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ABSTRACT We have proposed a square wave quadrature amplitude modulation (SW-QAM) scheme for
visible light communication (VLC) using an image sensor in our previous work. Here, we propose a
robust and unified system by using a neural decoding method. This method offers essential SW-QAM
decoding capabilities, such as LED localization, light interference elimination, and unknown parameter
estimation, bundled into a single neural network model. This work makes use of a convolutional neural
network (CNN) that has a capability in automatic learning of unknown parameters, especially when it deals
with images as an input. The neural decoding method can provide good solutions for two difficult conditions
that are not covered by our previous SW-QAM scheme: unfixed LED positions and multiple point spread
functions (PSFs) of multiple LEDs. Responding to the above solutions, three recent CNN architectures—
VGG, ResNet, and DenseNet—are modified to suit our scheme and other two small CNN architectures—
VGG-like and MiniDenseNet—are proposed for low computing devices. Our experimental results show that
the proposed neural decoding method performs better in terms of error rate than the theoretical decoding,
an SW-QAMdecoder with aWiener filter, in different scenarios. Furthermore, we experiment on the problem
ofmoving camera, i.e., the unfixed position of LED points. For this case, a spatial transformer network (STN)
layer is added to the neural decoding method for solving the moving camera problem, and the method with
the new layer achieves a remarkable result.

INDEX TERMS Visible light communication, image sensor communication (ISC), SW-QAM, optical
camera communication (OCC), neural decoding, convolutional neural network (CNN), deep learning.

I. INTRODUCTION
The emergence of machine learning (ML), especially artifi-
cial neural network (ANN), in visual recognition, has become
a hot topic due to the applicable training of ANN [1]
on a powerful graphics processing unit (GPU) machine.
In 2012, AlexNet proposed by Krizhevsky et al. [2] was
a convolutional neural network (CNN) breakthrough for
classifying large image datasets with superb performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mithun Mukherjee .

CNN architecture has several spatial convolutional layers
that are able to learn automatically from data through the
back-propagation algorithm. Since then, there have been var-
ious computer vision tasks that take advantage of CNN devel-
opments such as image classification [3], object detection [4],
and tracking tasks [5].

In this paper, the great potential of CNN is also
applied to visible light communication (VLC) research espe-
cially for the square wave quadrature amplitude modula-
tion (SW-QAM) scheme [6]. In image-sensor-based VLC,
an image sensor or a camera plays the role of a receiver that
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captures a sequence of LED images and then decodes the
captured images back to a sequence of symbols as described
in SW-QAM. The role of the image sensor can be viewed as a
visual recognition task. Therefore, CNN can be a good solu-
tion for a fully automatic SW-QAM decoder. The SW-QAM
decoder requires three important techniques to make it works
properly: (i) detecting the center of the LEDs, (ii) removing
the light interference among LEDs for multiple LED setting,
and (iii) decoding the encoded symbols from the captured
images. These difficulties and complexities can be eliminated
by replacing the SW-QAM decoder with the neural decoder.
In this paper, we focus on the use of multiple LEDs due to
its high complexity. Absolutely, this scheme still works for a
single LED.

Here, we propose a novel decoding method based on our
SW-QAM scheme but using a neural network instead. This
decodingmethod is called neural decoding. (Hereinafter, SW-
QAM will be called a theoretical decoding.) By using neural
decoding, we are not only able to reduce light interference and
estimate other unknown parameters efficiently, but also able
to decode the encoded symbols in a single stage. Furthermore,
in a real world situation, the camera may be moving while
capturing a frame that may cause the positions of LED points
not to be fixed in the image area. With the modularity of
the neural network model, the moving camera problem can
be solved by adding a spatial transformer network (STN) [7]
layer into the neural decoder.

The main contributions of our work are listed as follows.
• A neural decoding method that is robust to light interfer-
ence is proposed when multiple LEDs are used.

• An STN layer embedded into the neural decoding
method for solving a moving camera problem is intro-
duced.

• The comparative performances among five neural
decoding methods and the theoretical decoding method,
an SW-QAM decoder with a Wiener filter, are demon-
strated.

The rest of this paper is organized as follows. Section II
briefly reviews recent studies on VLC technology and appli-
cations of neural networks in a communication research field.
Section III explains the proposed method, neural decoding
architecture and its implementation in our developed scheme.
The experimental and comparative results of all decoding
methods are discussed in Section IV. Finally, we conclude
our work in Section V.

II. BRIEF REVIEW
Applications of deep learning to communication research
have been proposed in various works, such as chan-
nel modeling, equalization, decoding, demodulation or
prediction [8], [9]. For instances, O’Shea and Hoydis [10]
introduced a channel modeling that provides an end-to-end
learning framework for encoding and decoding processes in
a physical layer. The whole communication system (from
the transmitter to receiver) is modeled based on an autoen-
coder neural network architecture such that all themodulation

and demodulation techniques are automatically optimized by
training algorithms. Moreover, they also developed another
architecture called radio transformer network (RTN) derived
from STN to improve the performance of their autoencoder.
The RTN defines a parametric transformation of a symbol
at the receiver as a correction for the autoencoder’s error so
that the performance of the entire system can be improved.
O’Shea’s work demonstrates that deep learning is applicable
to communication systems and that deep learning is robust
to various unknown parameters such as channel imperfection
and non-linearity [11].

