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ABSTRACT In this paper, a dual-period repetitive control scheme is proposed to accomplish the periodic tra-
jectory tracking task for a class of nonparametric uncertain systems with deadzone nonlinear input, and there
is no commonmultiple between the period length of periodic disturbance and that of reference signal. A dual-
period repetitive controller is designed based on the Lyapunov synthesis. The nonparametric uncertainties,
deadzone nonlinearity and periodic disturbance are compensated by using dual-period repetitive control
and robust control, combinedly. The fully saturated learning strategy is applied to estimate the unknown
periodic disturbance. As the repetitive cycle increases, the system error converges to zero. In the end, two
illustrative examples are provided to demonstrate the effectiveness of the proposed dual-period repetitive
control scheme.

INDEX TERMS Dual-period repetitive control, nonparametric systems, deadzone, adaptive control.

I. INTRODUCTION
Repetitive manufacturing tasks widely exist in industrial
applications, such as welding, drilling, welding, drilling, and
painting automobile body parts on an assembly line. As a
result, tracking periodic trajectories and rejecting periodic
disturbances are the common control problems in such actual
projects. For dealing with such control tasks, in the late
1970s, Uchiyama [1] and Omata et al. [2] have originally pro-
posed repetitive control (RC) schemes to solve the trajectory-
tracking problem for robot manipulators. In RC systems,
good perfect control performances may achieved by repeti-
tively updating the control input according to the information
of pervious periods, without an accurate modeling in prior.
Nowadays, RC has been widely used in the accurate control
for many industrial equipments such as permanent-magnet
synchronous motor [3], hard disk drives [4], and so on.

In early studies on RC, frequency domain analysis method
has often adopted to the controller design for linear time-
invariant systems [5]. Since the beginning of this century,
the RC algorithm design for nonlinear dynamics systems
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has attracted much attention. In [7], a Lyapunov-based RC
scheme was developed for a class of nonlinear systems with
an periodic exogenous disturbance. In [8], a robust repetitive
learning controller was designed for a class of nonparamet-
ric uncertain systems. Reference [9] addressed the adap-
tive asymptotic rejection of unmatched periodic disturbances
in nonlinear systems, with the output-feedback controller
designed by using repetitive control technique. In [10], a sub-
optimal repetitive learning control algorithm was proposed
for a class of nonlinear systems, which converge faster than
non-optimal repetitive learning control systems. In [11], the
observer-based repetitive learning control was developed for
a class of nonlinear systems with non-parametric uncertain-
ties. In [12], an adaptive backstepping repetitive learning
algorithm was proposed to attenuate periodic uncertainties in
nonlinear discrete-time systems.

Up to now, most existing RC algorithm results belong
to single-period RC approaches. However, for the systems
that there is no common multiple among the period lengths
of parametric uncertainties and periodic disturbances, or the
common multiple is very difficult to be founded even if
it exists, single-period RC is not suitable for controller
design; as a replacement, multi-period RCmay be applied for
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these cases. So far, the academic concern little with multi-
period repetitive control, and the relevant research results are
few. Among these few achievements, most of them consid-
ered the control algorithms for linear systems [13]–[15], and
the ones considering the control for nonparametric uncertain
systems are very few [16]. It is really a significant job to carry
out further researches on multi-period repetitive control for
nonparametric uncertain systems.

On the other hand, as a class of important non-smooth non-
linearities, deadzones lie in the actuators of many industrial
processes such as valves, DC servo motors and etc. The dead-
zone nonlinearities degrade the control performance, more
or less. They may lead to the instability of control systems
in serious cases. The studies on how to deal with deadzone
nonlinearities have been carried out for long [17]. Tao and
Kokotovic proposed a direct adaptive compensating method,
by constructing an adaptive deadzone inverse to compensate
deadzones [18]. Later on, in order to easily implement adap-
tive control algorithms for nonlinear system with deadzone
input, Zhou et al. made further efforts on direct compensat-
ing deadzone, by constructing a smooth adaptive deadzone
inverse [19]. As an alternative approach, a robust adaptive
compensating technique was investigated to deal with the
symmetric deadzone nonlinearity in [20]. In detail, the dead-
zone nonlinearity was decomposed into a linear parametric
uncertain term and a disturbance, which bring convenience
for the implementation of adaptive control and robust control.
Reference [21] investigate the robust adaptive control for
systems with unknown nonsymmetric deadzones, which are
more general than the ones in [20]. Besides, intelligent con-
trol methods using neural networks [22] or fuzzy systems [23]
were developed to handle deadzone nonlinearities. Up to
now, the controller designs for systems with nonlinearity
input have still been an interesting topic. For latest relevant
results, see [24]–[27].

