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ABSTRACT Aiming at the problem of poor global search ability and slow convergence speed when solving
optimization problems, this paper proposes improved hybrid firefly algorithm (HFA). HFA improves the
position updating method, mutation strategy, chaotic search method and evolution strategy of the population.
Specifically, the improved position update formula considers both the effect of high-brightness fireflies on
position-updated fireflies, and the effects of the optimal firefly on position-updated fireflies. At the same
time, a method of adaptive adjustment parameters in the position update formula is presented, which makes
the position update method exhibit strong global search ability and local search ability in the initial stage and
the later stage of iteration, respectively. In addition, a combined mutation operator is introduced into HFA,
which effectively takes the local search and global search ability of the algorithm into account. Since chaotic
search exhibits good ergodicity, an operation of randomly moving all fireflies in the population according to
chaotic search is given, which enhances the ability of the algorithm to traverse the whole search space, and
further improves the global search ability of the algorithm. To verify the effectiveness of HFA, 28 CEC2017
test problems are selected. The calculation results of 28 CEC2017 test problems show that compared with
other algorithms, the accuracy of HFA is obviously better than that of other algorithms. Finally, HFA and
other intelligent optimization methods in the literatures are used to optimize the structural parameters of
cantilever beams. The optimization results show that the weight of the cantilever beam obtained by HFA
is obviously smaller than other algorithms. The calculation results of CEC2017 test problems and practical
problem show that the solving quality of HFA is obviously better than other algorithms.

INDEX TERMS Firefly algorithm, position update, combined mutation operator, chaotic search, evolution
strategy.

I. INTRODUCTION
In 2008, by studying the mutual attraction and movement
process of firefly individuals, Yang [1] proposed a novel
swarm intelligent optimization algorithm, termed as firefly
algorithm (FA). Because the FA has the advantages of sim-
ple concept, fewer parameters to be set, less influence of
parameters on the algorithm, and easy implementation [2].
Therefore, the FA has been extensively used in process opti-
mization [3]–[5], pipeline scheduling [6], image process-
ing [7], [8], RFID network planning [9], neural network
training [10], [11], job shop scheduling [12], and data min-
ing [13], [14]; good results have been obtained as well.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nuno Garcia .

The existing simulation results of the firefly algorithm
show that the firefly algorithm has high optimization accu-
racy, and has been applied in many fields, showing a good
application prospect.

Over the past decade, many scholars in the world have
improved the FA and achieved some research results.
According to the mechanism and the technology, the research
results of the FA are split into four major aspects: (1) param-
eter control of FA; (2) hybrid FA; (3) position update method
of FA; (4) application research of FA. The research results
obtained in the research of firefly algorithm improvement
not only improve the optimization performance of FA, but
also promote the development of FA algorithm theory and
application.
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In the parameter control of FA, in 2013, Yang et al. [15]
proposed a self-tuning algorithm framework to adjust the
parameters of FA. The simulation results show that the per-
formance of FA is obviously enhanced. In 2015, Yu et al. [16]
proposed an improved firefly algorithm that dynamically
adjusts the step factor strategy. The calculation results
of 16 benchmark functions show that the solution quality
of the improved firefly algorithm is significantly improved.
In 2016, Wang et al. [17] proposed an improved FA based on
adaptive adjustment of parameters. The improved FA imple-
ments the adaptive adjustment of step factor α and introduces
the concept of minimum attraction to ensure that the attrac-
tion between fireflies is never 0. The results of 13 benchmark
functions show that the performance of the improved firefly
algorithm is better than the basic firefly algorithm and five
other improved firefly algorithms. In 2019, Zhang et al. [18]
proposed an improved FA, dynamically adjusting the step
factor α. The calculation results of 6 benchmark functions
show that the proposed method has superior performance in
terms of accuracy, stability and robustness compared with
other algorithms.

In the hybrid FA, in 2012, Tilahun and Ong [19] pro-
posed an improved FA and gave a position update method
for the brightest firefly in the population. The calculation
results of the 7 benchmark functions show that the improved
FA, compared with the basic FA, improves the convergence
speed significantly. However, since the improved FA gen-
erates multiple random directions and performs comparison
operations, the computational complexity of the algorithm is
greatly increased. In addition, because the step size exerts
a great impact upon the convergence speed of FA algo-
rithm, the step size should be adaptive for different opti-
mization problems and different stages of iteration, instead
of using a fixed constant. In 2015, Long et al. [20] pro-
posed a hybrid firefly algorithm which combines dynamic
random local search algorithm with firefly algorithm. The
results of four benchmark functions and two engineering
optimization problems show that the hybrid firefly algorithm
has better optimization performance than other optimization
algorithms. In 2018, Verma et al. [21] proposed a hybrid
FA that introduces Opposition-Based Learning (OBL) into
the FA. The calculation results of 11 benchmark functions
show that the hybrid firefly algorithm can improve the accu-
racy of solution significantly. Because the opposite solutions
of the algorithm are calculated using all dimensions of the
original solutions, some excellent original solutions are easy
to lose. In 2018, Zhou et al. [22] proposed a hybrid FA
that introduces orthogonal centroid opposition-based learn-
ing into the FA. The calculation results of 28 benchmark
functions show that the quality of the solutions obtained
by the hybrid firefly algorithm as compared with those of
other algorithms obviously increases. At the later stage of
iteration, the algorithm exhibits poor population diversity
and small differences between individuals. Thus, it is easy
to fall into local optimum. In 2019, Wang and Song [23]
proposed a hybrid FA introducing chaotic search into the

firefly algorithm. The results of 23 benchmark functions
show that the hybrid firefly algorithm can improve the solu-
tion quality significantly compared with other algorithms.
However, due to the long distance between fireflies at the
early iteration stage, the value of the attraction β in the
position update formula of the hybrid FA is 0. At this time,
the fireflies perform random movement, which makes the
convergence speed of the firefly algorithm decrease.