Mohammad et al. [12] implemented a demodula-
tion method based on a deep convolutional neural
network (DCNN) and compared its performance to those of
other machine learning and non-learning methods for demod-
ulation of a Rayleigh-faded wireless data signal with several
settings of signal-to-noise ratio (SNR). They showed that
DCNN was able to achieve a lower bit error rate than other
methods in all experimental scenarios. Therefore, an appli-
cation of CNN to a demodulation method can provide a
substantial benefit of decreasing the bit error probabilities.

Furthermore, in VLC research area, Haigh et al. [13] used
a neural network not for a decoding or demodulation purpose
but as an equalizer for the decoding method of an on-off
keying (OOK) modulation scheme. Equalization mitigates
the effect of inter-symbol interference (ISI) that degrades the
performance of a system. Therefore, by using an equalizer,
the authors were able to increase the data transmission rate.
In their work, the authors used a neural network equalizer
with 10 hidden neurons. The system was able to achieve
a maximum communication speed of 170 Mbps under a
targeted bit error rate (BER) of 10−6. This was a success-
ful case of solving an unknown parameter problem through
data-driven learning.

Moreover, in an image-sensor based VLC for localization
research, Ifthekhar et al. [14] applied a neural network (NN)
localization method and used a stereo vision technique for
vehicle positioning. They introduced two positioning meth-
ods: a cooperative-vehicle positioning (CVP) system using
optical camera communication (OCC) method in comple-
mentary with a computer vision technique and an NN based
technique. They used the light from LEDs at the rear of a
car to communicate with another car installed with a stereo
camera so that the latter car can determine the position of
the former car. This work shows that the NN method outper-
formed the computer vision method with OCC based tech-
nique. Moreover, NN does not need complex mathematical
modeling to build a model. NN only needs to learn from a
set of training data then it can build a model automatically
through a learning algorithm.

Lastly, an application of a neural network to VLC with an
image sensor for decoding purposes was introduced in [15].
This method was applied to a vehicle-to-vehicle (V2V) com-
munication scheme by using modulated rear LEDs of a car.
They utilized two different neural networks as a complemen-
tary method to localize the LEDs in the captured images and
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FIGURE 1. A unified system implemented by a replacement of the
SW-QAM decoding scheme (on left-hand side) with the neural decoding
scheme (on right-hand side).

to classify the transmitted symbols. They showed that the use
of a neural network method yielded better performance than
the computer vision technique that they tested. Hence, we can
conclude that one of the main reasons for the achievement
of NN applications is that the neural network was able to
overcome unknown parameter problems such as non-linearity
problem, noise estimation, and channel imperfection by auto-
matic learning from real data.

As described in [6], SW-QAM decoder requires essential
complementary techniques such as LED localization, light
interference elimination, and noise removal. However, these
techniques may provide a sub-optimal performance because
the performance of the entire system will depend on the
performance of each particular method. Hence, we propose
a novel decoding scheme, as shown in Fig. 1, for SW-QAM
by accommodating all of these methods into a single neural
network model so that we have a unified system that can
decode symbols efficiently.

III. PROPOSED METHOD
In this paper, we propose a novel neural decoding method
based on SW-QAM scheme. The proposed method is fully
decodable and independent from any additional techniques.

A. NEURAL DECODING
Neural network (NN) is an efficient machine that is able to
be applied to solve a variety of problems such as prediction,
recognition, and fitting tasks. Moreover, it is also powerful in
estimating unknown parameters. Due to NN’s capability in
a variety of tasks, we can take the advantage of NN on light
interference elimination, noise removal, and correct decoding
in VLCwith a camera receiver, especially when working with
an SW-QAM modulation scheme [6]. The problem of using
a camera as a receiver in VLC is no different from that in
computer vision. Not surprisingly, some problems in VLC
with a camera can be solved by a computer vision method.

According to the results of our SW-QAM scheme in [6],
the theoretical encoding and decoding always perform well
in a controllable situation. However, in practice, the existence
of a large amount of noise and light interference becomes a
serious problem in the decoding stage. Moreover, in terms
of light interference elimination, different situations may
have different point spread functions (PSFs), so we need to
model the specific PSF for each. Responding to the above
solution, we propose a neural decoding method that has
great potential for solving such a problem. As illustrated

FIGURE 2. An implementation of two neural decoding architectures for
(a) fixed and (b) unfixed LED positions.

in Fig. 1, it can be seen that our proposed scheme uses a single
neural decoder instead of multiple complementary methods,
each of which overcomes a specific problem such as light
interference elimination and LED localization. Inside our
proposed scheme, the neural decoding does not require the
PSF modeling to reduce the light interference among LEDs
as theWiener deconvolutionmethod does, as described in [6].
Also, the position of the LED points and the image features
are automatically detected in the training stage of the neural
network. In other words, all of the tasks of the SW-QAM
decoder can be done by the neural network itself.

