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ABSTRACT The Conceptor network is a newly proposed reservoir computing (RC) model, which outper-
forms traditional classifiers, which can fail to model new classes of data for a supervised learning task.
However, the reservoir structure design for the Conceptor is single, involving just a traditional random
network, which has strong coupling between nodes and limits computing ability. This study focused on
the reservoir topology design problem, and we propose a complex network Conceptor-based phase space
reconstruction of time series. Several dynamical systems were chosen to build complex networks using a
phase space reconstruction algorithm. The experiment results obtained using a mix of two irrational-period
sines showed that the proposed phase space reconstruction reservoir topologies with the appropriate values
of threshold provide Conceptors with extra reconstruction precision. Among them, the phase space recon-
struction reservoir-based Lorenz system shows the best performance. Further experiments also identified
the appropriate values of threshold of the phase space reconstruction method required to obtain optimal
performance. The precision showed a non-linear decline with increase in memory load, and the proposed
Lorenz phase space reconstruction reservoir maintained its advantages under different memory loads.

INDEX TERMS Conceptor, reservoir computing, phase space reconstruction, time series prediction.

I. INTRODUCTION
Reservoir computing (RC), a type of recurrent neural network
(RNN), has attracted increasing interest due to its advantages
of high accuracy, fast learning, easy training and global con-
vergence [1]. Typical RC models, such as echo state network
(ESN) [2] and liquid state machine (LSM) [3], have been
widely applied to time series related applications, such as
time series prediction [4]–[8], pattern classification [9]–[12],
and anomaly detection [13].

It has been demonstrated that the reservoir layer, which
is generally initialized to be large-scale and fixed-weight,
plays a key role in the performance of reservoir computing.
In [14], the authors proposed that in addition to the connection
weights, the structures of the reservoir also have a non-
negligible influence on the computational accuracy of RC on
time series problems. Complex neural networks have been
shown to be an effective toolkit for providing insight into the
intrinsic nature of time series data from a global perspective,
and have also been shown to be powerful approaches to han-

The associate editor coordinating the review of this manuscript and

approving it for publication was Zijian Zhang .

dling nonlinear time series problems. Complex networks with
differently-designed topologies of reservoir structures have
been proposed recently, such as a small-world topology [15],
a critical topology [16], a cortex-like distribution [17] and
a modular topology [18]. Zhang and Small [19] introduced
a transformation method from a pseudoperiodic time series
to complex networks, by representing each cycle of the
pseudoperiodic series as a basic node. Yang and Yang [20]
built complex networks from the correlation matrices of time
series. Gao and Jin [21] proposed a reliable and effective
method for constructing complex networks from time series
based on phase space reconstruction.

Recently, a novel computing framework for RC, the Con-
ceptor network, has been proposed by Jeager [22]. Conceptor
networks can store multiple patterns of inputs into a reservoir
layer, filter the corresponding states using a ‘‘Conceptor’’
module, and finally reconstruct the input signals to achieve
high classification accuracy. Conceptor networks have the
significant advantage that they are capable of dynamically
loading new classes of data patterns, a difficult problem for
most other conventional supervised training-based classifiers
which can fail to recognize new classes of the input pattern.
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FIGURE 1. Conceptor network structure.

Because of these advantages, Conceptor networks have been
applied to fields such as image classification [23], [24], nat-
ural language processing [25], time series classification [26].

In this paper, we propose a novel Conceptor network
with an embedded reservoir of a time series phase space
reconstruction complex network. Signal reconstruction of
a mix of two irrational-period sines was employed as the
network performance-testing platform. After analyzing the
appropriate values of threshold of the phase space recon-
struction method, an experiment comparing the network per-
formance using this platform confirmed the advantages of
the proposed reservoir over an ordinary random reservoir.
The results demonstrate the effectiveness of the proposed
reservoir network topology. The effects of memory load on
network performance are also discussed.

The remainder of this paper are organized as follows: Sec.
II briefly presents some basic preliminaries of the Conceptor
network, and also describes the phase space reconstruction
complex network based neural reservoir. Sec. IV examines
the reconstruction of the mix of two irrational-period sines
to analyze the performance of the Conceptor network with a
modified reservoir structure. Sec. V presents the discussion
and the conclusions.