In the position update method of FA, in 2016,
Wang et al. [24] proposed an improved FA with random
attraction, rather than complete attraction. The calculation
results of 11 benchmark functions show that the solu-
tion quality of the improved FA as compared with those
of other algorithms is significantly improved. In 2018,
Yelghi and Kose [25] proposed an improved FA that the tidal
force formula is introduced to the firefly position update
formula, thus better balancing the global search ability and
the local search ability of the algorithm. According to the
calculation results of 22 benchmark functions, the solution
accuracy and convergence speed of the modified FA are
better than other algorithms. In 2018, Zhang et al. [26] pro-
posed a new firefly position update formula that incorporates
accelerated attraction and evasion operations, which better
solves the problem of premature convergence of the basic
FA. The calculation results of 18 benchmark functions show
that the solution accuracy of the improved FA is higher than
those of other algorithms for high-dimensional optimization
problems.

In the application research of FA, in 2017, He and
Huang [27] proposed an improved FA and applied the
improved FA in threshold segmentation of multistage color
images. The experimental results of 10 color images show
that the improved FA has the best effect on threshold seg-
mentation of multistage color images compared with those
of other algorithms. In 2018, Liu et al. [28] proposed a
hybrid non-dominated sorting FA and applied it to the opti-
mization problem of multi-pass grinding process parameters.
The experimental results show that the grinding efficiency of
hybrid non-dominated sorting FA is up-regulated by 32.4%.
In 2018, Wang et al. [29] proposed a FA with dynamically
adjusted parameter α and applied this method to the parame-
ter optimization of a mixed nonlinear water demand forecast-
ing model. The parameter optimization results show that the
parameters optimized using this method have smaller average
relative errors than those using other algorithms. In 2018,
Zhou et al. [30] proposed a FA combining Lévy flight with
automatic-learning and applied this method to optimize wire-
less sensor network configuration, achieving a good effect.
In 2019, Singh et al. [31] adopted FA optimization technology
to optimize the parameters of power system stabilizer, which
improved the stability of power system.

In summary, the position update formula of the existing
firefly algorithms does not consider the influence of the opti-
mal firefly in the population on the other fireflies. If the attrac-
tion term of the optimal firefly to the firefly that performs
the position update operation is added to the position update
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formula, the solution quality of the firefly algorithm can be
improved. In literature [23], chaotic search was introduced
into FA, so that the optimal firefly in the population could
move randomly according to chaotic search. This random
movement reduces the possibility of the population falling
into local optimum to some extent. Furthermore, chaotic
search has a good ergodicity, and it is capable of travers-
ing the entire search space. Therefore, it is considered that
all fireflies in the population randomly move according to
chaotic search, and the ability of the algorithm to traverse
the entire search space is enhanced, thereby strengthening
the global search ability of the algorithm. A good position
update formula should consider the global search ability of
the algorithm and the local search ability of the algorithm.
To solve the above problems, an improved hybrid firefly
algorithm is proposed in this paper. The calculation results
of 28 CEC2017 test problems show that compared with the
improved firefly algorithms and other intelligent optimiza-
tion methods in the existing literatures, the improved hybrid
firefly algorithm proposed in this paper is better than other
algorithms in solving quality. Finally, the improved hybrid
firefly algorithm proposed in this paper is used in the parame-
ter optimization of cantilever beam. The optimization results
show that the HFA proposed in this paper obviously better
than other algorithms in the literatures.

II. PENALTY FUNCTION METHOD FOR
CONSTRAINED OPTIMIZATION
The mathematical model of a constrained optimization prob-
lem can be generally expressed as follows:

min f (X ),X = [X1,X2, · · · ,Xk , · · ·Xn] ∈ R

s.t.

{
hi(X ) = 0, i = 1, 2, · · · , p
gj(X ) ≥ 0, j = 1, 2, · · · , q

(1)

where s.t. is the abbreviation of ‘subject to’, n is the popula-
tion size, hi(X ) = 0 is the i-th equation constraint, p is the
number of equation constraints, gj(X ) ≥ 0 is the j-th inequal-
ity constraint, q is the number of inequality constraints, and
Xk is a m-dimensional vector Xk = (xk1, xk2, · · · , xkm).

Eq. (1) can be expressed as
min f (X ),X = [X1,X2, · · · ,Xk , · · ·Xn] ∈ R
s.t. R = {X |hi(X ) = 0, i = 1, 2, · · · , p;

gj(X ) ≥ 0, j = 1, 2, · · · , q}

(2)

Letting X∗ be the optimal solution to the constrained opti-
mization problem means ∀X ∈ R: f (X∗) ≤ f (X ). In addition,
if gj(X∗) = 0, the constraint is referred to as active constraint.
Under this concept, all the equation constraints hi(X ) = 0,
i = 1, 2, · · · , p are active at X∗.
The penalty function method can be used to convert a

constrained optimization problem to an unconstrained opti-
mization problem. For this purpose, the penalty function is

constructed by [32]

P(X ,M )= f (X )+M1

p∑
i=1

[hi(X )]2+M2

q∑
j=1

[
min(0, gj(X ))

]2
(3)

whereM1 andM2 are the penalty factors, generally chosen as
large enough positive constants; the second and third terms
on the right are the penalty terms, and P(X ,M ) is the penalty
function.