Fig. 2 shows two neural decoding architectures for fixed
and unfixed LED positions in an implementation scheme.
The fixed LED position means that the camera is not moved,
so the LED position in the image is fixed, while the unfixed
LED position means that the camera is moving, so the LED
position is not fixed. For the fixed LED position model
architectures as illustrated in Fig. 2(a), the input of the neural
network consists of 6 frames, i.e., 3 frames from a pream-
ble symbol and the other 3 frames from a data symbol.
This setting is suitable for performing the decoding method
since each symbol is related to the preamble information as
explained in [6]. These 6 frames are concatenated and then
fed to the neural decoder that has 6 channels for inputs.
Each channel is for each frame which is a grayscale image.
Then, the neural network processes these input images to
obtain the outputs in terms of amplitude and phase of the
modulated signal.

We encode each symbol in a 64-QAM constellation
scheme, with the maximum value of 0.7 in the x and y
axes, such that the first symbol is located at (−0.7, 0.7)
and the preamble symbol is located at (−1, 0) as shown
in Fig. 3. The outputs of the neural decoding are two regres-
sion values for the x-y coordinates of a decoded symbol
in the 64-QAM constellation. Moreover, when we use n
LEDs as a transmitter, the number of neural network outputs
are n pairs of x-y coordinates. In our proposed scheme,
the outputs of the neural network are four nodes, i.e., two
pairs of x-y coordinates since we use two LEDs as the
transmitter. This type of output is selected for our work so
that it can be easy to visually compare them with those from
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FIGURE 3. A 64-QAM constellation scheme for the encoded symbols and
the preamble symbol at a phase θ = π and an amplitude A = 1.

the theoretical decodingmethod. However, in our preliminary
experiment, we found that this regression output type yields
better performance than a 64-symbol or 6-bit classification
output type. Therefore, the regression loss function or mean
squared error (MSE) is chosen for all of the neural decoding
training phases to estimate the x-y coordinates in the 64-QAM
constellation.

Another advantage of neural decoding is its use of an STN
layer for the automatic transformation of input images. The
STN layer can help overcome a moving camera problem that
usually occurred in a real world situation. On the other hand,
if we used the theoretical decoding, we would be required
to use an essential technique for detecting the LED posi-
tion in the image area. In our previous SW-QAM scheme,
manual detection was used because the LED position was
fixed. Furthermore, if we use a Wiener filter to improve the
decoding function, the PSF might be changed due to the
camera moving in 3-dimensional space. This is the reason
why STN, one of the neural network layer types, is applied to
overcome the problem of a moving object in the image, for
the unfixed LED position. The STN is also trainable through
a backpropagation algorithm. The input to the STN is a single
frame, then 6 outputs from 6 input frames are concatenated
to it and then fed into the next layer as illustrated in Fig. 2(b).
In other words, it is the same as the architecture in Fig. 2(a)
with an additional preceded STN layer to its input layer.

With NN’s capabilities for accommodating several
complementary methods, we can have a unified system for
decoding by means of neural decoding. Then, its algorithmic
procedure can be described as follows.

Given a sequence of LED images, containing the symbols
that are encoded by SW-QAM encoder [6]:
Step 1. Concatenate three frames of a preamble symbol and

three frames of a received symbol as the input of
neural decoder.

Step 2. Predict the x-y coordinate in the QAM constellation
of the symbol using the neural decoder.

Step 3. Classify/decode the symbol based on the grid loca-
tion in the QAM constellation.

B. NEURAL ARCHITECTURES
We modify the recent three key neural network architec-
tures, ResNet [16], DenseNet [17], and VGG [18] with batch
normalization. Our modified neural network architectures
are m-ResNet18, m-DenseNet121, and m-VGG16bn. More-
over, we also propose the other two small neural network
architectures, VGG-like and MiniDenseNet, with a smaller
number of layers and filters. Those three key architectures
are modified so that their first convolutional layer can support
6-channel filters that match the 6 channels of the input. The
last pooling layer is also adapted because the size of the
spatial dimension of the input image is different from those
of the original architectures. For example, our input image
is 128 × 128 pixels while the original input image of these
architectures is 224× 224 pixels, thus, the last pooling layer
or the fully connected layer needs to be adapted accordingly
to the smaller size of input images. For the last layer, if the
architecture has a fully connected (FC) layer, we use a single
FC layer with 512 nodes and an output layer that has 4 output
nodes for x-y regression of two LEDs.

The detailed configurations of CNN’s architectures are
shown in Table 1. Those architectures consist of three main
blocks: initiation, building, and FC. In the initiation block,
the first convolutional layer contains 64 filters with stride
s = 2. In the building block, the first to the fourth blocks
contain 64, 128, 256, and 512 filters, respectively, in each
convolutional layer for all of the architectures, except for the
VGG-like architecture of which the first to the fourth convo-
lutional layers have 16, 16, 32, and 32 filters, respectively.
Moreover, each architecture has different building blocks;
the VGG, ResNet, and DenseNet use ordinary, residual,
and dense blocks, respectively. For the FC block, the last
pooling layer of the ResNet, DenseNet, and MiniDenseNet
architectures is a global pooling layer that provides 1 × 1
spatial dimension output so that the FC block has an input
of dimension C which is the number of channels of the last
convolutional layer. Note that VGG architecture does not
have an initiation block.