Motivated by the above discussions, this work focuses on
the trajectory-tracking problem for a class of nonparametric
uncertain systems with deadzone iput. There is no common
multiple between the period length and that of time-varying
period disturbance, or the common multiple is difficult to be
obtained even if it exists. Compared to the existing results,
the main contributions of this work mainly lie in as follows:

(1) Our proposed dual-period RC scheme is suitable to
solve the trajectory-tracking problem for the cases that no
common multiple between the period length of periodic dis-
turbance and the one of reference signal, whereas the tra-
ditional single-period RC is not suitable for the controller
design in these cases.

(2) The nonparametric uncertainty satisfied Lipschitz con-
tinuous condition and uncertain deadzone are handled by
using robust control technique and repetitive learning control
technique, combinedly.

(3) Full saturation learning strategy is used to estimate the
unknown parametric uncertainties or the bound of bounded
disturbance. Through rigorous analysis, all signals in the
closed loop system are guaranteed to be bounded.

The rest of this paper is organized as follows. Problem for-
mulation is presented in Section 2. In Section 3, by using Lya-
punov synthesis, the dual-period repetitive control law and
adaptive repetitive learning laws are developed. In Section 4,
the uniform convergence of the closed loop system is proved.
To demonstrate the effectiveness of the proposed dual-period
repetitive control scheme, two illustrated examples are shown
in Section 5, followed by Section 6which concludes thework.

II. PROBLEM FORMULATION
Consider the following class of nonlinear systems{

ẋi(t) = xi+1(t), i = 1, 2, · · · , n− 1
ẋn(t) = f (xxx(t))+ gu(v)+ w(t),

(1)

in which, xxx = [x1, x2, . . . , xn]T ∈ Rn, g ∈ R is an unknown
positive constant, f (···) is an unknown smooth function such
that

|f (ξξξ1)− f (ξξξ2)| ≤ α(ξξξ1, ξξξ2)‖ξξξ1 − ξξξ2‖, ∀ξξξ1, ξξξ2 ∈ Rn (2)

with α(ξξξ1, ξξξ2) being a known smooth function,w(t) is a peri-
odic disturbance of known period Tw, and there is no common
multiple between Td and Tw; u(v) and v(t) are respectively
the input and the output of an unknown deadzone defined as
follows:

u(v) =


mr (v− br ) v ≥ br
0 bl ≤ v < br
ml(v− bl) v < bl

(3)

The deadzone nonlinearity considered in this paper are simi-
lar to the one has been investigated in [20]:

(A1) The deadzone output u(v) is not available for mea-
surement.

(A2) The deadzone slopes in positive and negative region
are same, i.e. mr = ml = m.
(A3) The deadzone parameters br , bl and m are unknown,

but their signs are known: br > 0, bl < 0,m > 0.
The control objective is to design a dual-period repeti-

tive control law for v(t) to let xxx track the desired trajectory
xxxd = [xd,1, xd,2, . . . , xd,n]T = [xd,1, ẋd,1, . . . , x

(n−1)
d,1 ]T in

the sense that limt→∞(xxx(t)− xxxd (t)) = 000.
For brevity, in this paper, the function argument t will be

sometimes omitted while no confusion occurs.
Remark 1: In many iterative learning control and RC

results, a common assumption is that system uncertainties are
parameterizable, which means that the structure of system
uncertainties is known but the parameters are unknown,
or the uncertainties can be divided into known iteration-
dependent/repetition-dependent and unknown iteration-
independent/repetition-independent functions. An example
of this sort may be seen in [6]: d(xxx, t) = 2(t)ξ (xxx, t), with
2(t) being an unknown continuous time varying parameter
matrix and ξ (xxx, t) being a known vector function. Hence,
the proposed algorithm in the above results may not be
practical in some real applications with unparameterizable
uncertainties [28]. In this work, we explore the dual-period
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repetitive control for nonlinear systems with nonparametric
uncertainties. In (1), f (xxx(t)) is a lumped, nonparameterizable,
and local Lipschitzian nonlinear function, for example [8],
f (xxx(t)) = x2

x21+cos(t)+2
.

III. CONTROL DESIGN
Let us define eee(t) = [e1(t), e2(t), . . . , en(t)]T = xxx − xxxd .
It follows from (1) that{

ėi = ei+1, i = 1, 2, · · · , n− 1
ėn = f (xxx)+ gu(v)+ w− ẋd,n.