II. BASIC PRINCPLES OF CONCEPTOR NETWORKS
Consider a recurrent neural network including an input layer
of I neurons, an output layer ofO neurons, and a hidden layer
(dynamical reservoir) of H recurrently connected neurons.
If we regard the reservoir as a two-layer network with the
same number of neurons, as shown in Fig.1, then the reservoir
state at time step (n+ 1) can be expressed as

r(n+ 1) = f
(
W∗z(n)+Winp(n+ 1)+ b

)
(1)

z(n+ 1) = C(n)r(n+ 1) (2)

where f (·) is an activation function, p ∈ RI , x ∈ RH , y ∈ RO

denote the network input, reservoir state and network output,
respectively, and r ∈ RH and z ∈ RH are two recurrent states.
Further, Win ∈ RH×I are the input weights, Wout ∈ RO×H

are the output weights, and b ∈ RH is the network bias.

The reservoir weights W ∈ RH×H are resolved by two
independent weightsW∗ ∈ RH×H and C(n) ∈ RH×H , where
C(n) is named as the Conceptor that characterizes the hidden
activation of state x.
It should be noted that similar to other reservoir computing

frameworks like ESN or LSM, the values of the connection
weights Win, W∗, as well as the bias, b, are fixed once
randomly initialized. Only the output weights, Wout , need
to be trained so that the network output y can reconstruct
the corresponding input signal p as precisely as possible.
According to Eq. 1 and Eq. 2, the network model can be
rewritten as

x(n+ 1) = C(n) · f
(
W∗z(n)+Winp(n+ 1)+ b

)
(3)

y(n+ 1) = Woutx(n) (4)

TheWout is calculated by using the pseudo-inverse:

P = E[x(n)], T = E[d(n)] (5)

Wout = TP+ (6)

where d(n) is the desired output at time step n.
Conceptor C can be calculated using a stochastic gradient

descent method. The gradient of E[‖ x − Cx ‖2] + α−2 ‖
C ‖2fro with respect to C is

∂

∂C
E[‖ x− Cx ‖2]+ α−2 ‖ C ‖2fro= I− CE[xxT ]− α−2C

(7)

where α is a design parameter that satisfies α ≥ 0. Thus,
we can find an optimal solution to minimize the objective
function by adjusting α. An online adaptive function of the
Conceptor is defined as

C(n+ 1) = C(n)+ λ
((

x(n)− C(n)x(n)
)
xT − α−2C(n)

)
(8)

where λ denotes the learning rate.
We can load K input patterns pj(j = 1, 2, . . . ,K ) into a

reservoir of dimension N . To reconstruct the different input
patterns which feed into the reservoir, the Conceptor net-
work needs to perform three steps: initialization, cueing and
recalling:

(1) Initialization: The reservoir states begin with zero, and
are driven by pj with a length of nwashout .
(2) Cueing: The reservoir is driven by pj with a length of

ncue; the corresponding Cj is initialized with a zero matrix,
and is updated using Eq. 9.

r(n+ 1) = tanh
(
Wr(n)+Winpj(n)+ b

)
Cj(n+ 1) = Cj(n)+ λcue

((
r(n)− Cj(n)r(n)

)
rT (n)

−α−2Cj(n)
)

(9)

(3) Recalling: The reservoir continues updating its internal
state by using the input analog matrix D instead of using an
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input signal, where the calculation method of D has been
proposed [22]. Cj

cue autonomously self-updates according to
Eq.(10) with a length of nrecall , and ultimately, the Cj

recall can
be obtained.

z(n+ 1) = Cj(n)+ tanh
(
Wz(n)+ Dz(n)+ b

)
Cj(n+ 1) = Cj(n)+ λrecall

((
z(n)

−Cj(n)z(n)
)
zT (n)− α−2Cj(n)

)
(10)

III. PROPOSED METHOD
A. PHASE SPACE RECONSTRUCTION COMPLEX NETWORK
GENERATION ALGORITHM
To generate a complex network of the reservoir for phase
space reconstruction of a specific time series, we proposed
a novel network generation algorithm which can be divided
into two parts: phase space reconstruction of the time series,
and construction of a complex network.