In this study, a VGG-like architecture is used with filter
sizes of 5 and 7, while most of the modified CNNs that we
work with have a filter size of 3. This increases the neural net-
work capacity while still uses a small number of features and
layers. However, the number of filters is still much smaller
than those used by other architectures. In this way, the neural
network size is much smaller than the original VGG (lower
complexity). Please note that the convolutional and FC layers
are followed by Leaky-ReLU [19] as an activation function.

Furthermore, for MiniDenseNet, we maintain the
architecture of DenseNet but apply a smaller building
block block_config = (2,2,4,4) and growth rate
k = 16 for it. This is the smallest model with the lowest
complexity (see Table 2) among the others, especially when
compared to the original DenseNet121 architecture of which
building block and growth rate are block_config =
(6,12,24,16) and k = 64, respectively.
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TABLE 1. Neural decoding architectures.

TABLE 2. Comparative performances in terms of error rate on both
lighting conditions for a fixed LED position dataset.

In the case of unfixed LED positions, an STN layer
is required for the automatic transformation of input
images. It consists of grid sampling that produces the
same resolution of 128 × 128 pixels and a very simple
localization network, Sequential(conv11 x4 s:4,
conv7 x8 s:4, conv3 x16 s:1, FC128, FC6)
with a ReLU function. The number of STN output parameters
is 6 nodes that can perform the linear transformation. With
this configuration, the STN is able to localize LED points in
the image.

In conclusion of this section, our five modified architec-
tures can be viewed in two perspectives: (i) architectures

with deep and deeper layers and (ii) architectures with and
without skip connections. If we focus on the number of
layers as a key point, m-VGG16bn, VGG-like, m-ResNet18,
and MiniDenseNet, are the architectures with deep layers,
while m-DenseNet121 is with deeper layers. On the other
hand, if we focus on the skip connection as a key point,
m-ResNet18, m-DenseNet121, and MiniDenseNet are the
architectures with skip connections, while m-VGG16bn and
VGG-like are without skip connections.

IV. EXPERIMENTS AND DISCUSSION
In this section, we compare the performance of our previous
theoretical decoding, an SW-QAMdecoder with aWiener fil-
ter, and five modified architectures of neural decoding under
the same settings of experimental setup as those described in
SW-QAM [6].

A. DATA COLLECTION AND PREPARATION
We collected more experimental data than those contained in
the dataset for SW-QAM [6]. Here, the additional datasets
consist of 15 training and 5 validation sets. For the testing
sets, we used the same datasets as those reported in [6]
(5 testing sets). Hence, we had 25 different experimental
datasets in total for each situation where each dataset con-
tained 2000 frames. In addition, we also tested the five modi-
fied architectures of neural decoding in different scenarios:
fixed camera position, unfixed (unstable) camera position,
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FIGURE 4. The camera is randomly moving around by a monopod
standing on the ground for collecting the unfixed position datasets. Note
that the experimental equipment was set the same as [6].

dark lighting condition, and bright lighting condition. Thus,
there were 100 datasets with four scenarios. For the unfixed
position datasets, the camera was randomly moved in such
a way that the two LEDs are still in the frame, as depicted
in Fig. 4. Thus, the orientation of the camera and the distance
between the camera and LED will be changed accordingly.

With the same setting of the experimental scheme of multi-
ple LEDs for comparison as reported in [6], at the transmitter
side, the symbol frequency fs was sent at 20 Hz, generated
from a function generator. At the receiver side, the global
shutter camera was placed 30 cm far from the LEDs. The
camera configuration was set with a frame rate of fc = 60
Hz, an exposure time ratio of η = 0.5 and an aperture of
f /6. For SW-QAM decoder setting, the snr parameter of
Wiener deconvolution was set to a constant value of 0.02,
the same value as set in [6]. For the PSF, we estimated using a
single predefined LED image used for all frames. Hereafter,
the SW-QAM decoder refers to SW-QAM withWiener filter
for theoretical decoding. Furthermore, the preamble detection
was applied to all datasets for detecting the preamble frames
as defined in [6].

In the algorithm configuration, we used PyTorch [20] and
Numpy [21] libraries for implementing CNNs based on our
SW-QAM scheme. All CNNs were trained with our datasets
and their minibatch and epoch were set to 32 and 200, respec-
tively. We also used Adam algorithm [22] with a small initial
learning rate of 10−4, due to its fast convergence time and
good performance in our pre-experimental trials. We saved
the best model that has the lowest error rate based on the
evaluation of the validation dataset among 200 epochs and
then test it on the testing dataset. Note that the validation and
testing datasets were excluded from the training scheme of
updating model parameters.