(4)

(4) can be rewritten in vector form as

ėee = Aeee+ bbb(cccTeee+ f (xxx)+ gu(v)+ w− ẋd,n), (5)

where,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−c1 −c2 −c3 · · · −cn

 , bbb =


0
0
...

0
1

 ,
ccc = [c1, c2, · · · , cn]T. c1, c2, · · · , cn are the coefficients of
Hurwitz Polynomial p(s) = sn+cnsn−1+· · · c2 s+c1. Since
A is Hurwitz, there exist positive positive definite symmetry
matrices P ∈ Rn×n and Q ∈ Rn×n, which satisfy

PA+ ATP = −Q. (6)

Let us choose a Lyapunov function candidate as

V1 =
1

2gm
eeeTPeee. (7)

Taking the time derivative of V1 yields

V̇1 = −
1

2gm
eeeTQeee+

1
gm

eeeTPbbb (f (xxx)− f (xxxd ))

+eeeTPbbb[u(v)+
1
gm

(
f (xxxd )+ w+ cccTeee− ẋd,n

)
]

+ |eeeTPbbb| ·max(br , |bl |). (8)

From (2), we have

1
gm

eeeTPbbb(f (xxx)− f (xxxd ))

≤
1
gm
|eeeTPbbb|αf (xxx,xxxd )‖eee‖

≤
1

4gm
λQeeeTeee+

4
gm
α2f (xxx,xxxd )(eee

TPbbb)2. (9)

Substituting (9) into (8), we obtain

V̇1 ≤ −
1

4gm
λQeeeTeee+

4
gm
α2f (xxx,xxxd )(eee

TPbbb)2

+eeeTPbbb[u+
1
gm

(
f (xxxd )+ w+ cccTeee− ẋd,n

)
]

+ |eeeTPbbb| ·max(br , |bl |)

≤ −
1

4gm
λQeeeTeee+ eeeTPbbb[u(v)+

4
gm
α2f (xxx,xxxd )eee

TPbbb

+
1
gm

cccTeee+
1
gm

(f (xxxd )− ẋd,n)+
1
gm

w)]

+ |eeeTPbbb|bm. (10)

With the notations η(t) = 1
gmw(t), ρ = max(br , |bl |), θθθ =

[ 4
gm ,

1
gm ,

1
gm (f (xxxd ) − ẋd,n)]T and ϕϕϕ(xxx) = [α2f (xxx,xxxd )eee

TPbbb,
cccTeee, 1]T , we rewrite (9) as

V̇1≤−
1

4gm
λQeeeTeee+eeeTPbbb[u(v)+θθθTϕϕϕ(xxx,xxxd )+η]+|eeeTPbbb|ρ.

(11)

Note that the period length of η(t) is Tw, the period length of
θθθ is Td , and Tw 6= Td . By virtue of (11), the control law and
learning laws may be designed as follows:

u(v)=−θ̂θθ
T
(t)ϕϕϕ(xxx,xxxd )−η̂(t)−ρ̂(t)$f −µ4eeeT(t)Pbbb,

(12){
θ̂θθ (t)=sat(θ̂θθ

∗
(t)),

θ̂θθ
∗
(t)=sat(θ̂θθ

∗
(t−Td ))+µ1γ (t)ϕϕϕ(xxx,xxxd )eeeT(t)Pbbb,

(13){
ρ̂(t)=sat(ρ̂∗(t)),
ρ̂∗(t)=sat(ρ̂∗(t−Td ))+µ2γ (t)|eeeT(t)Pbbb|

(14)

and {
η̂(t) = sat(η̂∗(t)),
η̂∗(t) = sat(η̂∗(t − Tw))+ µ3γ (t)eeeT(t)Pbbb,

(15)

where µ1 > 0, µ2 > 0, µ3 > 0, µ4 > 0; θ̂θθ (t) = 0, ρ̂∗(t) =
0, t ∈ [−Td , 0]; η̂∗(t) = 0, t ∈ [−Tw, 0],

$f =

tanh(
eeeTPbbbρ̂(t)
ε1 e−ε2t

), ε1 e−ε2t > 0,

0, ε1 e−ε2t = 0,
(16)

ε1 > 0, ε2 > 0. In (13)-(15), γ (t) is defined as

γ (t) =


0, t ≤ 0
ω(t), 0 < t ≤ Tm
1, t > Tm,

(17)

where, Tm , min(Tw,Td ) and

ω(t) = 1−
10(Tm − t)3

T 3
m

+
15(Tm − t)4

T 4
m

−
6(Tm − t)5

T 5
m

, t ∈ [0,Tm]. (18)