We can divide the time series into fixed length of sequence
using the phase space reconstruction method, and map the
sequences for the network nodes. The correlation coefficient
between nodes determines whether there is a connection
between nodes. When the correlation coefficient is greater
than a certain threshold, these two nodes are linked together.
According to Takens’ embedding theorem [16], which is very
often invoked as the motivation for applying a time delay
embedding to reconstruct a phase space from a time series,
the algorithm can be described as follows. For time series
z(it)(i = 1, 2, . . . ,M ), t is a sample interval and M is
the sample length. Using the coordinate delay embedding
algorithm we can calculate the phase space vector:

−→xk = xk (1), xk (2), . . . , xk (m)

= z(kt), z(kt + τ ), . . . , z
(
kt + (m− 1)τ

)
(11)

where τ is the time delay, m is the embedding dimension,
and k = 1, 2, . . . ,N . N is the number of total vectors in the
reconstructed phase space, N = M− (m−1)τ/t . In this work
the time delay τ is determined by the CC method, and using
the false nearest neighbors (FNN) method to determine the
time series’ embedding dimension m.
To build a complex network corresponding to the time

series, each vector point in the phase space can be seen as
a node of the network, and whether there is a connection
between nodes is determined by their distance in phase space.
Given two vector points

−→
Xi and

−→
Xj (i > j), their distance in

phase space is defined as:

dij =
m∑
n=1

‖ Xi(n)− Xj(n) ‖ (12)

whereXi(n) is the nth elements of
−→
Xi ,Xi = z

(
i∗t+(n−1)τ

)
.

According to Eq.(10), we can obtain a distance matrix D =
(dij) (i > j).

We can choose a suitable threshold and establish the net-
work using the following algorithm: there exists connection

between node i and j if | dij |≤ rc, and it is a directed
connection (from i to j). However, if | dij |> rc, the nodes
are not connected. Consider the phase space distance between
nodes as connection weights. We can then get a connection
weight matrix W = (wij). wij = 0 means there is no
connection between nodes i and j . If wij 6= 0, wij = dij.
The connection weight matrix W determines the network’s
topological structure of time series phase space reconstruc-
tion.

B. MEMORY MANAGEMENT
The memory management mechanism of the network is as
follows:

1. Gradually add the kinetic model into the concept
machine network: If the models p1, p2, . . . , pk are already
stored in the reserve pool, a new model pk+1 can be stored
without disturbing the previously storedmodels, evenwithout
knowing what model was previously-stored.

2. Measure the remaining memory capacity of the reserve
pool; that is, the capacity of the reserve pool to store kinetic
models.

3. Reduce redundancy: If a new model has some similarity
to a stored model, loading it requires less memory than a new
model that is completely different from the existing model.

The initial model storage procedure in Sec.II is to rewrite
the initial random weight matrix W∗ into a matrix W that
stores the input model, and in the memory mechanism, this
initial matrix can be more conveniently preserved. The value
change is recorded into an input analog matrix D as shown in
Eq.10:

X j(n+ 1) = tanh
(
W ∗x j(n)+Winpj(n+ 1)

)
≈ tanh

(
W ∗x j(n)+ Dx j(n)

)
(13)

In a non-progressive training model, regularized linear
regression can be used to calculate D to minimize the fol-
lowing variance formula:

D = argminD̃
∑

j=1,...,k

∑
n=1,...,L

‖ Winpj(n)− D̃x j(n+ 1) ‖2

where K is the number of loaded models and L is the length
of the training samples. The reserve pool obtained in this way
has a W∗ + D which is essentially the same as the weight
matrixW.

The input simulation matrix Dj(j = 1, . . . ,K ) must satisfy
the following conditions:

4. When the jth input simulation matrix Dj is combined
with the concept machine Ci corresponding to the stored
model pi(i ≤ j), the autonomous power system x(n + 1) =
C i tanh

(
W ∗x j(n)+ Djx j(n)+ b

)
can be heavy Construct the

ith model.
5. To calculate Dj+1, you cannot use the stored mod-

els or their concept machines. Just use the new input model
pj+1 to drive the network to get the necessary training data.