B. PERFORMANCE EVALUATION
In this subsection, we evaluated the performance of the pro-
posed scheme on two datasets: (i) a fixed LED position
dataset that the camera for image acquisition is stable and
(ii) an unfixed LED position dataset that the camera is unsta-
ble ormoving aroundwhile keeping the LED points inside the
frame. For the fixed LED position dataset, both the theoretical
and neural decoding methods were evaluated. On the other
hand, for the unfixed LED position dataset, only the neural
decoding methods were evaluated. The performance metrics

used for evaluation are error rate for decoded accuracy, rmse
for precision, and FLOPS for model complexity. Further,
we use a constellation diagram to visualize the classification
of decoded symbols. Here, we plotted the x-y coordinate
of two LEDs in the 64-QAM constellation for all scenarios
to visualize the performance of each method. A grid cen-
ter of constellation represents a reference point. A distance
between the correct decoded symbol and the reference point
represents precision measured in terms of rmse. Most impor-
tantly, the robustness of the neural decoders is evaluated
by different environments such as dark- and bright-lighting
conditions and by different conditions such as moving and
non-moving cameras. The achievement of robustness can be
reflected through our used evaluation metrics, i.e., error rate
and rmse.

1) FIXED LED POSITION DATASET
The performance of all test methods was evaluated with
the fixed LED position dataset on two lighting conditions,
i.e., dark and bright. The comparative results in terms of
error rate, rmse, and the estimated number of floating opera-
tions (FLOPS) are shown in Table 2.

For the dark lighting condition, SW-QAM and
MiniDense-Net were the best performedmethodswithout any
misclassified symbol, error rate of 0%. m-DenseNet121 was
the second best with a very small error of 0.02%. The
other three neural decoding methods were comparable; m-
VGG16bn and m-ResNet18 result error rates of 1.04% and
1.49%, respectively, while VGG-like was the worst one
with a little high error rate of 2.79%. In terms of rmse,
m-DenseNet121 was the best performed method with rmse
of 0.0038 that is around 10 times smaller than other methods.
Here, the value of rmse tells us how the average spread
distance of decoded symbols is far from the reference point.
A lower rmse means the less spread of decoded symbols
away from the reference point. Clearly, m-DenseNet121 had
a very small deviation as shown in Fig. 5(d). Generally,
a lower rmse leads to a lower error rate, but it is not always
true. The accuracy of the model does not always depend
on the rmse value, but the precision does. For instance, m-
DenseNet121 yielded more precision, a very small value of
rmse, than SW-QAM and MiniDenseNet, but it provided a
bit error, a misclassified symbol. This happened when we
look at Fig. 5(d), there was a misclassified symbol, denoted
by an orange cross, at the grid of (0.7, 0.7). In this case,
m-DenseNet121 was sacrificing one symbol while keeping
the rmse sufficiently low. In summary, Fig. 5 shows how the
decoded symbols spread around the reference points. If we
look at the spread of symbols, m-ResNet18 was more precise
than m-VGG16bn, but its accuracy was a little lower.

For the bright lighting condition, MiniDenseNet and
m-ResNet18 were the first and second best performed meth-
ods with error rates of 1.06% and 1.33%, respectively.
On the other hand, m-VGG16bn and VGG-like were the
two worst performed methods. For the theoretical decoding,
SW-QAM was the third best. Its accuracy for the bright
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lighting condition was not as good as that for the dark
lighting condition. This happened because of the sub-optimal
complementary methods, i.e., Wiener deconvolution and
LED localization, in estimating the frame intensity. For the
Wiener deconvolution, PSF modeling is needed; therefore,
when the non-optimal PSF is used, it usually affects the
overall performance of decoding. For the LED localization,
the LED position can be manually localized, because it was
fixed at a certain point. However, if the camera is moving
(it can say that the LED is not fixed), we need a computer
vision technique for localization. For this reason, the perfor-
mance of SW-QAM depends on those of the complementary
methods.

To make SW-QAM optimal, we need to optimize
all of the complementary methods. In terms of rmse,
m-DenseNet121 and m-ResNet18 were the first and sec-
ond best methods with spread values of 0.0239 and 0.0288,
respectively. Here, MiniDenseNet was the third one. Fig. 6
shows the decoded symbol spread which relates to the rmse
value for all test methods. Evidently, m-DenseNet121 pro-
vided a good precision, although its accuracy was less than
those of MiniDenseNet and m-ResNet18.

The use of a unified system containing only a single neu-
ral network model is one of the supporting reasons why
the neural decoding outperforms the theoretical decoding.
In addition, the unified system helps us easy to optimize a sin-
gle model instead of multiple components of the SW-QAM
decoder.

Furthermore, a figure of 64-QAM constellation can visu-
ally reflect the effectiveness of (i) architectures with deep
and deeper layers and (ii) architectures with and without
skip connections. The figure shows the performance in
terms of precision in decoding the encoded symbols. When
look into Figs. 5 and 6, the deeper layers of the models,
m-DenseNet121 and MiniDenseNet, provide better preci-
sion, compared to m-VGG16bn and VGG-like. On the other
hand, when we consider two different architectures, with
and without skip connections, m-VGG16bn (without a skip
connection) and m-ResNet18 (with skip connections) are
two different architectures but not so much difference in the
number of layers. The architecture with skip connections,
m-ResNet18, gives more precision than the one without a
skip connection, like m-VGG16bn. This is because the skip
connection, a bypass connection from a particular layer to
the deeper layer [23], helps the optimization algorithm (gra-
dient descent) to converge easily, due to the large gradient
flow. Thus, the model generally has excellent generaliza-
tion performance. In addition, the more layer (deeper) archi-
tecture with skip connections, m-DenseNet121, provides
the less spread of decoded symbols as shown in Fig. 5(d)
and Fig. 6(d). However, MiniDenseNet, a small version of
m-DenseNet121, resulted a bit better than m-ResNet18 in
dark lighting condition, while m-ResNet18 resulted a bit bet-
ter than MiniDenseNet in bright lighting condition. Indeed,
m-ResNet18 and MiniDenseNet are with skip connections,
but their inside architectures are different in building blocks;