In Eq. (3), when X ∈ R, there should be no penalty to
the feasible points, thus P(X , M ) = f (X ); when X /∈ R, for
the non-feasible points, M1 and M2 should be big, therefore,
the value of the second and third terms in equation (3) are
large, which is equivalent to the ‘penalty’ for the infeasible
point. Moreover, when X gets farther away from the feasible
region, the penalty should be larger.WhenM1 andM2 become
sufficiently large, the minimal point X (M ) of the uncon-
strained optimization problem of Eq. (3) is close enough to
the minimum point of the original constrained optimization
problem. When X (M ) ∈ R, it becomes the minimal point of
the original constraint problem.

The minimum value of Eq. (3) is given by

minP(X ,M ) (4)

which is equivalent to the minimum value of Eq. (1).

III. BASIC FIREFLY ALGORITHM
In order to simplify the FA, Xinshe Yang proposed three
idealized assumptions [1], as following:

(1) All fireflies have no gender distinction and they are all
attracted to each other.

(2) The attraction is inversely proportional to the distance.
As the distance between fireflies increases, the attraction will
gradually decrease.

(3) Each firefly only moves to a firefly that is brighter than
it, and if it is the brightest of the population, it will move
randomly.

The objective function value of the problem to be opti-
mized determines the brightness of the firefly. For example,
for a minimized problem to be optimized, the brightness is
inversely proportional to the value of the objective function,
i.e., the smaller the value of the objective function, the greater
the brightness of the firefly.

Let N is population size, D is the dimension of the
variable, and the position of i-th firefly in space is
Xi = (xi1, xi2, · · · , xiD)T (i = 1, 2, · · · ,N ). For any two
different firefly i and firefly j in the population, the distance
between them is rij

rij = Xi − Xj =

√√√√ D∑
k=1

(xik − xjk )2 (5)

where rij is the distance between firefly i and firefly j, Xi and
Xj are the i-th and j-th fireflies in the population, xik is the
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k-th component of the i-th firefly in the population, and xjk is
the k-th component of the j-th firefly in the population.

Since the brightness of firefly i decreases with the increase
of distance and the absorption of air, the relative brightness
of firefly i to firefly j can be defined as

Iij
(
rij
)
= I0e

−γ r2ij (6)

where I0 is the absolute brightness of firefly i, which is equal
to the value of the objective function corresponding to the
position of firefly i; γ is the light absorption coefficient,
usually γ ∈ [0.01, 100].
The attractiveness of each firefly is defined as follows

βij(rij) = β0e
−γ r2ij (7)

where β0 is the initial attractive value when r = 0.
When the light emitted by Xj is brighter than that of Xi,

Xi will move towards Xj, and the position update formula of
Xi is as follows

xik (t + 1) = xik (t)+ βij
(
xjk (t)− xik (t)

)
+ α (rand − 0.5)

(8)

where t is the number of iterations; α is the step factor;
rand is a random number between [0,1]; The second term
βij(xjk (t)-xik (t)) is called the attractive term, and the third
term α(rand-0.5) is called the random perturbation term.

Let t be the number of iterations and MaxGen be the
maximum number of iterations. The pseudo code of the basic
FA is shown in TABLE 1.

TABLE 1. Pseudo-code of the basic FA.

IV. THE IMPROVE FIREFLY ALGORITHM: HFA
A. A NEW POSITION UPDATE METHOD
In the basic FA and the improved FA given in literature [23],
the variation law of the attraction βij is illustrated in Figure.1.

Figure.1 shows that the relative attraction βij decreases
with the rise of the distance rij between Xi and Xj. When
rij ≥ 3, the value of βij is close to 0. At this time,
the value of the attractive term in the position update formula
approaches 0, and the attractive term does not work, and only
the random perturbation term is active. Thus, the position

FIGURE 1. Variation law of the relative attractiveness βij .

update formula is not heuristic, the algorithm degenerates into
a random search, and the convergence speed is slower. In the
meantime, since the value of the random perturbation term is
relatively small, the global search ability of the algorithm is
weak, and it is easy to fall into local optimum. Besides, for
a given problem to be optimized, If the variable has a larger
range of values (e.g., −100 ≤ xik ≤ 100 i = 1, 2, · · · , n
k = 1, 2, · · · ,D), the distance will be relatively large
between the fireflies in the population after the random ini-
tialization, the βij goes to 0, and the attractive term does not
work. With the rise in the number of iterations, the distance
between the fireflies in the population will decrease, and the
value of βij increases. When rij < 3, the attractive term
will start to work, and with the rise of the value of the βij,
the role of the attractive term is gradually strengthened, and
the heuristic of position update will be enriched, which will
improve the convergence speed of the algorithm. A novel
position update formula is given for the above problem. The
position update formula is written as follows:

Xi(t + 1) = Xi(t)+ βijRf
(
Xj(t)− Xi(t)

)
+βi,best

(
1− Rf

)
(Xbest (t)− Xi(t))

+ 2rij (rand − 0.5) (9)

where βij denotes the relative attraction; Rf is the regulating
factor; βi,best is the relative attraction between the firefly i and
the optimal firefly in the t-th generation population; Xbest rep-
resents the optimal firefly in the t-th generation population.
βij, Rf and βi,best are calculated as follows:

βij = βmax − (βmax − βmin)e
−γ r2ij (10)

βi,best = βmin + (βmax − βmin)e
−γ r2i,best (11)