6. If the two training models are identical, i.e., pi = pj(i >
j), then Dj = Dj−1. The model pi has been stored in the

163174 VOLUME 7, 2019



Z. Xu et al.: Phase Space Reconstruction Based Conceptor Network for Time Series Prediction

network, and when the model reappears, the network does not
need to change again to accommodate it. When pi is similar
to, but not equal to pj(i > j), the network can reduce its
information redundancy. In this case, the increase in memory
consumption will be lower.

The key to the memory management mechanism is to track
the portion of the memory pool where the memory space is
occupied by existing models, or the portion of the memory
space that has not been developed. After storing the models
p1, . . . , pj, the occupied memory space can be described
as Aj = ∨(C1, . . . ,C j), and the development part can be
represented as its complement qAj.

Let the initial weight matrix of the N -dimensional reserve
pool be W ∗, and the training model sequence be pj(n)j =
1, . . . ,K ; n = 1, . . . ,L. The incremental storage algorithm
steps are as follows:

Step 1: Initialize. D0
= A0 = 0N∗N . Select an "aperture"

α for all models.
Step 2: Incrementally store the input model. The specific

steps are as follows:
1) According to equation (2.9), when the input model

pj of length L drives the reserve pool, the state set X j =
{x j(1), . . . , x j(L − 1)},Rj = X j(X j)T /(L − 1) is obtained.
Similarly, the input model set Pj = {pj(2), . . . , pj(L)} is
obtained.

2) Calculate the corresponding concept machine C j
=

Rj(Rj + α−2I )−1.
3) Calculate the N ∗N matrix Djinc (which will be added as

an increment to Dj−1):
a) F j−1qAj−1, calculate the available memory space;
b) T = WinPj − Dj−1X j, the matrix T is a target matrix in

the linear regression of Djinc;
c) S = F j−1X j, matrix S is a target matrix in linear

regression;

d) Djinc =
(( SST

L−1 +α
−2I

)+ ST T
L−1

)′
, linear regression equa-

tion
4) Update D : Dj = Dj−1 + Djinc.
5) Update A : Aj = Aj−1 ∨ C j.

IV. EXPERIMENTAL DESIGN AND RESULTS
A. PHASE SPACE RECONSTRUCTION COMPLEX NETWORK
STRUCTURAL ANALYSIS
The purpose of generating a complex network is to establish
a reservoir model with better dynamic characteristics for the
Conceptor network. We compared several time series recon-
struction complex networks to investigate their connection
topologies and network characters.

a) Lorenz chaotic system:

dx/dt = σ (y− x),

dy/dt = x(ρ − z)− y,

dz/dt = xy− βz, (14)

where σ = 16, ρ = 45.92, and β = 4.

FIGURE 2. The time series form four kinds of dynamic models.

FIGURE 3. The complex network topologies from four time series
according to phase-space reconstruction.

b) Mackey-Glass chaotic system:

y[n+ 1] = y[n]+ δ
(

0.2y[n− τ
δ
]

1+ y[n− τ
δ
]10
− 0.1y[n]

)
, (15)

where δ = 0.1, τ = 17 produces a mildly chaotic behavior.
c) Brownian motion system, representing a self-similar

system model.
d) Gaussian white noise.
The time series of the four dynamic models above are

described as shown in Fig. 2. Using the phase space recon-
struction method, we can construct complex networks cor-
responding to these four dynamic systems. Fig. 3 shows
the adjacency matrix of the complex networks as a scatter
diagram. The adjacency matrix is ordered by ascending node
degrees. Black points indicate that there is a connection
between nodes whose number is equal to this point’s x- and
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FIGURE 4. The network degree distributions from four time series
according to phase-space reconstruction.