TABLE 3. Comparative performances in terms of error rate on both
lighting conditions for an unfixed LED position dataset.

m-ResNet18 uses basic residual blocks, while MiniDenseNet
uses bottleneck dense blocks. The bottleneck blocks reduce
the number of parameters using 1× 1 convolution technique,
thus leading to complexity reduction, as shown in Table 2.
Therefore, the architecture that uses bottleneck block can
go deeper with less complexity than that with basic block.
In this case, in terms of complexity, m-ResNet18 is higher
than MiniDenseNet. In terms of the number of layers, m-
ResNet18 is less than MiniDenseNet (29 layers). Generally,
the deeper architecture has better feature representations that
lead to the better performance [24].

2) UNFIXED LED POSITION DATASET
In this experiment, the theoretical decoding, SW-QAM, was
excluded from the performance comparison. The main reason
was that the position of the LED center and the PSF of these
datasets were different from the fixed LED position dataset
because the camera was not stable. Hence, SW-QAM needs
complementary methods such as localization, object detec-
tion, and PSF modeling. These computer vision methods are
beyond the scope of our discussion.

Responding to automatic image transformation, an STN
layer is added in front of the main decoder as shown
in Fig. 2(b) to appropriately transform the captured images.
In our implementation, we use an STN layer that provides
6 output parameters. These 6 parameters play an essential role
in performing linear transformation such as rotation, transla-
tion, dilation, cropping, and skewing of images. To demon-
strate the capability of our neural decoder in solving the
moving camera/object problem, we trained neural decoding
with an STN layer such that the STN and the main decoder
are initialized to the identity transformation and the pre-
trained CNN from the fixed LED position dataset, respec-
tively, as schematically shown in Fig. 2(a). In this experiment,
five modified CNN architectures in conjunction with an STN
layer: m-VGG16bn, m-ResNet18, m-DenseNet121, VGG-
like, and MiniDenseNet were tested with the unfixed LED
position dataset. We implemented the main neural decoder
with transfer learning by the use of the pretrained model from
the fixed position dataset models, and then we trained the
whole networks. The test results are shown in Table 3.

In the case of dark lighting condition, m-ResNet18 was
the best and followed by MiniDenseNet with error rates
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FIGURE 5. Comparative performances of the theoretical and neural decoding methods in dark lighting condition: both methods are tested with
the fixed LED position dataset and the test results are plotted in a 64-QAM constellation.

of 0.52% and 0.90%, respectively. From Fig. 7, it can
be seen that m-ResNet18 and MiniDenseNet showed sat-
isfactory constellation plots, although m-DenseNet121 was

more excellent because it had the lowest rmse value
of 0.0134. For bright lighting condition, MiniDenseNet was
the best performed method with an error of 2.73% and
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FIGURE 6. Comparative performances of the theoretical and neural decoding methods in bright lighting condition: both methods are tested with
the fixed LED position dataset and the test results are plotted in a 64-QAM constellation.

followed by m-DenseNet121 with an error of 3.16%. Again,
m-DenseNet121 showed the less spread points with rmse
value of 0.0340, as depicted in Fig. 8. However, m-VGG16bn

and VGG-like performed defectively in most cases either for
error rate or rmse as shown in Table 3 and Figs. 7 and 8. In
addition, it was the same as in the fixed LED position dataset;
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the architectures with skip connections, m-DenseNet121,
m-ResNet18, and MiniDenseNet, performed better in terms
of precision (spread) as can be seen in the decoded symbol
constellation results in Figs. 7 and 8. m-DenseNet121 was
still the most precise model in all datasets as depicted
in Figs. 5, 6, 7, and 8, but it had a trade-off between precision
and model complexity (FLOPS).

C. A SINGLE MODEL FOR ALL SITUATIONS
From the performance evaluation in four different situa-
tion datasets, i.e., fixed LED dark-, fixed LED bright-,
unfixed LED dark-, unfixed LED bright-lighting datasets,
the MiniDenseNet was the most promising model with high
accuracy and the lowest complexity. In this case, we had
four separately different models for each situation. Here,
we trained a single model that can accommodate all situations
using MiniDenseNet architecture. We used a MiniDenseNet
with an STN layer because the datasets included the unfixed
LED images.