Rf =
(
e−

t
MaxGen

)2
(12)

where βmin denotes the minimum attraction; βmax is the
maximum attraction. Both of them are constants, usually
βmin = 0.2, βmax = 1 [17], and ri,best refers to the distance
between firefly i and the optimal firefly in the t-th generation.
Since rij denotes the distance between firefly i and firefly j

in the population, rij will gradually decrease as the number of

iterations increases. Therefore, value of e−γ r
2
ij will gradually

increase as the number of iterations increases. Since βmin,
βmax and γ are constants, it can be known from Eq. (10)
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that βij will gradually decrease as the number of iterations
increases. Moreover, Eq. (12) suggests that the value of Rf
will decrease as the number of iterations increases. The value
of βijRf will decrease as the number of iterations increases.
Since ri,best is the distance between firefly i and optimal

firefly in population, ri,best will decrease as the number of
iterations increases. As a result, with the rise in the number
of iterations, value of e−γ r

2
i,best will gradually increase. In the

meantime, since βmin, βmax and γ are constants, it can be
known from Eq. (11) that βi,best will gradually increase as
the number of iterations increases. Furthermore, since the
value of Rf gradually decreases as the number of iterations
increases, the value of (1-Rf ) gradually increases with the rise
of the number of iterations. The value of βi,best (1-Rf ) will
gradually increase as the number of iterations increases.

In summary, since the value of βijRf will decrease with the
rise of the number of iterations, the value of βi,best (1-Rf ) will
gradually increase as the number of iterations increases. It can
be seen from Eq. (9) that the second term βijRf (Xj(t)-Xi(t))
in Eq. (9) gradually decreases with the rise of the number
of iterations, and the global search ability of the algorithm
gradually decreases as the number of iterations increases.
Also, since the value of βi,best (1-Rf ) increases with the rise
in iterations number, the value of βi,best (1-Rf ) (Xbest (t)-Xi(t))
will be close to Xbest . Besides, under the action of the random
perturbation term 2rij(rand-0.5), the value ofXi(t+x1) will be
locally searched near Xbest in the later stage of the iteration,
i.e., in the later stage of the iteration, the local search ability
of the algorithm is enhanced.

B. COMBINED MUTATION OPERATOR
In the meta-heuristic algorithm, the exploitation means the
ability of the population to converge to the best solution
as soon as possible, and the exploration refers to the abil-
ity of the algorithm to explore different areas within the
search space [33]. The optimization ability of meta-heuristic
algorithm depends on the balance between the exploita-
tion and exploration ability of the algorithm. In order to
better balance the exploitation and exploration ability of
firefly algorithm and improve the solving quality of fire-
fly algorithm, a combined mutation operator is introduced
into HFA. The specific combined mutation operators are as
follows:

The i-th firefly with the participation mutation operation is
Xi(t)(i = 1, 2 . . . ,N ), the firefly obtained after the mutation
is X ′i(t)(i = 1, 2, . . . ,N ), r1, r2, r3, r4 and r5 are random
integers randomly selected from the set [1, 2, . . . ,N ], and
r1 6= r2 6= r3 6= r4 6= r5 6= i. Xbest is the optimal firefly in
the current population. Then each single mutation operator in
the combined mutation operator is:

X ′i (t) = Xr1 (t)+ F (Xr2 (t)− Xr3 (t)) (13)

X ′i (t) = Xbest (t)+ F (Xr1 (t)− Xr2 (t)) (14)

X ′i (t) = Xi (t)+ F (Xbest (t)− Xi (t))+F (Xr1 (t)−Xr2 (t))

(15)

X ′i (t) = Xbest (t)+ F (Xr1 (t)− Xr2 (t))

+F (Xr3 (t)− Xr4 (t)) (16)

X ′i (t) = Xr1 (t)+ F (Xr2 (t)− Xr3 (t))

+F (Xr4 (t)− Xr5 (t)) (17)

where F is the step size.
The calculation formula of F is

F = 0.4+ 0.6 ∗ rand (18)

where rand is the random number between [0,1].
Eqs. (13) ∼ (17) can be divided into three categories. The

first category has Eq. (13) and Eq. (17), which is charac-
terized by the strong global search ability of the mutation
operator and not easy to fall into local optimum, but the
convergence speed is slow. The second category has the
Eq. (14) and Eq. (16), which are characterized by strong local
search ability and fast convergence, but easy to fall into local
optimum. The third category is only the Eq. (15), which is
characterized by a relatively balanced global and local search
capability. The above fivemutation operators are combined to
obtain a combinedmutation operator. The combinedmutation
operator can effectively balance the ability of exploitation and
exploration of the algorithm and improve the solving quality
of the algorithm. The pseudo code of the combined mutation
operator is shown in Table 2.

TABLE 2. The pseudo-code of mutation operator.

In Table 2, Pm is the mutation probability and is a random
number between [0.7, 1]. Larger mutation probability can
avoid the algorithm falling into local optimum.

C. CHAOTIC SEARCH OF FIREFLIES
Chaotic search is characterized by ergodicity, randomness
and regularity. Since chaotic motion can traverse all states
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in a certain range without repeating according to its own
laws. If chaotic variables are used for optimized search,
it is obviously better than random search. At the same time,
chaotic search overcomes the disadvantage that the tradi-
tional optimization method is easy to fall into local optimiza-
tion. Accordingly, chaotic search has been widely used in
meta-heuristic algorithms (e.g., bat algorithm, firefly algo-
rithm, and genetic algorithm), and has achieved good results.

Chaotic mapping is an effective way to achieve chaotic
search. The commonest chaotic map is Logistic map. The
Logistic map can be described as follows:

cs(1) = rand

cs (k + 1) = α × cs (k) (1− cs (k)) , k = 1, 2, · · · ,N

(19)

where α denotes a constant. When α = 4, the chaotic search
is in a completely chaotic state, and the ergodicity of chaotic
search is the optimal [23]. cs(k) is the number of chaos
generated at the k-th time. N is the population size.