Remark 2: Theoretically, µ1, µ2, µ3 and µ4 may be any
bounded positive numbers. In practical applications, the rec-
ommended ranges of design parameters are given as follows:
5 ≤ µ4 ≤ 15, 0.5 ≤ µ1 ≤ 10, 0.5 ≤ µ3 ≤ 10,
0.01 ≤ µ2 ≤ 1, 0.001 ≤ ε1 ≤ 0.1, 0.5 ≤ ε2 ≤ 10.
Note that in (12)-(15), dual-period repetitive learning strat-

egy is adopted for control design. Since there is no common
multiple between Td and Tw, the single-period RC strategy is
not suitable for the learning laws design in such an occasion.
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For the cases that the minimum common multiple between
Td and Tw is much larger than max(Td ,Tw), the dual-period
repetitive control closed-loop systems converge faster than
the single-periodic repetitive control ones.
Remark 3: The relationship among Td , Tw and their mini-

mum common multiple Tcm may be summarized as follows:
Case 1. Tcm does not exist, for example, Td = 4,Tw = 2π ,

or Td =
√
2,Tw = e.

Case 2. Tcm � max(Td ,Tw), for example, Td = 9,
Tw = 11, Tcm = 99.

Case 3. Tcm and max(Td ,Tw) are equal, for example,
Td = 1.5, Tw = 3,Tcm = 3.
Case 4. Tcm is close tomax(Td ,Tw), for example, Td = 1.5,

Tw = 2, Tcm = 3.
For case 1, f (xxxd )+ w(t) can not be compensated by using

single-period learning approach. For case 2, both dual-period
learning approach and single-periodic learning approach can
be used to design learning laws, and dual-period learning
approach is recommended for higher convergence speed. For
case 3 and 4, both dual-period learning approach and single-
period learning approach may be used to design learning laws
for compensating f (xxxd ) + w(t), and the error convergence
speed of the two approaches is close to each other. The
comparison between dual-period RC and single-period RC
is summarized in Table 1.

TABLE 1. Comparison between dual-period RC and single-period RC.

IV. STABILITY ANALYSIS
The stability of the closed-loop system described by (1) and
(12)-(15) is established in the following theorem:
Theorem 1: For the closed-loop system consisting of the

plant (1), and the repetitive control given by (12)-(15), all sys-
tem variables are guaranteed to be bounded for t ∈ [0,+∞),
and the closed-loop system is stable in the sense that

lim
t→+∞

eee(t) = 0. (19)

Proof: Substituting (12) into (11), we get

V̇1 ≤ −
1

4gm
λQeeeTeee+ eeeTPbbbθ̃θθ

T
ϕϕϕ(xxx,xxxd )+ eeeTPbbbη̃

+ |eeeTPbbb|ρ − eeeTPbbbρ̂$f − µ4(eeeTPbbb)2, (20)

where, η̃(t) = η(t)− η̂(t), θ̃θθ (t) = θθθ (t)− θ̂θθ (t).
Note that the hyperbolic tangent function tanh(·) has the

following property:

0 ≤ |%| − % tanh(
%

h
) < 0.2785h, (21)

where h > 0 and % ∈ R. Then,

|eeeTPbbb|ρ − eeeTPbbbρ̂$f

= |eeeTPbbb|ρ − |eeeTPbbb|ρ̂ + |eeeTPbbb|ρ̂ − eeeTPbbbρ̂$f

= |eeeTPbbb|ρ̃ + 0.2785ε1 e−ε2t (22)

holds, with ρ̃ = ρ − ρ̂. By virtue of (20) and (22), we have

V̇1 ≤ −
1

4gm
λQeeeTeee+ eeeTPbbbθ̃θθ

T
ϕϕϕ(xxx,xxxd )+ eeeTPbbbη̃

+ 0.2785ε1 e−ε2t . (23)

The following Lyapunov functional is introduced to facili-
tate the analysis

V2 = V1 +
1

2µ1

∫ t

t−Td
θ̃θθ
T
θ̃θθdτ +

1
2µ2

∫ t

t−Tw
η̃2(τ )dτ.