The trained model from the unfixed dark-lighting dataset
was used and retrained on all four training datasets. In this
case, we used 60 (4×15) datasets for training, 20 (4×5)
datasets for evaluation, and 20 (4×5) datasets for testing.
This model yielded a low error rate of 0.05% and rmse
of 0.0255, as shown in Table 4. Surprisingly, the error rate
and rmse of this MiniDenseNet model were lower than those
of MiniDenseNet models that were trained on each specific
dataset—see Tables 2, 3, and 4. Fig. 9 shows the compari-
son of this MiniDenseNet and those MiniDenseNet models
trained on each specific dataset. Clearly, the MiniDenseNet
model trained on all datasets performed better than those
trained on each specific dataset. In other words, this model
is able to accommodate different types of PSFs with
excellent generalization performance using only a single
model. In terms of model complexity, it only consumes
0.13 GFLOPS, the same as the MiniDenseNet model in the
unfixed situation.

In the best practice of neural network training, increasing
training sets will make better a generalization and avoid an
overfitting problem [25]–[27]. In our case, the model learns
a rich variant of data, i.e., we trained the model on a larger
dataset so that the model can learn a better understanding
of the data variant. With this strategy, the model can have
a better generalization than those trained on each specific
dataset.

Furthermore, we applied a data augmentation technique to
the training scheme to increase image data diversity using
random rotation and flipping transformations [28], [29]. We
used random rotation with a probability of 0.75 in the range
of -10 to 10 degrees. For the random flipping transformation,
we used a probability of 0.5 either for horizontal or vertical
flips. However, the horizontal flip affected the position of
the LEDs, in which the left LED moved to the right and
the right LED moved to the left. Thus, we also need to
flip the output of the data. Then, we trained the previously

TABLE 4. Performances of MiniDenseNet trained on all datasets with and
without augmentation at each situation.

trained MiniDenseNet with this augmentation setting, using
one cycle policy [30] for 2 × 20 epochs (20 epochs for one
cycle) fromFastAI library [31]. As expected, the performance
of this model performed better, compared to themodel trained
without using the data augmentation technique as shown
in Table 4 and Fig. 9.

As discussed so far in this section, it can be concluded
that the neural decoder is robust to the light interference,
since it can accommodate different types of PSFs in different
situations of the unstable position of LEDs in the image.

D. DISCUSSION
Here, several aspects of the neural and theoretical decod-
ing, i.e., model complexities, model architectures, unknown
parameters, and building blocks, are discussed.

1) MODEL COMPLEXITY
We refer to the estimated number of FLOPS as the model
complexity. The last column of Tables 2 and 3 shows the
number of FLOPS required for each model. The complexity
can reflect the inference time. The less the model complexity,
the less the inference time.

For the theoretical decoding, an SW-QAM with a Wiener ,
the most computational cost lies in Fast Fourier Trans-
form (FFT) operation that requires around N log2 N FLOPS
for each transformation. As Wiener deconvolution needs
three transformations for an input image, a PSF image, and
an inverse transformation, so we have 3N log2 N FLOPS.
For a single decoding step, we require 6 images, so the total
complexity is 6×3N log2 N . In our experiment,N is equal to
the number of pixels of an image, i.e., N = 128×128, which
leads to the complexity of 0.0041 GigaFLOPS, regardless of
the localization method.

For models of neural decoding, their complexities were
much higher than that of theoretical decoding. These com-
plexities were part of profiling library for a PyTorch model,
i.e., torchscope. However, for the neural decoding, we have
a unified system instead of a modular system. Thus, we only
need to optimize a single model. Here, the lowest complexity
among the neural decoding model is MiniDenseNet whose
complexity is around 100 times of SW-QAM. For the unfixed
LED position, the complexity is slightly different from the
fixed one, because the STN architecture is a small model as
explained in Section III-B.
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FIGURE 7. Comparative performances of neural decoding methods in dark lighting condition when tested on the unfixed LED position dataset and
plotted in a 64-QAM constellation.

2) MODEL ARCHITECTURE
From experimental results, m-VGG16bn and VGG-like
architectures were poor performance, either in terms of

error rate or rmse, in most cases. It can be seen that,
in Tables 2 and 3 and Figs. 5–8, the architectures without skip
connections are the worst ones among all of the test neural
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FIGURE 8. Comparative performances of neural decoding methods in bright lighting condition when tested on the unfixed LED position dataset
and plotted in a 64-QAM constellation.

decoding architectures. On the other hand, the architectures
with skip connections commonly perform better, because
the gradient effectively flows through the skip connections.

The help of skip connection makes a model easy to scale.
In general, the deeper the model, the better the perfor-
mance [16], [23], [32]. As shown in Tables 2 and 3,
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FIGURE 9. Comparative performances of MiniDenseNet trained on all datasets with(out) augmentation and each specific dataset.

m-DenseNet121 had more layers (deeper) than others, so it
yielded the lowest rmse. On the other hand, in the case of
training data, that statement is always true for the model
that has skip connections. However, if the model is very big
(deeper), it may lead to the overfitting problem. It is similar to
a fitting problem with a higher polynomial order. The higher
the order, the better the performance. It is always true on the
training data but is not on testing data. One may need to add
more training data when going deeper to avoid the overfitting
problem.Note that the optimizationwas subjected to theMSE
loss function. Thus, the best model is the one that has the
lowest MSE according to the objective function.