The problem with the Logistic mapping given in the
existing literatures is expressed as: When cs(k) = 0.5,
cs(k+2) = 0. If cs(k+2) = 0, cs(k+3), cs(k+4), . . . , cs(N )
are all 0. In this case, chaotic search cannot traverse the
[0,1] interval. To avoid this phenomenon, whether cs(k) is
0.5 should be judged. If cs(k) = 0.5, let cs(k + 1) = eps
(eps is a sufficiently small positive number), and chaotic
numbers are generated continuously according to Eq.(19);
if cs(k) 6= 0, chaotic numbers are generated continuously
according to Eq. (19). In addition, if cs(k) is equal to 0, 0.25,
0.75 and 1, chaotic search cannot traverse the whole search
space. The processing principle is the same as the above.

Eq. (19) suggests that the chaotic numbers generated by
Logistic mapping can only traverse the [0,1] interval. For a
given optimization problem, the search space is not necessar-
ily [0,1]. Thus, it is necessary to map the chaotic sequence
generated by the Logistic map to the search space. The
method for mapping chaotic sequence to search space is
defined as follows:

CS (k) = L + (U − L)
cs(k)−min(cs)

max(cs)−min(cs)
(20)

where U denotes the upper limit of the search space; L is the
lower limit of the search space; min(cs) is the minimum value
in the chaotic sequence cs; max(cs) represents the maximum
value in the chaotic sequence cs.
The chaotic sequence generated by Eq. (19) can be tra-

versed through the entire search space [L, U ] after the trans-
formation of Eq. (20). If all the fireflies in the population
are randomly moved by chaotic search, the global search
ability of the algorithm will be greatly enhanced. Therefore,
each firefly in the population can randomly move according
to chaotic search, and the formula for random movement
according to chaotic search is as follows:

X ′i = (1− µ)(Xc − Xi)+ µCS (k) (21)

µ =
1
t

(22)

Xc =
1
N

N∑
i=1

Xi (23)

where t denotes the current number of iterations; Xc is the
center of gravity of the population.

The chaotic search steps of fireflies in the population are
as follows:

(1) Generate a chaotic sequence of length N according to
Eq. (19);

(2) The generated chaotic sequence is mapped to the search
space [L, U] by Eq. (20);

(3) Generate N new solutions according to Eq. (21). After
that, for each firefly, the fitness value of the firefly after the
chaotic search operation is calculated, and compared with
the fitness value of the firefly before the chaotic search, and
the better firefly and its fitness are retained.

The pseudo code for chaotic search is shown in Table 3.

TABLE 3. The pseudo-code of chaotic search.

D. REMOVING SIMILAR INDIVIDUALS
In the later iteration stage of firefly algorithm, fireflies grad-
ually concentrated near the optimal firefly, and the difference
between fireflies decreased gradually, which may lead to the
possibility ofmultiple similar individuals andmade the firefly
algorithm easy to fall into local optimization. In order to
improve the difference between fireflies in the population,
this paper proposes a method to remove similar individuals.

To illustrate which fireflies in the population are similar,
first give an indicator S that evaluates the similarity of fire-
flies, namely:

S =
∥∥Xi − Xj∥∥ = abs

[(
xi1 − xj1

)
, · · · ,

(
xiD − xjD

)]
i 6= j

(24)

where Xi and Xj are any two different fireflies in the
population.

Then the threshold δ is set. When the value of each dimen-
sion in S is less than δ, it is considered that Xi and Xj are
similar fireflies. If there are two or more similar fireflies, the
q similar fireflies with poor fitness are removed and only one
similar firefly is retained. In addition, in order to keep the size
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TABLE 4. The pseudo-code of removing similar individuals.

of the population unchanged, q fireflies are randomly gener-
ated. The pseudo code to remove similar firefly operations is
shown in Table 4.

E. EVOLUTION STRATEGY FOR IMPROVED
HYBRID FIREFLY ALGORITHM
Taking the problem of minimizing as an example, the Evolu-
tion Strategy of HFA is as follows:

(1) Parameter setting: the population size N , the solution
accuracy ε, the penalty factorM .

(2) Initialization of the population. Generate an initial pop-
ulation according to the following formula

Xi = L + rand(1,D). ∗ (U − L), i = 1, 2, · · · ,N (25)

where Xi denotes the randomly generated i-th firefly; U and
L are the upper and lower vector of the variable; rand is the
uniformly distributed random vector between [0,1]; D repre-
sents the dimension of the variable; ‘‘.∗’’ is the multiplication
of elements of the same position in two vectors.

(3) Calculate the objective function value of each firefly in
the population and find the optimal firefly in the population,
denoted as Xbest .
(4) Each firefly is updated according to Eq. (9), and then

the fitness value of the firefly after the position update is
calculated, and compared with the fitness value of the firefly
before the update, and the better firefly and its fitness value
are retained.

(5) According to the mutation probability Pm, the com-
bined mutation operation is performed on all fireflies. For
each firefly, the fitness value of the firefly after the mutation
operation is calculated, and compared with the fitness value
of the firefly before the mutation, and the better firefly indi-
vidual and its fitness value are retained.

(6) All fireflies perform chaotic search operation according
to Eq. (21). For each firefly, calculate the fitness value of
the firefly after the chaotic search operation, and compare
the fitness values of the firefly before the chaotic search
operation, and retain the better firefly and its fitness value.

(7) All fireflies perform removing similar individuals
operation.