FIGURE 5. Mixed irrational periodic sine signal.

y- values. We can see that the complex networks generated
from chaotic systems (Lorenz and MG) and self-affine sys-
tems (Brownian motion) have a clustered structure, while the
nodes of the complex network representing the white noise
series are not clustered. From the corresponding node degree
distribution (Fig. 4), it is apparent that the degree distribution
of the white noise network is Gaussian. The chaotic system
network has a Weibull distribution. The self-affine systems
have multiple peak distributions.

B. EXPERIMENTAL DESIGN
We used a mix of two irrational-period sines as input patterns
to test the performance of the Conceptor networks. Two sines
of period lengths

√
30 and

√
30/2 were added with random

phase angles and random amplitudes, where however the two
amplitudes were constrained to sum to 1. The different phase
and amplitudes evolved different input patterns. Fig. 5 shows
nine mixed irrational-period sines drawn from a 2-parametric
family.

The Conceptors in the experiments had one input neuron
with a mix of two irrational-period sine sequences. The reser-
voir was driven by a mix of 30 two irrational-period sines
with different phase angles and amplitudes. The exact number
of the reservoir neurons N , which were set to 200, is task-
dependent. Tab. 1 presents the other parameters.

FIGURE 6. Effects of threshold RC on reconstruction accuracy for all
reservoirs.

The prediction performance was measured using the nor-
malized RMSE (NRMSE) and its standard deviation. The
NRMSE is computed as follows:

NRMSE =

√∑
i=1

(
ltestytest − dtest

)2
ltestσ 2 (16)

where ytest [n] is the network output during the testing phase;
dtest [n] is the desired output during the testing phase and
σ 2 is the variance of the desired output. The standard devi-
ation of NRMSE (δ) is defined as follows: NRMSEav =∑i=k

i=1 NRMSE(i)/k . k denotes the number of independent
trials.

C. ANALYSIS OF PREDICTION ACCURACY FOR ALL
RESERVOIRS
The complex networks from different time series have differ-
ent structural characteristics, and have different performance.
In this section, we describe the results of our analysis of
the performance of the conventional random reservoir and
four phase space reconstruction reservoirs. For the reservoirs
described as Sec. III-A, we first analyzed the effects of the
threshold of phase space reconstruction method (RC) on
reconstruction accuracy on the network’s density and number
of connections, factors which are significant for reservoir
performance. Fig.6 shows the NRMSEs of four phase space
reconstruction networks with different values of RC. We can
see that the NRMSEs are stable when RC is larger than 15 for
Lorenz system, 0.3 for MGS system, 12 for Brownian system
and 0.5 for white noise. A comparison of the reconstruction
performances between the traditional random reservoirs with
the four phase space reconstruction reservoirs was performed.

The experiment compared the reconstruction capability of
five kinds of reservoir structures, including a random net-
work and the four phase space reconstruction networks. Load
30 mixed sine signal input model above on five reservoirs
respectively. Fig. 7 shows reconstruction results of the first
three input patterns from ConceptorCrecall . The broken black
represents the input training pattern and bold light pink is the
reconstructed pattern. We can see that the random network
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FIGURE 7. The reconstructed effect with Conceptor C j
recall . Broken black

is the original training pattern and bold light pink is the reconstructed
pattern.

FIGURE 8. The reconstructed effect with Conceptor C j
recall . Broken black

is the original training pattern and bold light pink is the reconstructed
pattern.

and four phase space reconstruction networks can reconstruct
the input models effectively.

To compere the reconstruction ability of ConceptorsCrecall
with five reservoirs, we computed the reconstructionNRMSE
of 30 patterns for each reservoir, and drew their NRMSE
(Fig. 8). The blue indicates the NRMSE distribution of ran-
dom networks, and the other four colors represent the four
phase space reconstruction networks. The reconstruction pre-
cision of the four phase space reconstruction reservoirs is
better than that of the random reservoir in general. Compared
with a random network, their NRMSEs have smaller values.
The phase space reconstruction network from the Lorenz
system (red line) shows the best reconstruction precision.
Tab. 2 shows the NRMSE mean and standard deviation δ
for five kinds of reservoirs. The comparisons show that four
phase space reconstruction networks have smaller average
NRMSEs than the random network. Among them, the Lorenz
system phase space reconstruction network shows the best
precision (including average NRMSE and the corresponding
δ), indicating that the proposed phase space reconstruction
reservoir is the most powerful of the network models for
reconstructing these patterns. We then observed the NRM-
SEs of the phase space reconstruction of the Lorenz system
network for each pattern using Ccue and Crecall . As shown
in Fig. 9, the reconstruction ability of the Concepor network is
improved from Crecall to Ccue, due to the autonomous update
of the Conceptor at the recall stage.