To explain the skip connection, let us model the skip con-
nection on ResNet [16] as follows,

H(Ex) = F(Ex)+ Ex,

where Ex is the features in a particular layer and F(Ex) is the
features in the deeper layer. Thus, the learning algorithm can
set the F(Ex) to be zero if the features from deeper layer does
not decrease the loss, so thatH(Ex) = Ex. In other words,H(Ex),
the deeper layer, is at least as better as Ex, the previous layer.
For the DenseNet architecture, it is the same as ResNet, but
instead of using addition operator ‘‘+’’, it uses a concatena-
tion of the features, which have the same intuitive explanation
as to the ResNet architecture.

However, the deeper model may lead to more complex-
ity; the model requires a larger number of parameters and
computations. Also, it may lead to the overfitting problem;
it fits well on training data, but not on testing data. There-
fore, there is a trade-off between the lowest MSE model and
the model complexity. However, in our case, MiniDenseNet
had lower complexity and more accurate in terms of a very
low error rate, although its rmse was slightly higher than
m-DenseNet121.

3) UNKNOWN PARAMETER
An SW-QAM decoder requires estimating every single
parameter to accurately decode the symbols. Here, we esti-
mated the interference and removed it using Wiener decon-
volution with snr = 0.02. In practice, there might be other

parameters such as white noise, intensity non-linearity, etc.
These undefined parameters, that we call them unknown
parameters, are commonly hard to estimate and define.
For instance, non-linearity is one of the undefined param-
eter problems of SW-QAM. This phenomenon can be seen
in Figs. 5(a) and 6(a); the amplitudes of decoded symbols in
the grid of (0.1,0.7), (0.1,−0.7), (0.7,0.1), and (−0.7,0.1) are
degraded, they are far from the reference points, when com-
pared to those in the grid of (0.7,0.7), (0.7,−0.7), (−0.7,0.7),
and (−0.7,−0.7). This problem can be solved by adding an
equalization method to SW-QAM. It means that one more
complementary method is required for SW-QAM. However,
in this case, the performance of the SW-QAM decoding is
sufficient. Thus, we do not use the equalization method.

On the other hand, the neural decoding method can
accommodate all of the unknown parameters included the
non-linearity through its learning process as generally shown
in the result of neural decoding methods. Therefore, we just
need to optimize the objective function and then the unknown
parameters will be estimated automatically.

4) THE BUILDING BLOCK
The neural decoding method is able to automatically detect
features through its learning stage. This ability is revealed by
the use of the unfixed LED position dataset, which contains
unknown parameters of light interference, PSF, and noise.
As a result, the neural decoding function is still able to
correctly decode and tends to be better than the theoretical
decoding. This is a salient feature of the neural decoding
scheme, which makes it possible to apply for other situations
and environments. However, a valid encoding function is an
important aspect of a neural decoding function to accurately
predict symbols. Therefore, the neural decoding still depends
on the theoretical encoding as previously proposed in [6].

On the other hand, the theoretical decoding, SW-QAM,
requires several complementary methods that overcome a
specific type of problem. Table 5 summarizes four impor-
tant requirements of the theoretical and neural decoding
schemes: data modeling, LED localization, PSF modeling,
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TABLE 5. A comparison of the requirements of the theoretical and neural
decoding schemes.

and unknown parameters. Absolutely, the theoretical decod-
ing scheme requires a small model for a PSF image, whereas
the neural decoding scheme requires a large image dataset for
training. As expected, the neural decoding scheme has advan-
tages over the theoretical decoding scheme in LED local-
ization, PSF modeling, and unknown parameters. In other
words, LED points, PSF images, and unknown parameters
are automatically localized, modeled, and estimated, respec-
tively, by our proposed CNN architectures.

V. CONCLUSION
We have proposed a neural decoding method based on an
SW-QAM scheme for VLC. In real situations, the SW-QAM
decoder becomes inefficient for decoding the encoded signal,
especially in the case of a moving camera as shown with an
unfixed LED position dataset. However, it is easily solved by
the neural decoding embedded with an STN layer. Based on
the neural decoding concept, we can also develop a robust and
unified system for our decoding purposes, regardless of LED
localization, light interference elimination, noise removal,
and other unknown parameters. All can be solved by a single
system, i.e., neural decoding with a training algorithm. In this
paper, we have shown the use of a single MiniDenseNet
model that provides excellent generalization performance in
all experimental scenarios.

Nevertheless, the neural decoding needs a large dataset for
training when compared to the theoretical decoding. From a
comparison of both theoretical and neural decoding methods
on a fixed LED position dataset, the results are comparable.
Specifically, the neural decoding is slightly better than the
theoretical decoding in terms of accuracy. On an unfixed LED
position dataset, the performance of the neural decoding with
an STN layer tends performed sufficiently well. However,
note that the neural decoding still depends on the theoretical
encoding, SW-QAM encoding scheme, because if a symbol
is invalidly encoded and modulated, no decoding scheme will
successfully decode that symbol.

In this paper, we focus on the capability of CNN for the
role of decoding function in different situations. However,
we still have some rooms for neural decoding improvement.
For instance, one can improve the performance of neural
decoding by carefully redesigning CNN architectures and
applying optimization techniques in the training stage.
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