+
1

2µ3

∫ t

t−Td
ρ̃2(τ )dτ (24)

By virtue of (23), the time derivative of V2 is

V̇2 ≤ −
1

4gm
λQeeeTeee+ eeeTPbbbθ̃θθ

T
ϕϕϕ(xxx,xxxd )+ eeeTPbbbη̃

+ 0.2785ε1 e−ε2t +
1

2µ1

[
θ̃θθ
T
(t)θ̃θθ (t)−

θ̃θθ
T
(t − Td )θ̃θθ (t − Td )

]
+

1
2µ2

(η̃2(t)− η̃2(t − Tw))

+
1

2µ3
(ρ̃2(t)− ρ̃2(t − Td )). (25)

Note that w(t)= w(t − Tw) and while t ≥ Tm, γ (t) = 1.
According to (15), for t ≥ Tm,

1
2µ2

(η̃2(t)− η̃2(t − Tw))+ eeeTPbbbη̃(t)

=
1

2µ2
(2η(t)− 2η̂(t)+ η̂(t)− η̂(t − Tw))

× (η̂(t − Tw)− η̂(t))+ eeeTPbbbη̃(t)

≤
1
µ2
η̃(t)(η̂(t − Tw)− η̂(t))+ eeeTPbbbη̃(t)

=
1
µ2

[η(t)− sat(η̂∗(t))][η̂∗(t)− sat(η̂∗(t))]

≤ 0. (26)

Similarly, while t ≥ Tm, by using (13) and (14), respectively,
we obtain

1
2µ1

(θ̃θθ
T
(t)θ̃θθ (t)− θ̃θθ

T
(t − Td )θ̃θθ (t − Td ))

+eeeTPbbbθ̃θθ
T
(t)ϕϕϕ(xxx,xxxd )

=
1

2µ1
[2θθθ (t)− 2θ̂θθ (t)+ θ̂θθ (t)− θ̂θθ (t − Td )]T [θ̂θθ (t − Td )

− θ̂θθ (t)]+ eeeTPbbbθ̃θθ
T
(t)ϕϕϕ(xxx,xxxd )

≤
1
µ1
θ̃θθ
T
(t)(θ̂θθ (t − Td )− θ̂θθ (t))+ eeeTPbbbθ̃θθ

T
(t)ϕϕϕ(xxx,xxxd )

≤
1
µ1

[θθθ − sat(θ̂θθ
∗
(t))]T [θ̂θθ

∗
(t)− sat(θ̂θθ

∗
(t))]

≤ 0 (27)
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and
1

2µ3
(ρ̃2(t)− ρ̃2(t − Td ))+ |eeeTPbbb|ρ̃(t)

≤
1
µ3
ρ̃(t)(ρ̂(t − Td )− ρ̂(t))+ |eeeTPbbb|ρ̃(t)

≤
1
µ3

(ρ − ρ̂(t))(ρ̂(t − Td )− ρ̂(t)+ µ3|eeeTPbbb|)

=
1
µ2

[ρ − sat(ρ̂∗(t))][ρ̂∗(t)− sat(ρ̂∗(t))]

= 0. (28)

Substituting (26)-(28) into (25) yields

V̇2 ≤ −
1

4gm
λQeeeTeee+ 0.2785ε1 e−ε2t , ∀t ≥ Tm. (29)

Then, from (29), we deduce that

V2(t) ≤ V2(Tm)−
1
2g
λm(Q)

∫ t

Tm
‖eee(τ )‖2dτ

+ 0.2785ε1

∫ t

Tm
e−ε2tdτ

≤ V2(Tm)−
1
2g
λm(Q)

∫ t

Tm
‖eee(τ )‖2dτ

+ 0.2785
ε1

ε2
e−ε2Tm (30)

holds for t ≥ Tm, where λm(Q) represents the minimum
eigenvalue of matrix Q.

From (30), we can assert that eee(t) and
∫ t
Tm
‖eee(τ )‖2dτ are

bounded. By the property of saturation function, the bound-
edness of ėee can be concluded from (5). By Barbalet’s lemma,
we have

lim
t→∞

eee(t) = 0. (31)

V. SIMULATION RESULTS
In this section, wewill illustrate the efficiency of the proposed
RC approach. Consider the following second oreder nonlin-
ear systems as follows:{

ẋ1 = x2,
ẋ2 = f (x1, x2)+ w(t)+ u(v)

(32)

where, f (x1, x2) = −0.1x2 − x31 , g = 1, [x1(0), x2(0)]T

= [0.7, 0.2]T , the parameters of the deadzone are br =
0.5, bl = −0.6,m = 1. The control objective is to make
xxx = [x1, x2]T track xxxd = [xd,1, xd,2]T .
Example 1: Consider Case 3 in Remark 1. Let w(t) =

12 cos(t), xxxd = [cos(π t),−π sin(π t)]T, Td = 2 and Tw =
2π . Tcm does not exist. (12)-(15) are applied as the repeti-
tive control law and adaptive learning laws, and the control
parameters are chosen as µ1 = 6, µ2 = 6, µ3 = 0.1,
µ4 = 10, ε1 = 0.01, ε2 = 1, ccc = [1, 1]T ,

P =
(
12 4
4 8

)
.