(8) Judge whether the iteration termination condition is
satisfied; if it is satisfied, the iteration is stopped, and the
optimal solution and the optimal value are output; if not,
the process returns to step (3).

The pseudo code of the HFA is listed in TABLE 5.

TABLE 5. The pseudo-code of HFA.

The flow chart of the HFA is shown in Figure 2.

F. TIME COMPLEXITY
Let O(f ) be the computational time complexity of the fit-
ness evaluation function f (·). This paper uses the classic
full attraction model. The total number of the movements
of the swarm at each iteration in the full attraction model
is N (N + 1)/2. It is clear that the time complexity of the
algorithm proposed in this paper isO(MaxGen∗N2∗f ), where
MaxGen is the maximum number of generations.

V. SIMULATION EXPERIMENTS AND DATA ANALYSIS
HIFA was compared to eight improved algorithms and basic
FA algorithm. The eight improved algorithms that partici-
pated in the comparison are as follows: (1) improved FA
algorithm [19], [23], [34], [35]; (2) other intelligent algo-
rithms [36]–[39]. When the algorithm reaches the maximum
number of iterations, the iteration is stopped and the calcula-
tion result is output.

A. TEST ON CEC 2017 OPTIMIZATION PROBLEMS
In order to verify the solving precision of the HFA,
28 CEC2017 test problems are selected, TABLE 6 show
these test problems, the detail of which can be found in
reference [40].
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FIGURE 2. The flow chart of the HFA.

In table 6, D is the number of decision variables, I is the
number of inequality constraints, and E is the number of
equality constraints.

B. ALGORITHM PERFORMANCE EVALUATION INDEX
In this section, in order to measure the performance of HFA,
the mean value, standard deviation value, t-test values, and
Friedman average ranking used as performance evaluation
indicators. The mean value is defined as the average function
value achieved by the algorithm out of the total number of
independent runs R times. The mean value is abbreviated as
MEAN, and is represented in Eq. (26).

MEAN =

∑R
i=1 fi
R

(26)

The standard deviation is defined as the actual deviation
that exists between the average function values achieved in R
times runs. The standard deviation is abbreviated as SD, and

is represented in Eq. (27).

SD =

√∑R
i=1 (fi −MEAN )

2

R
(27)

The t-test values are calculated for every function using its
mean and standard deviation in each existing algorithm. The
t-test value is abbreviated as Tval , and is calculated using the
Eq. (28).

Tval =
MEAN1 −MEAN2√

SD1−SD2
R + ε

(28)

where MEAN1, MEAN2 and SD1, SD2 are respectively the
mean and standard deviation values of HFA algorithm and
other algorithms, R is the number of independent runs of the
algorithm, ε is used to avoid zero-division-error, and ε is the
smallest constant in the computer. The t-test has been carried
out with the significance level of α = 0.05. The winning
(w), tie (t) and lost (l) cases of t-test values for HFA over
existing algorithms are represented in the last row of each
table with the attributes namedw/t/l. For each algorithm that
compares with HFA, w represents the number of t-test values
less than 0, t represents the number of t-test values equal to 0,
and l represents the number of t-test values greater than 0.

In order to check the significant difference of the proposed
HFA, the Friedman average ranking test has been used to
compare the performance of the HFA and other algorithms.
With this test, the relative ranking of each algorithm has
been calculated based on the mean values for every function
and finally the average ranking and final ranking of all the
algorithms are given.

C. PARAMETER SETTINGS
In order to obtain a fair performance comparison basis,
the population size N = 30, the maximum number of itera-
tionsMaxGen = 20000, the penalty factorM = 108, and the
number of statistics tjcs = 100. The other parameter settings
for various algorithms are shown in Table 7.

D. THE CONTRIBUTION OF DIFFERENT STRATEGIES
TO IMPROVE THE PERFORMANCE OF FA
The improved position update method based on the basic
FA algorithm is abbreviated as FA-P. The chaotic search
operation based on the basic FA algorithm is abbreviated
as FA-C. The mutation operation based on the basic FA
algorithm is abbreviated as FA-M. The basic FA algorithm
is abbreviated as FA. In order to verify the contribution of
different strategies to improve the performance of FA, this
paper selected 28 test problems in CEC2017 with dimension
D = 10. The parameter settings and iteration termination
conditions are detailed in Section V. C. The results are shown
in TABLE 8 and TABLE 9. TABLE 8 provides the mean
values obtained using the FA, FA-P, FA-C, and FA-M for all
28 test problems. TABLE 9 provides the results of Friedman
average ranking test.
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TABLE 6. Details of 28 CEC 2017 optimization problems.
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TABLE 7. Parameters control of different algorithms.

TABLE 8. Calculation results of different strategies.

TABLE 9. Statistical analysis of friedman test for the results.

As can be seen from Table 8, the mean values of FA-P,
FA-C, and FA-M are better than FA. According to the Fried-
man test shown in Table 9, FA-M (rank = 1.11) ranks first

in all algorithms, followed by FA-P (rank = 1.93) and FA-C
(rank= 2.96) respectively. Therefore, the mutation operation
contributed the most to the improvement of FA performance,
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TABLE 10. Calculation results of various algorithms (D = 10).
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TABLE 10. (Continued.) Calculation results of various algorithms (D = 10).

followed by the improved position update method, and finally
the chaotic search operation.