FIGURE 9. The reconstruction NRMSE with C j
cue and C j

recall of
phase-space reconstruction network model.

D. ANALYSIS OF MEMORY LOAD EFFECTS ON RECALL
ACCURACY
The calculation accuracy reflects the calculating ability of
the Conceptor networks and is affected by memory load of
reservoir. To explore the relationship between recall accuracy
and memory load, and analyze the reservoir’s memory capac-
ity for dynamic models, we carried out a further experiment.
We gradually increased the number of input models and
observed the changes in the reconstruction error depending
upon the memory loads, as follows:

1) Construct a reservoir network structure.
2) In separate trials, load this reservoir with an increasing

number k of patterns (ranging from k = 2 to k = 100 for the
mixed sines). Since the change in accuracy is obvious when
the input model number is small and the error tends to be sta-
ble because the memory space is close to saturation when the
number is great, we set K = [2, 3, 5, 8, 12, 16, 25, 50, 100],
instead of using a uniform distribution.

TABLE 1. Parameter settings in the experiments.

3) After loading, repeat the recall scheme described above,
with the parameters as shown in Table 1. Monitor the recall
accuracy obtained from Cj

recall for the first 10 of the loaded
patterns (if less than 10 were loaded, do it only for these).

4) Repeat step 2) and 3) five times, with freshly created
patterns, using the same reservoir.

The results of the comparison between the phase space
reconstruction complex networks and random networks are
shown in Fig. 8. The plotted curves are the averages over
10 recall targets and the five experiment repetitions. Each
point in the diagrams thus reflects an average over 50
NRMSE values, except in cases where K < 10 patterns were
stored; then plotted values correspond to averages over 5 ∗K
NRMSE values for recalling of loaded patterns. The error
bar of each point reflects the standard deviation. The main
findings from Fig. 8 are listed as follows:
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TABLE 2. Average NRMSE and standard deviations for five kinds of reservoirs.

FIGURE 10. 10 Effects of memory load on recall accuracy.

1) For all numbers of stored patterns and all reservoir
models, the reconstruction NRMSEs from Crecall are smaller
than NRMSEs from Ccue.
2) For all reservoir models, the reconstruction NRMSEs

from Crecall show a non-linear increase with increase in
memory load.

3) Although the NRMSEs of random network from Ccue
are better than those of the phase space reconstruction when
the memory load is larger than four, the phase space recon-
struction network’s accuracy from Crecall is greater than
those of the random networks for different memory loads.
The accuracy from Crecall is the most accurate indicator of
evaluation because Crecall is more mature than Ccue. These
results indicate that the phase space reconstruction networks
outperform the traditional random networks.

V. CONCLUSION
This study describes a phase space reconstruction reservoir
generation algorithm for the Conceptor network, which was
investigated using a test involving the reconstruction of a mix
of two irrational-period sines. The simulation results demon-
strate the effectiveness of the proposed reservoir network
topology. The precision of phase space reconstruction reser-
voirs improves with the increase in threshold, because of the
increase in reservoir network density. Four phase space recon-
struction reservoirs had improved computational capability
over the conventional random reservoir, and the improve-
ment in the reconstruction precision of the Lorenz phase
space reconstruction reservoir and its standard deviation was
largest. Further experiments revealed that reconstruction pre-
cision showed a non-linear decline with increase in memory
load, and the proposed Lorenz phase space reconstruction
reservoir maintained its advantages for different amounts of

memory load. The main advantage of the proposed reservoir
topology is to generate an efficient complex network reservoir
which can improve the computing abilities of Conceptor
networks.
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