FIGURE 1. x1 and xd ,1 (Example 1).

FIGURE 2. x2 and xd ,2 (Example 1).

α(xxx,xxxd ) is chosen as
√
(3(x21 + x

2
d,1)

2 + 0.01, which satisfies
the condition given in (2). Simulation results are shown in
Figs. 1-5. Figs. 1-2 show the tracking performance of x1 and
x2 for t ∈ [0, 30]. Figs. 3-4 show the state tracking error
for t ∈ [0, 80]. Fig. 5 shows the input control signal of
deadzone v(t). From Figs. 1-4, we can see the dual-periodic
RC method is effective to solve trajectory-tracking problem
for Case 1 in Remark 3, whereas the single-periodic RC
approach is unsuitable to be adopted for this case.
Remark 4: In Example 1, Td = 2 and Tw = 2π and their

common multiple Tcm does not exist. Thus, dual-period RC
is suitable to design control law for the controlled system in
this example, whereas traditional single-period RC can not be
adopted here.
Example 2: In this example, we will compare the con-

trol performance between dual-period repetitive control and
single-period repetitive control for Case 2 in Remark 3.
xxxd = [cos( 2π t3.1 ),−

2π
3.1 sin(

2π t
3.1 )]

T, w(t) = 12 cos(π t),
Td = 3.1, Tw = 2 and Tcm = 62. It is easy to see Tcm �
max(Td ,Tw). (12)-(15) are applied as the repetitive control
law and adaptive learning laws, with the control parameters
and α(xxx,xxxd ) chosen as the same as the ones in Example 1.
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FIGURE 3. The error e1 (Example 1).

FIGURE 4. The error e2 (Example 1).

FIGURE 5. Control input v (Example 1).

The state error profiles in the dual-period RC system
are given in Figs. 6-7. Figs. 6-7 illustrate that the system
error in the dual-period RC system converges to zero as
the time increases. For comparison, the corresponding state
error convergence results in the single-periodic RC system
are given in Figs. 8-9. Figs. 8-9 illustrate that the system
error in the dual-period RC system also converges to zero as

FIGURE 6. The error e1 (Example 2, dual period).

FIGURE 7. The error e2 (Example 2, dual period).

FIGURE 8. The error e1 (Example 2, single period).

time increases. Therefore, both dual-period RC and single-
period RC are efficient to solve the trajectory-tracking prob-
lem for Case 2 in Remark 1. Comparing Fig. 6 with Fig. 8,
we can see that the e1(t) in the dual-period RC system
converges much faster than the one in the single-period RC
system. Similarly, comparing Fig. 7 with Fig. 9, we can see
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FIGURE 9. The error e2 (Example 2, single period).

that the e2(t) in the dual-period RC system converges much
faster than the one in the single-period RC system.

The results given in Example 1 and Example 2 verify the
effectiveness of the proposed dual-single RC approach.
Remark 5: The results in Example 2 show that dual-period

RC has higher convergence speed than traditional single-
period RC for Case 2 In Remark 3. Actually, in some situa-
tions, the common multiple between Td and Td exists, but the
commonmultiple is very difficult to be obtain obtained. Dual-
period RC is more suitable to be adopted for such situations
than single-period RC.

VI. CONCLUSION
In this work, we have proposed a dual-period RC scheme
to solve periodic trajectory-tracking problem for a class of
nonparametric uncertain systems with deadzone input. Since
the common multiple between the period of periodic dis-
turbance and that of the reference signal does not exist,
the traditional single-period RC approach is not suitable to
be adopted in controller design. The proposed dual-periodic
RC scheme is also of significance for the cases that the
minimum common multiple between the period length of
reference signal and that of disturbance is much larger than
the maximum of the two period lengths, which helps to
achieve higher convergence speed than traditional single-
periodic RC scheme. Two illustrative examples are provided
to demonstrate the effectiveness of the proposed dual-period
repetitive control scheme. The next step of this work is to
investigate the multi-period RC for nonlinear systems with
deadzone input.
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