E. PERFORMANCE COMPARISON BETWEEN HFA
AND OTHER ALGORITHMS
For the convenience of writing, basic FA algorithm is abbre-
viated as FA, the algorithm in [19] is abbreviated as RFA,
the algorithm in [34] is abbreviated as UFA, the algorithm
in [23] is abbreviated as GDFA, and the algorithm in [35]
is abbreviated as NEFA, the algorithm in [36] is abbre-
viated as SPPSO, the algorithm in [37] is abbreviated as
ADE, the algorithm in [38] is abbreviated as GA-DEx,
and the algorithm in [39] is abbreviated as CSPSO. Using
28 test problems in CEC2017, HFA is compared with FA,
RFA, UFA, GDFA, NEFA, SPPSO, ADE, GA-DEx and
CSPSO.

The experimental results for the D = 10, D = 30, and
D = 50 problems are shown in Table 10, Table 11, and
Table12, respectively. These tables provide the mean values
and standard deviations obtained using the HFA and other
algorithms for all 28 test problems. The experimental results
of the Friedman average ranking test for theD = 10,D = 30,

and D = 50 problems are shown in Table 13, Table 14, and
Table 15, respectively.

1) PERFORMANCES FOR THE 10-D PROBLEMS
The experimental results for the D = 10 problems are shown
in Table 10. As can be seen fromTable 10, ADE performs best
on seven test problems such as C01, C02, C03, C04, C05,
C08, and C10. CSPSO performs best on four test problems
such as C16, C17, C20, and C26. SPPSO performs best
on three test problems such as C14, C15, and C24. RFA
performs best on the C07 and C25 benchmark function. UFA
performs best on the C06 benchmark function. HFA per-
formed best on the remaining 11 test problems. At the same
time, it can be seen from t-test that the overall performance
of HFA is better than the other nine kinds of comparison
algorithms. Specifically, compared with FA, HFA has 28 test
functions whose values of t-test are better than FA; compared
to NEFA, HFA has 26 benchmark functions whose values of
t-test are better than NEFA; compared with UFA, HFA has
26 benchmark functions whose values of t-test are better than
UFA; compared with RFA, HFA has 21 benchmark functions
whose values of t-test are better than RFA; compared with
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TABLE 11. Calculation results of various algorithms (D = 30).
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TABLE 11. (Continued.) Calculation results of various algorithms (D = 30).

GDFA, HFA has 27 benchmark functions whose values of
t-test are better than GDFA; compared with SPSO, HFA has
18 benchmark functions whose values of t-test are better
than SPPSO; compared to ADE, HFA has 18 benchmark
functions whose values of t-test are better than ADE; com-
paredwithGA-DEx, HFA has 27 benchmark functionswhose
values of t-test are better than GA-DEx; compared to CSPSO,
HFA has 18 benchmark functions whose values of t-test are
better than CSPSO. According to the Friedman test shown
in Table 13, HFA(rank = 2.54) ranks first in all algorithms,
followed by CSPSO (rank= 3.00) and SPPSO (rank= 3.11)
respectively. In summary, for the 10-dimensional problem,
the performance of HFA is significantly better than the other
nine algorithms.

2) PERFORMANCES FOR THE 30-D PROBLEMS
The experimental results for the D = 30 problems are shown
in Table 11. As can be seen from Table 11, ADE performs
best on six benchmark functions such as C18, C19, C24,
C25, C27, and C28. CSPSO performs best on four bench-
mark functions, C3, C11, C16, and C17. RFA performs best
on the C07, C20, and C26 benchmark functions. SPPSO
performs best on C6 and C15 benchmark functions. HFA
performs best on the remaining 13 benchmark functions.
At the same time, t-test shows that the overall performance
of the proposed HFA is better than the other nine comparison
algorithms. Specifically, compared with FA, HFA has 28 test
functions whose values of t-test are better than FA; compared
to NEFA, HFA has 26 benchmark functions whose values of
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TABLE 12. Calculation results of various algorithms (D = 50).
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TABLE 12. (Continued.) Calculation results of various algorithms (D = 50).

t-test are better than NEFA; compared with UFA, HFA has
26 benchmark functions whose values of t-test are better than
UFA; compared with RFA, HFA has 21 benchmark functions
whose values of t-test are better than RFA; compared with
GDFA, HFA has 26 benchmark functions whose values of
t-test are better than GDFA; compared with SPSO, HFA has
20 benchmark functions whose values of t-test are better than
SPPSO; compared to ADE, HFA has 15 benchmark functions
whose values of t-test are better than ADE; compared with
GA-DEx, HFA has 27 benchmark functions whose values of
t-test are better than GA-DEx; compared to CSPSO, HFA has
18 benchmark functions whose values of t-test are better than
CSPSO. According to the Friedman test shown in Table 14,
HFA (rank = 2.61) ranks first in all algorithms, followed by
CSPSO(rank = 3.25) and SPPSO(rank = 3.61) respectively.
In summary, for the 30-dimensional problem, the perfor-
mance of the HFA proposed in this paper is significantly
better than the other nine algorithms.

3) PERFORMANCES FOR THE 50-D PROBLEMS
The experimental results for the D = 50 problems are shown
in Table 12. As can be seen from Table 12, ADE performs

best on six benchmark functions such as C17, C19, C24,
C25, C26, and C28. RFA performs best on three test func-
tions, C03, C07 and C20. CSPSO performs best on two
benchmark functions, C11 and C16. SPPSO performs best
on the C15 benchmark function. UFA performs best on the
C06 benchmark function. HFA performed best on the remain-
ing 15 benchmark functions. At the same time, t-test shows
that the overall performance of the proposed HFA is bet-
ter than the other nine comparison algorithms. Specifically,
compared with FA, HFA has 28 test functions whose values
of t-test are better than FA; compared to NEFA, HFA has
26 benchmark functions whose values of t-test are better than
NEFA; compared with UFA, HFA has 26 benchmark func-
tions whose values of t-test are better than UFA; compared
with RFA, HFA has 22 benchmark functions whose values of
t-test are better than RFA; compared with GDFA, HFA has
27 benchmark functions whose values of t-test are better than
GDFA; compared with SPSO, HFA has 18 benchmark func-
tions whose values of t-test are better than SPPSO; compared
with ADE, HFA has 17 benchmark functions whose values
of t-test are better than ADE; compared with GA-DEx, HFA
has 27 benchmark functions whose values of t-test are better
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TABLE 13. Statistical analysis of friedman test for the results (D = 10).

