposed method (orange lines) and U-Net in comparison with
manual segmentation (red lines). DSCs are shown below the figures.

TABLE 2. Performance of the proposed algorithm on internal testing
dataset. P values are the comparisons between the proposed model’s
performance and the U-Net on internal testing dataset.

TABLE 3. Performance comparison between the proposed model with
Max-Pool and without Max-Pool under ITD. In our proposed method,
the Max-Pool was removed in ResNet50.

B. COMPARISON OF MODEL PERFORMANCE ON
INTERNAL TESTING DATASET (ITD) AND EXTERNAL
TESTING DATASET (ETD)
In Table 4, we show the performance of the proposed algo-
rithm in the ITD and ETD. There was no significant differ-
ence of model’s DSC between the ITD and the ETD for PZ.

However, for TZ, there was a small difference between
model’s DSC on the ITD and the ETD. The DSC differences
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TABLE 4. Performance of the proposed algorithm on ITD and the ETD.
P values of model’s performance on ITD relative to ETD are given and
were obtained by using Wilcoxon rank-sum test.

of proposed algorithm on the ITD compared to the validation
dataset were 8%.

C. COMPARISON BETWEEN PROPOSED MODEL AND
EXPERTS UNDER ETD
Examples of automatic segmentation results of slices by our
proposed method, Expert 1 and Expert 2, at the base-end,
middle, and apex-end on ETD are shown in Figure.5.

FIGURE 5. Representative examples of the automatic segmentation for
testing, in comparison with manual segmentations by Expert 1 and 2.
TZ is colored as green and PZ is colored as orange. From superior to
inferior, base-end (a), middle (b), and apex-end (c) slices are shown with
segmentations of the prostate zones.

In Table 4 the DSCs of the proposed algorithm on different
types of slices in the ETD are shown with inter-reader agree-
ment between Expert 1 and Expert 2.

The proposed model’s DSCs for both PZ and TZ are
significantly larger than the inter-reader consistency in all
slices, middle slices, apex-end slices and base-end slices
when taking Expert 1’s annotations as the ground-truth.

IV. DISCUSSION
In this study we proposed and validated a novel fully convo-
lutional network-based model with feature pyramid attention
for the automatic segmentation of the two prostate zones.
The proposed model performed consistently on both the
ITD and ETD.

We observed slight differences between ITD and ETD, par-
ticularly in segmenting TZ.We believe this can be potentially
due to 1) differences in the imaging sequences, such as in-
plane resolution and T2 contrast, 2) discrepancies in the zonal
annotations since different experts independently segmented
the prostate zones for ITD and ETD.

We also found that the manual PZ segmentation was less
consistent than the manual TZ segmentation, measured by
DSCs between two experts (Table 5). This may be due to the
more complex shape and structure of PZ as its boundaries
are sometimes not well discerned due to a variety of factors
such as prostate or patient motion. Similarly, Meyer et. al, [7]
reported that the PZ segmentation had worse inter-reader
consistency than TZ segmentationwith three different experts
(first urologist, second urologist with the help of a medical
student, and an assistant radiologist). Meyer et al. also uti-
lized three orthogonal planes of the T2w MRI, i.e., sagittal,
coronal and axial, to automatically determine the bounding
box for the prostate before performing the segmentation. The
bounding box approach could be added as pre-processing to
improve both the segmentation performance and inter-reader
consistency by minimizing the false positives.

TABLE 5. DSCs of the proposed algorithm on different types of slices in
the external testing dataset. P values relative to inter-reader agreement
(Expert 1 vs. Expert 2) are given in the Table for each and were obtained
by using Wilcoxon Signed-Rank test.

In the ETD, when only considering middle slices for test-
ing, mean DSCs were higher than considering all slices. This
may be because: 1) the features for the differentiation of PZ
and TZ are more distinct in the middle slices than the other
slices. 2) when only considering middle slices, some false
positives from adjacent non-prostate slices, apex-end slices
and base-end slices can be avoided. Besides, we also found
mean PZ DSC for apex-end slices is larger than the PZ DSC
for middle slices, but to the contrary, TZ DSC for base-end
slices is smaller than the TZ DSC for middle slices. The large
standard deviations and low DSC of TZ for base-end slices
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indicated some significant discrepancies between two experts
at the base-end. This indicates that it’s hard to recognize TZ
in the base-end slices, which may explain why the proposed
method got a low TZ DSC at the base-end.

Compared with the DSCs to that of Meyer et al., [7] our
method’s DSCs for both PZ and TZ are slightly lower. This
may be related to: 1) Difference in sample sizes for the eval-
uation. In our method, 63 patient datasets were used for the
testing data set, in compared with their testing data set of only
20 patients. 2) Discrepancy inmanual annotations for both PZ
and TZ. 3) Inherent differences in methods. 4) Differences
of preprocessing. In their method, before the segmentation,
the bounding box for the prostate was determined to reduce
the false positives.

Our study also has a few limitations. Firstly, the same
MRI vendor was used for both ITD and ETD. Also, in-plane
resolution of the ITD is very close to that of the ETD.Datasets
from different vendors and with considerable different in-
plane resolutions will be incorporated into future related
studies. Secondly, the proposed algorithm is a 2D-based FCN
model, which is still deficient in capturing inter-slice correla-
tion information compared to 3D-based models. In the future,
we will explore ways of improving the capturing of inter-
slice correlation information in our proposed model. Thirdly,
the number of experts involved in obtaining inter-reader con-
sistency in the paper is two. In the future, more experts will be
added in the study to get more robust inter-reader consistency.

V. CONCLUSION
In this study, we proposed a novel deep learning algorithm for
the automatic segmentation of the two prostate zones using
T2w MRI. The proposed algorithm outperforms the U-Net
on automatic segmentation of PZ and TZ. The difference
between the proposed method’s performance is similar on
the ITD and ETD, especially for the segmentation of PZ.
Moreover, the performance of the proposed method is com-
parable to the experts in the external testing dataset.
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