TABLE 14. Statistical analysis of friedman test for the results (D = 30).

TABLE 15. Statistical analysis of friedman test for the results (D = 50).

TABLE 16. Optimization results of various algorithms.

than GA-DEx; compared to CSPSO, HFA has 19 benchmark
functions whose values of t-test are better than CSPSO.
According to the Friedman test shown in Table 15, HFA
ranks first in all algorithms (rank = 2.50), followed by ADE
(rank= 3.43) and CSPSO (rank= 3.50) respectively. In sum-
mary, for the 50-dimensional problem, the performance of the
HFA proposed in this paper is significantly better than the
other nine algorithms.

VI. CANTILEVER BEAM OPTIMIZATION DESIGN
MODEL AND SOLUTION METHOD
The cantilever beam consists of five square hollow blocks,
the first of which is fixed, and the fifth is subjected to vertical
loads. Take the cantilever beam design problem given in [23]
as an example. The cantilever beam structure is illustrated in
Figure.3.

With the minimum weight of the cantilever beam shown in
Figure.3 the following mathematical model can be built.

minf (x) = 0.6224 (x1 + x2 + x3 + x4 + x5) (29)

FIGURE 3. Structure design of cantilever beam design.

s.t.

 g (x) =
61

x31 + x
3
2 + x

3
3 + x

3
4 + x

3
5

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100
(30)

To further verify the feasibility of the HFA algo-
rithm to solve the cantilever beam parameter optimization
problem, the HFA is compared with the algorithms of litera-
ture [23], [41], [42], [43] and [44]. Furthermore, for the con-
venience ofwriting, the solutionmethod in [23] is abbreviated
as GDFA, the solution method in [41] is abbreviated asMVO,
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the solution methods in [42] are abbreviated asMMA, GCA-I
and GCA-II, the solution method in [43] is abbreviated CS,
and the solution method in [44] is abbreviated SOS. The
mathematical models of cantilever beam parameter optimiza-
tion problem is solved using HFA, GDFA, MVO, MMA,
GCA-I, GCA-II, CS and SOS algorithms, respectively. The
calculation results are listed in TABLE 16.

Table16 shows that the weight of the cantilever beam
obtained by HFA is significantly smaller than those of other
algorithms. Compared with GDFA, MVO, MMA, GCA-I,
GCA-II, CS and SOS, the weight of the cantilever beam
obtained by HFA decreased by 1.877%, 2.708%, 2.711%,
2.711%, 2.711%, 6.880%, 6.878% respectively.

VII. CONCLUSION
Aiming at the problem that the position update formula
of the firefly algorithm in the existing literatures does not
consider the attraction of the optimal firefly to all other
fireflies in the population, a position update formula consid-
ering the attraction of the optimal firefly to all other fireflies
in the population is given. And a method to adaptively adjust
the parameters in the position update formula is adopted,
rendering the position update formula strong global search
ability and strong local search ability in the initial stage
and the later stage of iteration, respectively. Accordingly,
the improved position formula can rise the convergence speed
of the HFA.

Some single mutation operators have strong local search
ability, and some singlemutation operators have strong global
search ability. Therefore, a single mutation operator can-
not give better consideration to the local and global search
ability of the firefly algorithm. In order to better balance
the global and local search ability of the firefly algorithm,
the mutation operators with strong local search ability and
mutation operators with strong global search ability can be
combined to obtain the combined mutation operator, and the
combined mutation operator is introduced into the improved
firefly algorithm to get the hybrid firefly algorithm. There-
fore, the HFA global and local search capabilities are stronger
and the solution quality is higher.

The problem of Logistic mapping given in existing litera-
tures is that when cs(k) equals 0, 0.25, 0.5, 0.75 and 1, chaotic
search cannot traverse the whole search space. In order
to avoid this phenomenon, a method of generating chaotic
sequence is presented. This method can traverse [0,1] inter-
val. On this basis, a method of mapping chaotic sequence to
search space is proposed, which enables the firefly algorithm
to traverse the whole search space and enhances the global
search ability of the firefly algorithm.

In the literatures that introduces chaotic search in the firefly
algorithm, only the optimal firefly in the population is ran-
domly moved according to the chaotic search. This random
movement reduces the possibility that the population falls
into local optimum to some extent. The problem with this
strategy is that only one firefly moves randomly according to
chaotic search, which limits its global search ability. To solve

this problem, HFA randomly moves all fireflies in the popu-
lation according to chaos search, so as to further enhance the
global search ability of the population.

In order to verify the effectiveness of HFA, 28 test prob-
lems in CEC2017 were selected and compared with basic FA
algorithm, four improved firefly algorithms, and four other
types of intelligent optimization algorithms. The calculation
results of 28 CEC2017 test problems show that the solution
quality of HFA is better than that of other algorithms, which
verifies the efficiency and feasibility of HFA.

Finally, the structural parameters of the cantilever beam
are optimized using HFA and various improved algorithms
in the literatures. The optimization results show that the
solving quality of the HFA is significantly better than other
algorithms, which proves that HFA has strong optimization
ability.
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